Analysis of the Physiological Characteristics of Elite Male and Female Junior Rowers During Extreme Exercise
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BF3 | breathing frequency in Zone III |
BFPeak | breathing frequency at peak exercise |
BH | body height |
BMI | body mass index |
BSA | body surface area |
BW | body weight |
HR3 | heart rate in Zone III |
HRPeak | heart rate at peak exercise |
O2P3 | oxygen pulse in Zone III |
O2PPeak | oxygen pulse at peak exercise |
Q3 | cardiac output in Zone III |
QPeak | cardiac output at peak exercise |
RER3 | respiratory exchange ratio in Zone III |
RERPeak | respiratory exchange ratio at peak exercise |
rHR | resting heart rate |
rVO2 3 | relative oxygen uptake in Zone III |
rVO2Peak | relative oxygen uptake at peak exercise |
VE3 | minute ventilation in Zone III |
VEPeak | minute ventilation at peak exercise |
VE/VCO2 3 | ventilatory equivalent for CO2 in Zone III |
VE/VCO2 | ventilatory equivalent for CO2 |
VE/VO2 3 | ventilatory equivalent for O2 in Zone III |
VE/VO2 | ventilatory equivalent for O2 |
VCO23 | carbon dioxide output in Zone III |
VCO2Peak | carbon dioxide output at peak exercise |
VO2 3 | oxygen uptake in Zone III |
VO2Peak | oxygen uptake at peak exercise |
VTin [ST]3 | inspiratory tidal volume in Zone III |
VTin [ST] Peak | inspiratory tidal volume at peak exercise |
References
- Drarnitsyn, O.V.; Ivanova, A.M.; Sazonov, V.V. The Relationship between the Dynamics of Cardiorespiratory Variables and Rowing Ergometer Performance. Hum. Physiol. 2009, 35, 325–331. [Google Scholar] [CrossRef]
- Steinacker, J.M. Physiological aspects of training in rowing. Int. J. Sports Med. 1993, 14, S3–S10. [Google Scholar]
- De Campos Mello, F.; De Moraes Bertuzzi, R.C.; Grangeiro, P.M.; Franchini, E. Energy systems contributions in 2000 m race simulation: A comparison among rowing ergometers and water. Eur. J. Appl. Physiol. 2009, 107, 615–619. [Google Scholar] [CrossRef]
- Martin, S.A.; Tomescu, V. Energy System Efficiency Influences the Results of 2000 m Race Simulation among Elite Rowers. Clujul Med. 2017, 90, 60–65. [Google Scholar]
- Smith, T.B.; Hopkins, W.G. Measures of rowing performance. Sports Med. 2012, 42, 343–358. [Google Scholar] [CrossRef]
- Lamb, D.H. A kinematic comparison of ergometer and on-water rowing. Int. J. Sport Biomech. 1989, 5, 270–283. [Google Scholar] [CrossRef]
- Vogler, A.J.; Rice, A.J.; Gore, C.J. Physiological responses to ergometer and on-water rowing. Int. J. Sports Physiol. Perform. 2010, 5, 448–459. [Google Scholar] [CrossRef]
- McNeely, E. Rowing ergometer physiological tests do not predict on-water performance. Sport J. 2012, 15, 1. [Google Scholar]
- Cerasola, D.; Bellafiore, M.; Cataldo, A.; Zangla, D.; Bianco, A.; Proia, P.; Capranica, L. Predicting the 2000-m rowing ergometer performance from anthropometric, maximal oxygen uptake and 60-s mean power variables in national level young rowers. J. Hum. Kinet. 2020, 75, 77–83. [Google Scholar] [CrossRef]
- Riechman, S.E.; Zoeller, R.F.; Balasekaran, G.; Goss, F.L.; Robertson, R.J. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. J. Sports Sci. 2002, 20, 681–687. [Google Scholar] [CrossRef]
- Cosgrove, M.J.; Wilson, J.; Watt, D.; Grant, S.F. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J. Sports Sci. 1999, 17, 845–852. [Google Scholar] [CrossRef]
- Yoshiga, C.C.; Higuchi, M. Rowing performance of female and male rowers. Scand. J. Med. Sci. Sports 2003, 13, 317–321. [Google Scholar] [CrossRef]
- Russell, A.P.; Le Rossignol, P.F.; Sparrow, W.A. Prediction of elite schoolboy 2000 m rowing ergometer performance from metabolic, anthropometric and strength variables. J. Sports Sci. 1998, 16, 749–754. [Google Scholar] [CrossRef]
- Kendall, K.L.; Fukuda, D.H.; Smith, A.E.; Cramer, J.T.; Stout, J.R. Critical velocity: A predictor of 2000-m rowing ergometer performance in NCAA Division I female rowers. J. Sports Sci. 2011, 29, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Bergh, U.; Ekblom, B.; Åstrand, P.O. Maximal oxygen uptake: ‘Classical’ versus ‘Contemporary’ viewpoints. Med. Sci. Sports Exerc. 2000, 32, 85–88. [Google Scholar] [CrossRef]
- Wagner, C.M.; Osborne, J.O.; Sandbakk, Ø.; Schiemann, S.; Röhrs, D.; Schmidt, T.; Keiner, M. Sex Differences in Double Poling Performance: The Role of Upper-Body Strength and Endurance in Youth Elite Cross-Country Skiers and Biathletes. Eur. J. Sport Sci. 2025, 25, e12253. [Google Scholar] [CrossRef] [PubMed]
- López-Torres, O.; Nieto-Acevedo, R.; Guadalupe-Grau, A.; Fernández-Elías, V.E. Sex Differences in Bench Press Strength and Power: A Velocity-Based Analysis Adjusted for Body Composition. J. Funct. Morphol. Kinesiol. 2025, 10, 284. [Google Scholar] [CrossRef]
- Armstrong, N.; McManus, A.M. Physiology of Elite Young Male Athletes. In Medicine and Sport Science; Hebestreit, H., Bar-Or, O., Eds.; Karger: Basel, Switzerland, 2011; Volume 56, pp. 1–22. [Google Scholar]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. Relationship between biological maturation, physical fitness, and kinanthropometric variables of young athletes: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 328. [Google Scholar] [CrossRef]
- Santisteban, J.; Garrido-Chamorro, R.; González-Montesinos, J.L. Sex differences in physiological responses during endurance exercise: A systematic review and meta-analysis. Sports Med. 2022, 52, 2549–2570. [Google Scholar]
- Rios, M.; Cardoso, R.; Monteiro, A.S.; Vilas-Boas, J.P.; Fernandes, R.J. Physiological Demands Across Exercise Intensity Domains in Rowing: Implications of Weight Category and Sex Differences. Sports 2025, 13, 245. [Google Scholar] [CrossRef]
- Vogelsang, T.W.; Dawson, E.A.; Volianitis, S.; Warberg, J.; Secher, N.H. Cardiac output during exercise is related to preload: Evidence from rowing and running. Exp. Physiol. 2006, 91, 379–384. [Google Scholar]
- Garland, S.W. An analysis of pacing strategy in 2000-m rowing. Br. J. Sports Med. 2005, 39, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Yusof, A.A.M.; Harun, M.N.; Nasruddin, F.A.; Syahrom, A. Rowing biomechanics, physiology and hydrodynamics: A systematic review. Int. J. Sports Med. 2022, 43, 577–585. [Google Scholar] [CrossRef]
- Blervaque, L.; Garcin, M.; Billat, V.; Gremeaux, V. Is the Energy Cost of Rowing a Determinant Factor of Performance in Elite Oarsmen? Front. Physiol. 2022, 13, 827932. [Google Scholar] [CrossRef]
- Secher, N.H. The physiology of rowing. J. Sports Sci. 1983, 1, 23–53. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
Mean m | SD | Mean f | SD | t-Value | df | p | |
---|---|---|---|---|---|---|---|
age (year) | 15.83 | 1.16 | 15.6 | 1.00 | 0.2960 | 13 | 0.7718 |
BH (cm) | 184.01 | 6.22 | 172.38 | 7.44 | 3.1505 | 13 | 0.0076 |
BW (kg) | 74.51 | 5.69 | 66.13 | 6.77 | 2.4926 | 13 | 0.0269 |
F% | 13.36 | 5.46 | 25.11 | 6.30 | −13.4973 | 13 | 0.000 |
M% | 42.35 | 4.26 | 36.72 | 3.71 | 14.2215 | 13 | 0.000 |
BMI | 21.98 | 0.90 | 22.19 | 0.83 | −0.4632 | 13 | 0.6508 |
BSA (cm2) | 1.96 | 0.11 | 1.78 | 0.13 | 2.8595 | 13 | 0.0134 |
rHR (beat × min−1) | 74.34 | 4.52 | 76.15 | 3.38 | 0.1860 | 13 | 0.4308 |
Mean m (6) | SD | Mean f (9) | SD | t-Value | df | p | |
---|---|---|---|---|---|---|---|
Time3/sec. | 208.83 | 87.66 | 333.78 | 97.51 | −2.5262 | 13 | 0.0253 |
HR3 | 187.17 | 5.00 | 182.78 | 9.44 | 1.0369 | 13 | 0.3187 |
O2P3 | 23.22 | 3.55 | 17.39 | 2.61 | 3.6852 | 13 | 0.0027 |
Q3 | 43.41 | 6.27 | 31.65 | 3.90 | 4.5125 | 13 | 0.0006 |
VE3 | 143.83 | 3.42 | 118.89 | 13.91 | 2.1715 | 13 | 0.0490 |
VE/VO2 3 | 33.22 | 4.96 | 36.55 | 3.40 | −1.5534 | 13 | 0.1443 |
VE/VCO2 3 | 29.45 | 3.94 | 33.22 | 2.58 | −2.2515 | 13 | 0.0423 |
VO2 3 | 4340.50 | 626.76 | 3164.56 | 389,56 | 4.5125 | 13 | 0.0006 |
VCO2 3 | 4880.67 | 680.55 | 3477.89 | 423.77 | 4.9540 | 13 | 0.0003 |
rVO2 3 | 58.01 | 4.45 | 47.92 | 4.55 | 4.2450 | 13 | 0.0010 |
RER3 | 1.12 | 0.04 | 1.10 | 0.04 | 1.1033 | 13 | 0.2899 |
BF3 | 61.17 | 5.51 | 60.44 | 2.33 | 0.3538 | 13 | 0.7292 |
VTin [ST]3 | 2.03 | 0.29 | 1.67 | 0.18 | 2.9457 | 13 | 0.0114 |
TimePeak/sec. | 431.00 | 34.50 | 483.22 | 13.59 | −4.1447 | 13 | 0.0012 |
HRPeak | 195.00 | 4.82 | 187.89 | 10.11 | 1.5927 | 13 | 0.1352 |
O2PPeak | 22.60 | 3.92 | 17.01 | 2.70 | 3.2859 | 13 | 0.0059 |
QPeak | 43.98 | 7.06 | 31.82 | 4.08 | 4.2573 | 13 | 0.0009 |
VEPeak | 153.33 | 36.27 | 122.67 | 12.99 | 2.3563 | 13 | 0.0348 |
VE/VO2 | 34.82 | 4.92 | 38.80 | 3.40 | −1.8596 | 13 | 0.0857 |
VE/VCO2 | 30.22 | 4.03 | 34.69 | 3,04 | −2.4549 | 13 | 0.0289 |
VO2Peak | 4397.83 | 705.68 | 3181.78 | 407.51 | 4.2573 | 13 | 0.0009 |
VCO2Peak | 5075.67 | 905.82 | 3560.11 | 465.65 | 4.2913 | 13 | 0.0009 |
rVO2Peak | 58.73 | 5.25 | 48.32 | 6.09 | 3.4136 | 13 | 0.0046 |
RERPeak | 1.15 | 0.04 | 1.12 | 0.04 | 1.7361 | 13 | 0.1062 |
BFPeak | 66.60 | 4.81 | 70.16 | 5.42 | −1.2990 | 13 | 0.2165 |
VTin [ST] Peak | 2.01 | 0.38 | 1.54 | 0.18 | 3.2078 | 13 | 0.0069 |
rVO2Peak | VO2Peak | O2PPeak | TimePeak | |
---|---|---|---|---|
rVO2Peak | 0.8848 *** | 0.8404 *** | -0.6781 * | |
VO2Peak | 0.8848 *** | 0.9753 *** | −0.8286 ** | |
O2PPeak | 0.8404 *** | 0.9753 *** | −0.7729 * | |
TimePeak | −0.6781 * | −0.8286 ** | −0.7729 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthalos, I.; Alföldi, Z.; Soós, I.; Horváth Pápai, A.; Balog, Á.; Suszter, L.; Ihász, F. Analysis of the Physiological Characteristics of Elite Male and Female Junior Rowers During Extreme Exercise. Physiologia 2025, 5, 38. https://doi.org/10.3390/physiologia5040038
Barthalos I, Alföldi Z, Soós I, Horváth Pápai A, Balog Á, Suszter L, Ihász F. Analysis of the Physiological Characteristics of Elite Male and Female Junior Rowers During Extreme Exercise. Physiologia. 2025; 5(4):38. https://doi.org/10.3390/physiologia5040038
Chicago/Turabian StyleBarthalos, István, Zoltán Alföldi, Imre Soós, Anna Horváth Pápai, Ádám Balog, László Suszter, and Ferenc Ihász. 2025. "Analysis of the Physiological Characteristics of Elite Male and Female Junior Rowers During Extreme Exercise" Physiologia 5, no. 4: 38. https://doi.org/10.3390/physiologia5040038
APA StyleBarthalos, I., Alföldi, Z., Soós, I., Horváth Pápai, A., Balog, Á., Suszter, L., & Ihász, F. (2025). Analysis of the Physiological Characteristics of Elite Male and Female Junior Rowers During Extreme Exercise. Physiologia, 5(4), 38. https://doi.org/10.3390/physiologia5040038