Flywheel Resistance Training in Female Futsal Players: Muscle Power Asymmetries and Injury Risk Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICC | Intraclass Correlation Coefficient |
EJPD | Right leg knee extension |
EJPE | Left leg knee extension |
FJPD | Right leg knee flexion |
FJPE | Left leg knee flexion |
HUMAN LAB | Human Morphophysiology Analysis Laboratory |
H/Q | Hamstrings/quadriceps |
95%CI | 95% confidence interval |
ACL | Anterior cruciate ligament |
PAR-Q | Physical Activity Readiness Questionnaire |
RIQPC | Hamstring/quadriceps concentric power ratio |
RIQPE | Hamstring/quadriceps eccentric power ratio |
SPSS | Statistical Package for the Social Sciences |
W | Watts |
References
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Chaves, S.F.N.; Ferreira-Júnior, J.B.; Duarte, W.; Serpa, T.K.F.; Rodrigues Júnior, J.L.; Assis, M.G.; Veneroso, C.E.; Pimenta, E.M. IGF-1, C-Reactive Protein, and Skin Temperature Responses to a Non-Contact Team Sport Activity Circuit in Under-20 Elite Soccer Players. Braz. Arch. Biol. Technol. 2024, 67, e24230071. [Google Scholar] [CrossRef]
- Nogueira, H.S.; Abad, C.C.C.; Costa, T.B.; Chiminazzo, J.G.C.; Lima, W.P. Respostas de concentrações sanguíneas da proteína C reativa em atletas universitários de futsal após uma sessão aguda de treinamento: Um estudo piloto. Rev. Bras. Futsal E Futeb. 2024, 16, 230–239. Available online: https://www.rbff.com.br/index.php/rbff/article/view/1420 (accessed on 2 May 2025).
- Liao, K.F.; Nassis, G.; Bishop, C.; Yang, W.; Bian, C.; Li, Y.M. Effects of unilateral vs. bilateral resistance training interventions on measures of strength, jump, linear and change of direction speed: A systematic review and meta-analysis. Biol. Sport 2022, 39, 485–497. [Google Scholar] [CrossRef]
- Braga, E.; Boeno, F.P.; Teixeira, B.C. Comparação entre o nível de equilíbrio muscular e potência de membros inferiores de jogadores profissionais de futsal e futebol de campo. Rev. Saúde Corpo e Mov. 2022, 1, 1–14. Available online: https://revista.uemg.br/index.php/scm/article/view/6841 (accessed on 2 May 2025).
- van Dyk, N.; Behan, F.P.; Whiteley, R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. Br. J. Sports Med. 2019, 53, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2022, 57, 292–298. [Google Scholar] [CrossRef]
- de Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week In-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef]
- Correia, P.; Santos, P.; Mil-Homens, P.; Gomes, M.; Dias, A.; Valamatos, M.J. Rapid hamstrings to quadriceps ratio at long muscle lengths in professional football players with previous hamstring strain injury. Eur. J. Sport Sci. 2020, 20, 1405–1413. [Google Scholar] [CrossRef]
- Hamoongard, M.; Hadadnezhad, M.; Abbasi, A. Effect of combining eight weeks of neuromuscular training with dual cognitive tasks on landing mechanics in futsal players with knee ligament dominance defect: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2022, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Lago-Fuentes, C.; Padrón-Cabo, A.; Fernández-Villarino, M.; Mecías-Calvo, M.; Muñoz-Pérez, I.; García-Pinillos, F.; Rey, E. Follicular phase of menstrual cycle is related to higher tendency to suffer from severe injuries among elite female futsal players. Phys. Ther. Sport 2021, 52, 90–96. [Google Scholar] [CrossRef]
- Ade, J.; Fitzpatrick, J.; Bradley, P. High-intensity e orts in elite soccer matches and associated movement patterns, technical skills and tactical actions. Information for position-specific training drills. J. Sports Sci. 2016, 34, 2205–2214. [Google Scholar] [CrossRef]
- Castillo, D.; Domínguez, R.; Rodríguez-Fernández, A.; Raya-González, J. Effects of caffeine supplementation on power performance in a flywheel device: A randomised, double-blind cross-over study. Nutrients 2019, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Case, M.; Knudson, D.V.; Downey, D. Barbell squat relative strength as an identifier for lower extremity injury in collegiate athletes. J. Strength Cond. Res. 2020, 34, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.; Lloyd, R.; Keogh, J.; Agouris, I.; Stewart, A. Regression models of sprint, vertical jump, and change of direction performance. J. Strength Cond. Res. 2014, 28, 1839–1848. [Google Scholar] [CrossRef]
- de Freitas, V.H.; Rinaldo, M.; Turquino, G.G.; Miloski, B.; Ramos, S.P. Training aimed at the development of power and physical performance of futsal players. Braz. J. Kineanthropometry Hum. Perform. 2019, 21, e60119. [Google Scholar] [CrossRef]
- Spyrou, K.; Freitas, T.; Marín-Cascales, E.; Alcaraz, P. Physical and Physiological Match-Play Demands and Player Characteristics in Futsal: A Systematic Review. Front. Psychol. 2020, 11, 569897. [Google Scholar] [CrossRef]
- de Lira, C.A.B.; Mascarin, N.; Vargas, V.; Vancini, R.; Andrade, M.S. Isokinetic knee muscle strength profile in brazilian male soccer, futsal, and beach soccer players: A cross-sectional study. Int. J. Sports Phys. Ther. 2017, 12, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, A.; Centorbi, M.; Iuliano, E.; Di Martino, G.; Della Valle, C.; Fiorilli, G.; Calcagno, G.; Di Cagno, A. A Systematic Review of Flywheel Training Effectiveness and Application on Sport Specific Performances. Sports 2023, 11, 76. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Gonzalez, J.R.; Beato, M. The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. PLoS ONE 2022, 17, e0264375. [Google Scholar] [CrossRef]
- Agostinho, P.A.G.; Bedoya, E.A.P.; Santos, L.V.; Cota, A.R.; Oliveira, C.E.P.; MOREIRA, O.C. Eccentric resistance training for older adults: A narrative review of possibilities and limitations. Arch. Med. Deporte 2024, 41, 240–245. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Mcerlain-Naylor, S.A.; Brownlee, T.E.; Raya-González, J.; Beato, M. Perception and application of flywheel training by professional soccer practitioners. Biol. Sport 2022, 39, 809–817. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Mcerlain-Naylor, S.A.; Beato, M. The Effect of Flywheel Inertia on Peak Power and Its Inter-session Reliability During Two Unilateral Hamstring Exercises: Leg Curl and Hip Extension. Front. Sports Act. Living 2022, 4, 898649. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Luri, A.P.; Lopes-Valenciano, A.; Sabido, R.; Hernández-Davó, J.L. Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. J. Hum. Kinet. 2020, 77, 191. [Google Scholar] [CrossRef]
- Fritsch, C.; Dornelles, M.; Oliveira, G.; Baroni, B.M. Poor hamstrings-to-quadriceps torque ratios in male soccer players: Weak hamstrings, strong quadriceps, or both? Sports Biomech. 2023, 22, 811–821. [Google Scholar] [CrossRef]
- Fortes, R.; Machado, C.; Baroni, B.M.; Nakamura, F.Y.; Pintp, R. Relationship between maximal strength and hamstring-to-quadriceps ratios in balanced and unbalanced legs in futsal athletes. Sport Sci. Health 2023, 19, 1169–1176. [Google Scholar] [CrossRef]
- Arantes, F.A.; Moreira, O.C.; Sequeto, G.S.; Oliveira, C.E.P. The influence of the menstrual cycle on the practice of physical exercise: Narrative review. Arch. Med. Deporte 2023, 40, 305–314. [Google Scholar] [CrossRef]
- Arantes, F.A.; Moreira, O.C.; Costa, B.D.D.; Valente, J.S.; Marins, J.C.; Oliveira, C.E.P. Menstrual cycle and strength levels in women: A pilot study. Cuad. Educ. Desarro. 2024, 16, e4197. [Google Scholar] [CrossRef]
- Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-Overload Production during the Flywheel Squat Exercise in Young Soccer Players: Implications for Injury Prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.; Pinto, M.; Nosaka, K.; Steele, J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity. Med. Esportiva 2023, 53, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, R.; Yamada, Y.; Hammert, W.; Song, J.S.; Kassiano, W.; Kang, A.; Loenneke, J. The Influence of Eccentric Muscle Actions on Concentric Muscle Strength: An Exception to the Principle of Specificity? Int. J. Strength Cond. 2024, 4, 1–13. [Google Scholar] [CrossRef]
- Tomalka, A. Eccentric muscle contractions: From single muscle fibre to whole muscle mechanics. Pflügers Arch.—Eur. J. Physiol. 2023, 475, 421–435. [Google Scholar] [CrossRef]
- Pakosz, P.; Konieczny, M.; Domaszewski, P.; Dybek, T.; Gnoinski, M.; Skorupska, E. Comparison of concentric and eccentric resistance training in terms of changes in the muscle contractile properties. J. Electromyogr. Kinesiol. 2023, 73, 102824. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; Mc Guigan, M. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Martínez-Aranda, L.; Fernández-Gonzalo, R. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload During Flywheel Resistance Exercise in Women and Men. Rev. Pesqui. Força Condicionamento 2017, 31, 1653–1661. [Google Scholar] [CrossRef]
- Komi, P.; Buskirk, E.R. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 1972, 15, 417–434. [Google Scholar] [CrossRef]
- Colliander, E.B.; Tesch, P.A. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol. Scand. 1990, 140, 31–39. [Google Scholar] [CrossRef]
- Mandroukas, A.; Michailidis, Y.; Metaxas, T. Muscle Strength and Hamstrings to Quadriceps Ratio in Young Soccer Players: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2023, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Small, K.; Mcnaughton, L.; Greig, M.; Lovell, R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J. Sci. Med. Sport 2010, 13, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.M.; Shahidian, S.; Voser, R.C.; Leite, N. Incidência e fatores de risco de lesões em jogadores de futsal portugueses. Rev. Bras. Med. Esporte 2013, 19, 123–129. [Google Scholar] [CrossRef]
- Daneshjoo, A.; Rahnama, N.; Mokhtar, A.H.; Yusof, A. Bilateral and unilateral asymmetries of isokinetic strength and flexibility in male young professional soccer players. J. Hum. Kinet. 2013, 36, 45–53. [Google Scholar] [CrossRef]
- Sliwowski, R.; Paillard, T.; Bojkowski, Ł.; Dudziński, W.; Patek, M.; Marynowicz, J. Intra- and inter-limb strength imbalance and asymmetry in soccer: A comparison of elite senior and junior players. PLoS ONE 2024, 19, e0302474. [Google Scholar] [CrossRef]
- Beato, M.; Young, D.; Stiff, A.; Coratella, G. Lower-Limb Muscle Strength, Anterior-Posterior and Inter-Limb Asymmetry in Professional, Elite Academy and Amateur Soccer Players. J. Hum. Kinet. 2021, 77, 135–146. [Google Scholar] [CrossRef]
- Stergiou, M.; Calvo, A.L.; Forelli, F. Effectiveness of Neuromuscular Training in Preventing Lower Limb Soccer Injuries: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 1714. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.; Chun, S.; Seo, B. Effects of muscle strength asymmetry between left and right on isokinetic strength of the knee and ankle joints depending on athletic performance level. J. Phys. Ther. Sci. 2016, 28, 1289–1293. [Google Scholar] [CrossRef]
- Neto, I.M.D.L.F.; Luciano, C.V.; Oliveira, M.V.; Beirão, M.E. Avaliação isocinética da força de contração excêntrica dos músculos isquiotibiais no período pré-operatório de pacientes com lesão de ligamento cruzado anterior. Rev. AMRIGS 2022, 66, 244–248. Available online: https://docs.bvsalud.org/biblioref/2023/03/1424999/42_2705_revista-amrigs.pdf (accessed on 2 May 2025).
- Solomonow, M.; Baratta, R.; Zhou, B.; Shoji, H.; Bose, W.; Beck, C.; D’Ambrosia, R. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am. J. Sports Med. 1987, 15, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Baratta, R.; Solomonow, M.; Zhou, B.H.; Letson, D.; Chuinard, R.; D’Ambrosia, R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am. J. Sports Med. 1988, 16, 113–122. [Google Scholar] [CrossRef]
- Coombs, R.; Garbutt, G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. J. Sports Sci. Med. 2002, 1, 56–62. [Google Scholar] [PubMed]
- Rebelo, M.; Marques, C.; Crisóstomo, R.; Batista, M.; Paulo, R.; Duarte-Mendes, P.; Honório, S.; Serrano, J. Índices de composição corporal, força e potência muscular nos diferentes níveis competitivos do futsal. Retos 2025, 65, 794–805. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Magnusson, S.P.; Larsson, B.; Dyhre-Poulsen, P. A new concept for isokinetic hamstring: Quadriceps muscle strength ratio. Am. J. Sports Med. 1998, 26, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Harbili, S.; Harbili, E.; Aslankeser, Z. Comparison of bilateral isokinetic and isometric strength differences in elite young male and female taekwondo athletes. J. Exerc. Rehabil. 2022, 18, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, M.; Ripley, N.; Mcmahon, J.; Evans, M.; Haff, G.G.; Conforto, P. The Effect of Nordic Hamstring Exercise Intervention Volume on Eccentric Strength and Muscle Architecture Adaptations: A Systematic Review and Meta-analyses. Sports Med. 2020, 50, 83–99. [Google Scholar] [CrossRef] [PubMed]
Concentric | Eccentric | Δ% | T | p | ES | 1-β | |||
---|---|---|---|---|---|---|---|---|---|
Average | SD | Average | SD | ||||||
KERL | 215.91 | 73.49 | 268.52 | 86.44 | 24.37 | −3.89 | 0.003 | 0.72 | 0.955 |
KELL | 214.92 | 73.25 | 268.24 | 109.92 | 24.81 | −3.44 | 0.006 | 0.73 | 0.963 |
KFRL | 103.73 | 31.27 | 145.93 | 39.96 | 40.68 | −9.08 | <0.001 | 1.35 | >0.99 |
KFLL | 88.13 | 34.98 | 137.68 | 55.97 | 56.22 | −5.34 | <0.001 | 1.42 | >0.99 |
Right | Left | Δ% | T | p | ES | |||
---|---|---|---|---|---|---|---|---|
Average | SD | Average | SD | |||||
KECP | 215.91 | 73.49 | 214.92 | 73.25 | 0.46 | 0.16 | 0.877 | 0.01 |
KEEP | 268.52 | 86.44 | 268.24 | 109.92 | 0.10 | 0.03 | 0.981 | 0.00 |
KFCP | 103.73 | 31.27 | 88.13 | 34.98 | 15.04 | 1.96 | 0.081 | 0.50 |
KFEP | 145.93 | 39.96 | 137.68 | 55.97 | 5.65 | 0.07 | 0.949 | 0.21 |
Right | Left | Δ% | T | p | ES | 1-β | |||
---|---|---|---|---|---|---|---|---|---|
Average | SD | Average | SD | ||||||
HQCPR (%) | 50.38 | 14.67 | 42.46 | 9.24 | 0.46 | 2.85 | 0.016 | 0.54 | 0.665 |
HQEPR (%) | 56.71 | 15.56 | 58.38 | 21.06 | 5.65 | −0.46 | 0.652 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Araújo, D.P.; Agostinho, P.A.G.; Chaves, S.F.N.; de Freitas Ferreira, R.; Valente, J.S.; de Oliveira, C.E.P.; Moreira, O.C. Flywheel Resistance Training in Female Futsal Players: Muscle Power Asymmetries and Injury Risk Implications. Physiologia 2025, 5, 26. https://doi.org/10.3390/physiologia5030026
da Silva Araújo DP, Agostinho PAG, Chaves SFN, de Freitas Ferreira R, Valente JS, de Oliveira CEP, Moreira OC. Flywheel Resistance Training in Female Futsal Players: Muscle Power Asymmetries and Injury Risk Implications. Physiologia. 2025; 5(3):26. https://doi.org/10.3390/physiologia5030026
Chicago/Turabian Styleda Silva Araújo, Daniele Pereira, Pablo Augusto Garcia Agostinho, Suene Franciele Nunes Chaves, Rafael de Freitas Ferreira, Juliana Souza Valente, Claudia Eliza Patrocínio de Oliveira, and Osvaldo Costa Moreira. 2025. "Flywheel Resistance Training in Female Futsal Players: Muscle Power Asymmetries and Injury Risk Implications" Physiologia 5, no. 3: 26. https://doi.org/10.3390/physiologia5030026
APA Styleda Silva Araújo, D. P., Agostinho, P. A. G., Chaves, S. F. N., de Freitas Ferreira, R., Valente, J. S., de Oliveira, C. E. P., & Moreira, O. C. (2025). Flywheel Resistance Training in Female Futsal Players: Muscle Power Asymmetries and Injury Risk Implications. Physiologia, 5(3), 26. https://doi.org/10.3390/physiologia5030026