Antibiotic Resistance Patterns of Escherichia coli from Children’s Sandpits in Durban, South Africa: A Point Prevalence Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Enumeration and Molecular Confirmation of E. coli
2.3. Determination of Antibiotic Resistance Profile of Isolates
3. Results
3.1. Enumeration of E. coli from Sand Samples
3.2. Antimicrobial Susceptibility of Isolates
3.2.1. Overall Susceptibility
3.2.2. Antibiograms and Multidrug Resistance
4. Discussion
4.1. Enumeration of E. coli
4.2. Antimicrobial Susceptibility of Isolates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bento, G.; Dias, G. The Importance of Outdoor Play for Young Children’s Healthy Development. Porto Biomed. J. 2017, 2, 157–160. [Google Scholar] [CrossRef]
- Loebach, J.; Cox, A. Playing in ‘The Backyard’: Environmental Features and Conditions of a Natural Playspace Which Support Diverse Outdoor Play Activities among Younger Children. Int. J. Environ. Res. Public Health 2022, 19, 2661. [Google Scholar] [CrossRef]
- Sturges, M.; Gray, T.; Barnes, J.; Lloyd, A. Parents’ and Caregivers’ Perspectives on the Benefits of a High-Risk Outdoor Play Space. J. Outdoor Environ. Educ. 2023, 26, 359–382. [Google Scholar] [CrossRef]
- Karasel, N.; Özdemir, S.; Güneyli, A.; Vaiz, O. Primary School Playgrounds: A Holistic Approach to Fun, Health, and Safety. Humanit. Soc. Sci. Commun. 2025, 12, 526. [Google Scholar] [CrossRef]
- Richmond, S.A.; Clemens, T.; Pike, I.; Macpherson, A. A Systematic Review of the Risk Factors and Interventions for the Prevention of Playground Injuries. Can. J. Public Health 2018, 109, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.; Abdullah, A.; Mustafa, R.A.; Jayaraman, K.; Bagheri, A. The Importance of Well-Designed Children’s Play-Environments in Reducing Parental Concerns. Middle East. J. Sci. Res. 2012, 11, 1176–1184. [Google Scholar] [CrossRef]
- Sandseter, E.B.H.; Storli, R.; Sando, O.J. The Dynamic Relationship between Outdoor Environments and Children’s Play. Education 3-13 2022, 50, 97–110. [Google Scholar] [CrossRef]
- Eager, D.; Chapman, C.; Qi, Y.; Ishac, K.; Hossain, M.I. Additional Criteria for Playground Impact Attenuating Sand. Appl. Sci. 2021, 11, 8805. [Google Scholar] [CrossRef]
- Howard, A.W.; Macarthur, C.; Rothman, L.; Willan, A.; Macpherson, A.K. School Playground Surfacing and Arm Fractures in Children: A Cluster Randomized Trial Comparing Sand to Wood Chip Surfaces. PLoS Med. 2009, 6, e1000195. [Google Scholar] [CrossRef]
- Laforest, S.; Robitaille, Y.; Dorval, D.; Lesage, D.; Pless, B. Severity of Fall Injuries on Sand or Grass in Playgrounds. J. Epidemiol. Community Health 2000, 54, 475–477. [Google Scholar] [CrossRef]
- Wójcik, A.; Błaszkowska, J.; Kurnatowski, P.; Góralska, K. Sandpits as a Reservoir of Potentially Pathogenic Fungi for Children. Ann. Agric. Environ. Med. 2016, 23, 542–548. [Google Scholar] [CrossRef]
- Sidjimov, M. Environmental Health Investigation of Sandpits at Public Playgrounds in Sofia City. In Proceedings of the Seminar of Ecology—2015, with International Participation, Sofia, Bulgaria, 23 April 2015. [Google Scholar]
- Handelsman, J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol. Mol. Biol. Rev. 2005, 69, 195. [Google Scholar] [CrossRef]
- Riesenfeld, C.S.; Schloss, P.D.; Handelsman, J. Metagenomics: Genomic Analysis of Microbial Communities. Annu. Rev. Genet. 2004, 38, 525–552. [Google Scholar] [CrossRef] [PubMed]
- Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The Best Biological Drinking Water Indicator for Public Health Protection. J. Appl. Microbiol. 2000, 88, 106S–116S. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E.; Elmir, S. Monitoring Marine Recreational Water Quality Using Multiple Microbial Indicators in an Urban Tropical Environment. Water Res. 2004, 38, 3119–3131. [Google Scholar] [CrossRef] [PubMed]
- Devane, M.L.; Moriarty, E.; Weaver, L.; Cookson, A.; Gilpin, B. Fecal Indicator Bacteria from Environmental Sources; Strategies for Identification to Improve Water Quality Monitoring. Water Res. 2020, 185, 116204. [Google Scholar] [CrossRef]
- Dias, R.C.B.; dos Santos, B.C.; dos Santos, L.F.; Vieira, M.A.; Yamatogi, R.S.; Mondelli, A.L.; Sadatsune, T.; Sforcin, J.M.; Gomes, T.A.T.; Hernandes, R.T. Diarrheagenic Escherichia coli Pathotypes Investigation Revealed Atypical Enteropathogenic E. coli as Putative Emerging Diarrheal Agents in Children Living in Botucatu, São Paulo State, Brazil. Apmis 2016, 124, 299–308. [Google Scholar] [CrossRef]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef]
- Sudershan, R.V.; Kumar, R.N.; Bharathi, K.; Kashinath, L.; Bhaskar, V.; Polasa, K. E. coli Pathotypes and Their Antibiotic Resistance in Young Children with Diarrhea in Hyderabad, India. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 647–654. [Google Scholar]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 10-1128. [Google Scholar] [CrossRef]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; Antibiotic Use Data for 2022; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Zsuzsanna Jakab—For the WHO Children’s Immature Immune Systems Threatened by Increasing ‘Superbugs’. Available online: https://www.who.int/news-room/commentaries/detail/children-s-immature-immune-systems-threatened-by-increasing-superbugs#:~:text=Infants%20and%20toddlers%20love%20to,to%20which%20they%20are%20exposed (accessed on 9 September 2025).
- Mattioli, M.C.M.; Davis, J.; Boehm, A.B. Hand-to-Mouth Contacts Result in Greater Ingestion of Feces than Dietary Water Consumption in Tanzania: A Quantitative Fecal Exposure Assessment Model. Environ. Sci. Technol. 2015, 49, 1912–1920. [Google Scholar] [CrossRef]
- IDEXX Colilert. Available online: https://www.idexx.com/en/water/water-products-services/colilert-18/ (accessed on 13 January 2015).
- Shin, S.K.; Lee, Y.; Kwon, H.; Rhee, J.S.; Kim, J.K. Validation of Direct Boiling Method for Simple and Efficient Genomic DNA Extraction and PCR-Based Macroalgal Species Determination. J. Phycol. 2021, 57, 1368–1372. [Google Scholar] [CrossRef]
- Yamagishi, J.; Sato, Y.; Shinozaki, N.; Ye, B.; Tsuboi, A.; Nagasaki, M.; Yamashita, R. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes. PLoS ONE 2016, 11, e0154389. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Impact of Seasonal Variation on Escherichia coli Concentrations in the Riverbed Sediments in the Apies River, South Africa. Sci. Total Environ. 2015, 537, 462–469. [Google Scholar] [CrossRef]
- Bauer, A.; Kirby, W.; Sherris, J.; Turck, M. Antibiotic Susceptibility Testing by a Standardised Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 413–496. [Google Scholar] [CrossRef]
- Mbanga, J.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Longitudinal Surveillance of Antibiotic Resistance in Escherichia coli and Enterococcus spp. from a Wastewater Treatment Plant and Its Associated Waters in KwaZulu-Natal, South Africa. Microb. Drug Resist. 2021, 27, 904–918. [Google Scholar] [CrossRef] [PubMed]
- Badura, A.; Luxner, J.; Feierl, G.; Reinthaler, F.F.; Zarfel, G.; Galler, H.; Pregartner, G.; Riedl, R.; Grisold, A.J. Prevalence, Antibiotic Resistance Patterns and Molecular Characterization of Escherichia coli from Austrian Sandpits. Environ. Pollut. 2014, 194, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.; Majewska, A.; Schwab, K. The Role of Birds in Dissemination of Human Waterborne Enteropathogens. Trends Parasitol. 2008, 24, 55–59. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Awad, N.F.S.; Abd El-Hamid, M.I.; Shaker, A.; Mohamed, R.E.; Elsohaby, I. Pet Birds as Potential Reservoirs of Virulent and Antibiotic Resistant Zoonotic Bacteria. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101606. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.M.A.; Cursino, L.; GoncalvesDornelas, H.; Reis, A.; ChartoneSouza, E.; Marini, M.A. Antibiotic-Resistant Gram-Negative Bacteria in Birds from Brazilian Atlantic Forest. Condor 2003, 105, 358–361. [Google Scholar] [CrossRef]
- Gholami-Ahangaran, M.; Karimi-Dehkordi, M.; Miranzadeh-Mahabadi, E.; Ahmadi-Dastgerdi, A. The Frequency of Tetracycline Resistance Genes in Escherichia coli Strains Isolated from Healthy and Diarrheic Pet Birds. Iran. J. Vet. Res. 2021, 22, 337–341. [Google Scholar]
- Gilliver, M.A.; Bennett, M.; Begon, M.; Hazel, S.M.; Hart, C.A. Antibiotic Resistance Found in Wild Rodents. Nature 1999, 401, 233–234. [Google Scholar] [CrossRef]
- Le Huy, H.; Koizumi, N.; Ung, T.T.H.; Le, T.T.; Nguyen, H.L.K.; Hoang, P.V.M.; Nguyen, C.N.; Khong, T.M.; Hasebe, F.; Haga, T.; et al. Antibiotic-Resistant Escherichia coli Isolated from Urban Rodents in Hanoi, Vietnam. J. Vet. Med. Sci. 2020, 82, 653–660. [Google Scholar] [CrossRef]
- Ho, P.L.; Lo, W.U.; Lai, E.L.; Law, P.Y.; Leung, S.M.; Wang, Y.; Chow, K.H. Clonal Diversity of CTX-M-Producing, Multidrug-Resistant Escherichia coli from Rodents. J. Med. Microbiol. 2015, 64, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Blanco, J.E.; Blanco, J.; De Carvalho, V.M.; Lopes Onuma, D.; De Castro, P.A.F. Typing of Intimin (Eae) Genes in Attaching and Effacing Escherichia coli Strains from Monkeys. J. Clin. Microbiol. 2004, 42, 1382–1383. [Google Scholar] [CrossRef]
- Vásquez-Aguilar, A.A.; Toledo-Manuel, F.O.; Barbachano-Guerrero, A.; Hernández-Rodríguez, D. Detection of Antimicrobial Resistance Genes in Escherichia coli Isolated from Black Howler Monkeys (Alouatta pigra) and Domestic Animals in Fragmented Rain-Forest Areas in Tabasco, Mexico. J. Wildl. Dis. 2020, 56, 922–927. [Google Scholar] [CrossRef]
- Pillay, K.R.; Streicher, J.P.; Downs, C.T. Home Range and Habitat Use of Vervet Monkeys in the Urban Forest Mosaic Landscape of Durban, EThekwini Municipality, KwaZulu-Natal, South Africa. Urban. Ecosyst. 2023, 26, 1769–1782. [Google Scholar] [CrossRef]
- Tyrerell, S.A.; Rippey, S.R.; Watkins, W.D. Inactivation of Bacterial and Viral Indicators in Secondary Sewage Effleunts, Using Chlorine and Ozone. Water Res. 1995, 29, 2483–2490. [Google Scholar] [CrossRef]
- Kahler, A.M.; Cromeans, T.L.; Metcalfe, M.G.; Humphrey, C.D.; Hill, V.R. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine. Food Environ. Virol. 2016, 8, 148–155. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Cui, L.; Zhang, M.; Wang, B. Characterization and Identification of a Chlorine-Resistant Bacterium, Sphingomonas TS001, from a Model Drinking Water Distribution System. Sci. Total Environ. 2013, 458–460, 169–175. [Google Scholar] [CrossRef]
- Momba, M.N.B.; Makala, N. Comparing the Effect of Various Pipe Materials on Biofilm Formation in Chlorinated and Combined Chlorine-Chloraminated Water Systems. Water Sa 2004, 30, 175–182. [Google Scholar] [CrossRef]
- Zyara, A.M.; Torvinen, E.; Veijalainen, A.M.; Heinonen-Tanski, H. The Effect of Chlorine and Combined Chlorine/UV Treatment on Coliphages in Drinking Water Disinfection. J. Water Health 2016, 14, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Heuvelink, A.E. Chapter 16 Review of Media for the Isolation of Diarrhoeagenic Escherichia coli. In Handbook of Culture Media for Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 229–247. [Google Scholar]
- Karlowsky, J.A.; Kelly, L.J.; Thornsberry, C.; Jones, M.E.; Sahm, D.F. Trends in Antimicrobial Resistance among Urinary Tract Infection Isolates of Escherichia coli from Female Outpatients in the United States Trends in Antimicrobial Resistance among Urinary Tract Infection Isolates of Escherichia Coli from Female Outpatient. Antimicrob. Agents Chemother. 2002, 46, 2540–2545. [Google Scholar] [CrossRef] [PubMed]
- Peigne, C.; Bidet, P.; Mahjoub-messai, F.; Frapy, E.; Nassif, X.; Denamur, E.; Bingen, E. The Plasmid of Escherichia coli Strain S88 (O45:K1:H7) That Causes Neonatal Meningitis Is Closely Related to Avian Pathogenic E. coli Plasmids and Is Associated with High-Level Bacteremia in a Neonatal Rat Meningitis Model. Infect Immun. 2009, 77, 2272–2284. [Google Scholar] [CrossRef]
- Friesema, I.H.M.; Keijzer-Veen, M.G.; Koppejan, M.; Schipper, H.S.; van Griethuysen, A.J.; Heck, M.E.O.C.; van Pelt, W. Hemolytic Uremic Syndrome Associated with Escherichia coli O8:H19 and Shiga Toxin 2f Gene. Emerg. Infect. Dis. 2015, 21, 168–169. [Google Scholar] [CrossRef]
- Xue, J.; Zartarian, V.; Moya, J.; Freeman, N.; Beamer, P.; Black, K.; Tulve, N.; Shalat, S. A Meta-Analysis of Children’s Hand-to-Mouth Frequency Data for Estimating Nondietary Ingestion Exposure. Risk Anal. 2007, 27, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N. Hand-Mouth Transfer and Potential for Exposure to E. coli and F+ Coliphage in Beach Sand, Chicago, Illinois. J. Water Health 2009, 7, 623–629. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. P&T J. 2015, 40, 277–283. [Google Scholar]
- Ghosh, A.; Poddar, S.; Banerjee, S.; Choudhury, J.; Mukhopapadhyay, M.; Ray, J. Antibiotic Resistance in Community Acquired Urinary Tract Infection in Children: Data from a Tertiary Center in Eastern India. J. Clin. Diagn. Res. 2018, 12, SC05–SC08. [Google Scholar] [CrossRef]
- Abuhandan, M.; Güzel, B.; Oymak, Y.; Çiftçi, H. Antibiotic Sensitivity and Resistance in Children with Urinary Tract Infection in Sanliurfa. Turk. J. Urol. 2013, 39, 106–110. [Google Scholar] [CrossRef]
- Meng, C.Y.; Smith, B.L.; Bodhidatta, L.; Richard, S.A.; Vansith, K.; Thy, B.; Srijan, A.; Serichantalergs, O.; Mason, C.J. Etiology of Diarrhea in Young Children and Patterns of Antibiotic Resistance in Cambodia. Pediatr. Infect. Dis. J. 2011, 30, 331–335. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, P.V.; Le, C.H.; Weintraub, A. Antibiotic Resistance in Diarrheagenic Escherichia coli and Shigella Strains Isolated from Children in Hanoi, Vietnam. Antimicrob. Agents Chemother. 2005, 49, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Zmantar, T.; Kouidhi, B.; Hentati, H.; Bakhrouf, A. Detection of Disinfectant and Antibiotic Resistance Genes in Staphylococcus aureus Isolated from the Oral Cavity of Tunisian Children. Ann. Microbiol. 2012, 62, 123–128. [Google Scholar] [CrossRef]
- Avakh Majalan, P.; Hajizade, A.; Nazarian, S.; Pourmand, M.R.; Siyavoshani, K.A. Investigating the Prevalence of Shigella Species and Their Antibiotic Resistance Pattern in Children With Acute Diarrhea Referred to Selected Hospitals in Tehran, Iran. J. Appl. Biotechnol. Rep. 2018, 5, 70–74. [Google Scholar] [CrossRef]
- Omolajaiye, S.A.; Afolabi, K.O.; Iweriebor, B.C. Pathotyping and Antibiotic Resistance Profiling of Escherichia coli Isolates from Children with Acute Diarrhea in Amatole District Municipality of Eastern Cape, South Africa. Biomed. Res. Int. 2020, 2020, 4250165. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Essack, S.Y. Antimicrobial Research and One Health in Africa; Abia, A.L.K., Essack, S.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-23795-9. [Google Scholar]
- Rudoy, R.C.; Riley, H.D. Cephalexin: Clinical and Laboratory Evaluation in Infants and Children. Clin. Pediatr. 1977, 16, 639–644. [Google Scholar] [CrossRef]
- Alquarshi, W.; O’Donnell, R.; Eckbo, E.; Pham, N.K.; Barrowman, N.; Bowes, J.; Le Saux, N. Cephalexin Use in a Pediatric Emergency Department during the Shortage of Amoxicillin Suspension. Am. J. Emerg. Med. 2025, 99, 237–240. [Google Scholar] [CrossRef]
- Meissner, H.C. When Can Doxycycline Be Used in Young Children? American Academy of Pediatrics: Itasca, IL, USA, 2020. [Google Scholar]
- Wormser, G.P.; Strle, F.; Shapiro, E.D. Is Doxycycline Appropriate for Routine Treatment of Young Children with Erythema Migrans? Pediatr. Infect. Dis. J. 2019, 38, 1113–1114. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Wang, C.; Jiang, M.; Chen, K.; Zhong, H.; Chen, Z.; Huang, L.; Li, H.; Zhang, L.; Choonara, I. Safety of Ceftriaxone in Paediatrics: A Systematic Review. Arch. Dis. Child. 2020, 105, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Langtry, H.D.; Balfour, J.A. Azithromycin A Review of Its Use in Paediatric Infectious Diseases. Drugs 1998, 56, 273–297. [Google Scholar] [CrossRef]
- Manjula, S.; Krishna Kumar, M. Expert Perspectives on the Clinical Use of High-Dose Amoxicillin with Clavulanic Acid in Pediatric Practice in Indian Settings. Int. J. Contemp. Pediatr. 2024, 11, 916–920. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef]
- Mudryk, Z.; Perliński, P.; Skórczewski, P. Detection of Antibiotic Resistant Bacteria Inhabiting the Sand of Non-Recreational Marine Beach. Mar. Pollut. Bull. 2010, 60, 207–214. [Google Scholar] [CrossRef] [PubMed]


| Antibiotic Class | Antibiotic | Abbreviation | Disk Concentration (µg) |
|---|---|---|---|
| Aminoglycoside | Amikacin | AMK | 30 |
| Aminoglycoside | Gentamicin | GEN | 10 |
| Beta-lactam | Ampicillin | AMP | 10 |
| Beta-lactam | Piperacillin | PRL | 100 |
| Beta-lactam | Augmentin | AUG | 30 |
| Beta-lactam | Piperacillin–tazobactam | TZP | 110 |
| Macrolide | Azithromycin | ATH | 15 |
| Cephalosporin (4th Generation) | Cefepime | CPM | 10 |
| Cephalosporin (3rd Generation) | Cefotaxime | CTX | 30 |
| Cephalosporin (3rd Generation) | Ceftazidime | CAZ | 30 |
| Cephalosporin (3rd Generation) | Ceftriaxone | CRO | 30 |
| Cephalosporin (2nd Generation) | Cefoxitin | FOX | 30 |
| Cephalosporin (1st Generation) | Cephalexin | CFX | 30 |
| Fluoroquinolone | Ciprofloxacin | CIP | 5 |
| Amphenicol | Chloramphenicol | CHL | 30 |
| Carbapenem | Imipenem | IMI | 10 |
| Carbapenem | Meropenem | MEM | 10 |
| Quinolone | Nalidixic acid | NAL | 30 |
| Tetracycline | Tetracycline | TET | 30 |
| Site | Total Coliform Counts (MPN/50 g) * | E. coli Counts (MPN/50 g) | |
|---|---|---|---|
| School A | A1 | 7.4 | ND |
| A2 | 3.0 | ND | |
| A3 | >2419.6 | ND | |
| A4 | 195.6 | ND | |
| A5 | 4.1 | ND | |
| School B | B1 | >2419.6 | >2419.6 |
| B2 | >2419.6 | >2419.6 | |
| B3 | >2419.6 | >2419.6 | |
| B4 | >2419.6 | >2419.6 | |
| B5 | >2419.6 | 275.5 | |
| School C | C1 | 102.2 | 98.1 |
| C2 | 34.1 | 31.3 | |
| C3 | ND | ND | |
| C4 | >2419.6 | 1.0 | |
| C5 | 307.6 | 90.8 | |
| School D | D1 | >2419.6 | ND |
| D2 | 26.5 | ND | |
| D3 | ND | ND | |
| D4 | 2.0 | ND | |
| D5 | 1.0 | ND |
| Antibiogram | Number of Isolates | Isolates | |
|---|---|---|---|
| School B | School C | ||
| ATH | 4 | B30, B23, B28, | C46 |
| CFX | 15 | B7, B9, B11, B12, B14, B15, B16, B35, B46, | C32, C33, C34, C41, C42, C43 |
| AUG | 3 | B25, B39, B43 | |
| TET | 9 | C16, C17, C18, C20, C21, C22, C23, C24, C29 | |
| NAL | 5 | B22, B29, B33, B37, B44 | |
| AMK-AUG | 1 | B38 | |
| AUG-CFX | 3 | B8, B41, B40 | |
| AUG-NAL | 1 | B42 | |
| CFX-TET | 3 | C25. C27, C31 | |
| CFX-AMP | 1 | C36 | |
| ATH-CFX | 3 | B2, B6, B10 | |
| ATH-NAL | 1 | B19 | |
| NAL-TET | 5 | C2, C4, C5, C13, C14 | |
| CTX-TET | 1 | C19 | |
| CFX-AMP-TET | 1 | C30 | |
| CFX-NAL-TET | 1 | C10 | |
| MEM-CFX-TET | 1 | C28 | |
| CFX-AMP-NAL-TET | 1 | C26 | |
| ATH-FOX-CFX-IMI-AMP | 1 | B4 | |
| ATH-AUG-FOX-CFX-IMI-NAL | 1 | B1 | |
| CTX-CAZ-CFX-NAL-CPM-CRO | 1 | C50 | |
| CTX-CFX-AMP-CPM-CRO-PRL | 4 | C8, C11, C12, C25 | |
| AUG-CTX-FOX-CAZ-CFX-AMP-CRO | 1 | C7 | |
| CTX-CFX-AMP-NAL-TET-CPM-CRO-PRL | 1 | C9 | |
| AUG-CTX-FOX-CAZ-CFX-AMP-NAL-TET-CRO | 2 | C3, C6 | |
| AUG-CTX-FOX-CAZ-CFX-AMP-TET-CRO-PRL | 1 | C1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rangila, T.; Zondo, A.; Mtshali, A.; Tar, N.I.S.; Dada, U.S.; Ayukafangha, E.; Abia, A.L.K. Antibiotic Resistance Patterns of Escherichia coli from Children’s Sandpits in Durban, South Africa: A Point Prevalence Study. Hygiene 2026, 6, 3. https://doi.org/10.3390/hygiene6010003
Rangila T, Zondo A, Mtshali A, Tar NIS, Dada US, Ayukafangha E, Abia ALK. Antibiotic Resistance Patterns of Escherichia coli from Children’s Sandpits in Durban, South Africa: A Point Prevalence Study. Hygiene. 2026; 6(1):3. https://doi.org/10.3390/hygiene6010003
Chicago/Turabian StyleRangila, Tasmiya, Andiswa Zondo, Andiswa Mtshali, Najiha Ismail Suleman Tar, Uzair Shabbir Dada, Etando Ayukafangha, and Akebe Luther King Abia. 2026. "Antibiotic Resistance Patterns of Escherichia coli from Children’s Sandpits in Durban, South Africa: A Point Prevalence Study" Hygiene 6, no. 1: 3. https://doi.org/10.3390/hygiene6010003
APA StyleRangila, T., Zondo, A., Mtshali, A., Tar, N. I. S., Dada, U. S., Ayukafangha, E., & Abia, A. L. K. (2026). Antibiotic Resistance Patterns of Escherichia coli from Children’s Sandpits in Durban, South Africa: A Point Prevalence Study. Hygiene, 6(1), 3. https://doi.org/10.3390/hygiene6010003

