A Tiered Vaccine Framework: Prioritizing Tier 1 Vaccines to Restore Public Confidence
Abstract
1. Introduction
2. The Need for a Tiered Classification System
Refining the Classification System for Contextual Efficacy
3. How Vaccines Work: A Functional Overview
3.1. Live Attenuated Vaccines (LAVs)
3.2. Inactivated Vaccines
3.3. Subunit, Conjugate, and Toxoid Vaccines
3.4. mRNA “Vaccines”
3.5. Viral Vector Vaccines
3.6. Classification Nuances and Emerging Technologies
4. Safety Advances in Live Attenuated Vaccines (LAVs)
4.1. Historical Safety Concerns
4.2. Genetic Engineering Solutions
4.3. Examples of Genetically Engineered, Replication-Competent Candidates
5. Neutralizing Antibodies vs. True Neutralizing Immunity
5.1. The Misconception
5.2. Tier-Specific Examples
6. Rebuilding Public Trust and Improving Vaccine Knowledge
6.1. Public Expectations of a Vaccine
6.2. Case Study: COVID-19 mRNA Vaccine Misclassification
6.3. Case Study: Rotavirus Vaccine in Low-Resource Settings
6.4. Case Study: OPV in Polio Eradication
6.5. Explaining Protection and Prevention
6.6. Implementation Strategies
6.7. Community Engagement
6.8. Global Trust and Outreach
6.9. Implementation Barriers and Mitigation Strategies
6.10. Pilot Programs for Tiered Classification
6.11. Future Directions
7. Implications for Vaccine Development, Policy, and Ethics
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruggeri, K.; Vanderslott, S.; Yamada, Y.; Argyris, Y.A.; Većkalov, B.; Boggio, P.S.; Fallah, M.P.; Stock, F.; Hertwig, R. Behavioural interventions to reduce vaccine hesitancy driven by misinformation on social media. BMJ 2024, 384, e076542. [Google Scholar] [CrossRef]
- Koytak, H.Z. Vaccine Hesitancy is About Much More Than Misinformation. STAT. 2025. Available online: https://www.statnews.com/2025/03/14/vaccine-hesitancy-misinformation-research-study-reasons-trust/ (accessed on 29 July 2025).
- Sparks, G.; Kirzinger, A.; Kearney, A.; Valdes, I.; Hamel, L. KFF COVID-19 Vaccine Monitor November 2023: With COVID Concerns Lagging, Most People Have Not Gotten Latest Vaccine and Half Say They Are Not Taking Precautions This Holiday Season. KFF. 2023. Available online: https://www.kff.org/coronavirus-covid-19/poll-finding/vaccine-monitor-november-2023-with-covid-concerns-lagging-most-people-have-not-gotten-latest-vaccine/ (accessed on 16 June 2025).
- Dubé, E.; Gagnon, D.; MacDonald, N.E. Strategies intended to address vaccine hesitancy: Review of published reviews. Vaccine 2015, 33, 4191–4203. [Google Scholar] [CrossRef]
- Gilliland, K.; Kilinsky, A. Vaccine Hesitancy: Where Are We Now? Pediatr. Ann. 2025, 54, e154–e159. [Google Scholar] [CrossRef]
- CDC. Measles Cases and Outbreaks. Measles (Rubeola). Available online: https://www.cdc.gov/measles/data-research/index.html (accessed on 16 June 2025).
- Wiegand, M.; Eagan, R.L.; Karimov, R.; Lin, L.; Larson, H.J.; de Figueiredo, A. Global Declines in Vaccine Confidence from 2015 to 2022: A Large-Scale Retrospective Analysis; Social Science Research Network: Rochester, NY, USA, 2023; p. 4438003. [Google Scholar] [CrossRef]
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.M.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.; Whiting, P.F.; et al. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clin. Infect. Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, H.B.; Estes, M.K. Rotaviruses: From pathogenesis to vaccination. Gastroenterology 2009, 136, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Tina, Diphtheria, Tetanus and Pertussis—Institute for Vaccine Safety. 2024. Available online: https://www.vaccinesafety.edu/vaccine-preventable-diseases/ (accessed on 16 June 2025).
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Lexau, C.; Bennett, N.M.; Petit, S.; Zansky, S.M.; Harrison, L.H.; Reingold, A.; et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: Analysis of multisite, population-based surveillance. Lancet Infect. Dis. 2015, 15, 301–309. [Google Scholar] [CrossRef] [PubMed]
- CDC. Hib Vaccination. Haemophilus Influenzae Disease. Available online: https://www.cdc.gov/hi-disease/vaccines/index.html (accessed on 16 June 2025).
- Gruber, M.F.; Marshall, V.B. 79—Regulation and Testing of Vaccines. In Plotkin’s Vaccines (Seventh Edition); Plotkin, S.A., Orenstein, W.A., Offit, P.A., Edwards, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1547–1565.e2. ISBN 9780323357616-6. [Google Scholar]
- Department of Regulation and Prequalification 2024 Annual Report. Available online: https://www.who.int/publications/m/item/department-of-regulation-and-prequalification-2024-annual-report (accessed on 29 July 2025).
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023, 15, 1109. [Google Scholar] [CrossRef]
- Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121. [Google Scholar] [CrossRef]
- Siegrist, C.-A. 2—Vaccine Immunology. In Plotkin’s Vaccines (Seventh Edition); Plotkin, S.A., Orenstein, W.A., Offit, P.A., Edwards, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 16–34.e7. ISBN 978-0-323-35761-6. [Google Scholar]
- CDC. Measles Vaccination. Measles (Rubeola). Available online: https://www.cdc.gov/measles/vaccines/index.html (accessed on 16 June 2025).
- World Health Organization. Polio vaccines: WHO position paper—March, 2016 = Note de synthèse de l’OMS sur les vaccins antipoliomyélitiques—mars 2016. Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd. 2016, 91, 145–168. [Google Scholar]
- CDC. Yellow Fever Virus. Available online: https://www.cdc.gov/yellow-fever/vaccine/index.html (accessed on 29 May 2025).
- CDC. Chickenpox Vaccination. Chickenpox (Varicella). Available online: https://www.cdc.gov/chickenpox/vaccines/index.html (accessed on 18 June 2025).
- Chen, W.H.; Cohen, M.B.; Kirkpatrick, B.D.; Brady, R.C.; Galloway, D.; Gurwith, M.; Hall, R.H.; Kessler, R.A.; Lock, M.; Haney, D.; et al. Single-dose Live Oral Cholera Vaccine CVD 103-HgR Protects Against Human Experimental Infection With Vibrio cholerae O1 El Tor. Clin. Infect. Dis. 2016, 62, 1329–1335. [Google Scholar] [CrossRef]
- World Health Organization. Typhoid vaccines: WHO position paper—March 2018—Vaccins antityphoïdiques: Note de synthèse de l’OMS—mars 2018. Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd. 2018, 93, 153–172. [Google Scholar]
- CDC. Flu Vaccine Effectiveness (VE) Data for 2023–2024. Flu Vaccines Work. Available online: https://www.cdc.gov/flu-vaccines-work/php/effectiveness-studies/2023-2024.html (accessed on 16 June 2025).
- World Health Organization. WHO position paper on hepatitis A vaccines—June 2012 = Note de synthèse: Position de l’OMS concernant les vaccins contre l’hépatite A—Juin 2012. Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd. 2012, 87, 261–276. [Google Scholar]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Sapkal, G.N.; Yadav, P.D.; Ella, R.; Deshpande, G.R.; Sahay, R.R.; Gupta, N.; Mohan, V.K.; Abraham, P.; Panda, S.; Bhargava, B. Neutralization of UK-Variant VUI-202012/01 with COVAXIN Vaccinated Human Serum. bioRxiv 2021. [Google Scholar] [CrossRef]
- Schillie, S. Prevention of Hepatitis B Virus Infection in the United States: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 2018, 67, 1–31. [Google Scholar] [CrossRef] [PubMed]
- FUTURE II Study Group Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 2007, 356, 1915–1927. [CrossRef]
- Andrejko, K.L.; Gierke, R.; Rowlands, J.V.; Rosen, J.B.; Thomas, A.; Landis, Z.Q.; Rosales, M.; Petit, S.; Schaffner, W.; Holtzman, C.; et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease among children in the United States between 2010 and 2019: An indirect cohort study. Vaccine 2024, 42, 3555–3563. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Prevention Prevention and Control of Meningococcal Disease: Recommendations of the Advisory Committee on Immunization Practices (ACIP). In Pediatric Clinical Practice Guidelines & Policies; American Academy of Pediatrics: Itasca, IL, USA, 2014; pp. 1101–1102. ISBN 978-1-58110-861-3. [Google Scholar]
- CDC. Meningococcal Vaccination. Meningococcal Disease. Available online: https://www.cdc.gov/meningococcal/vaccines/index.html (accessed on 29 May 2025).
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef]
- Bejon, P.; White, M.T.; Olotu, A.; Bojang, K.; Lusingu, J.P.A.; Salim, N.; Otsyula, N.N.; Agnandji, S.T.; Asante, K.P.; Owusu-Agyei, S.; et al. Efficacy of RTS,S malaria vaccines: Individual-participant pooled analysis of phase 2 data. Lancet Infect Dis 2013, 13, 319–327. [Google Scholar] [CrossRef]
- Link-Gelles, R. Interim Effectiveness of Updated 2023–2024 (Monovalent XBB.1.5) COVID-19 Vaccines Against COVID-19–Associated Hospitalization Among Adults Aged ≥ 18 Years with Immunocompromising Conditions—VISION Network, September 2023–February 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 271–276. [Google Scholar] [CrossRef]
- Vanaparthy, R.; Mohan, G.; Vasireddy, D.; Atluri, P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez. Med. 2021, 29, 328–338. [Google Scholar] [CrossRef]
- Salje, H.; Alera, M.T.; Chua, M.N.; Hunsawong, T.; Ellison, D.; Srikiatkhachorn, A.; Jarman, R.G.; Gromowski, G.D.; Rodriguez-Barraquer, I.; Cauchemez, S.; et al. Evaluation of extended efficacy of Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat. Med. 2021, 27, 1395–1400. [Google Scholar] [CrossRef]
- Dotiwala, F.; Upadhyay, A.K. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines 2023, 11, 1585. [Google Scholar] [CrossRef]
- Poria, R.; Kala, D.; Nagraik, R.; Dhir, Y.; Dhir, S.; Singh, B.; Kaushik, N.K.; Noorani, M.S.; Kaushal, A.; Gupta, S. Vaccine development: Current trends and technologies. Life Sci. 2024, 336, 122331. [Google Scholar] [CrossRef] [PubMed]
- Attenuated Vaccine—An overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/immunology-and-microbiology/attenuated-vaccine (accessed on 18 June 2025).
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Sig. Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Poliovirus Vaccines. Available online: https://www.who.int/groups/global-advisory-committee-on-vaccine-safety/topics/poliovirus-vaccines (accessed on 16 June 2025).
- Gershon, A.A. Varicella-zoster vaccine. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., Yamanishi, K., Eds.; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-82714-0. Available online: http://www.ncbi.nlm.nih.gov/books/NBK47446/ (accessed on 17 June 2025).
- Weinmann, S.; Naleway, A.L.; Koppolu, P.; Baxter, R.; Belongia, E.A.; Hambidge, S.J.; Irving, S.A.; Jackson, M.L.; Klein, N.P.; Lewin, B.; et al. Incidence of Herpes Zoster Among Children: 2003–2014. Pediatrics 2019, 144, e20182917. [Google Scholar] [CrossRef] [PubMed]
- Rajanala, K.; Upadhyay, A.K. Vaccines for Respiratory Viruses—COVID and Beyond. Vaccines 2024, 12, 936. [Google Scholar] [CrossRef]
- Joyce, J.D.; Patel, A.K.; Murphy, B.; Carr, D.J.J.; Gershburg, E.; Bertke, A.S. Assessment of Two Novel Live-Attenuated Vaccine Candidates for Herpes Simplex Virus 2 (HSV-2) in Guinea Pigs. Vaccines 2021, 9, 258. [Google Scholar] [CrossRef]
- Schön, J.; Barut, G.T.; Trüeb, B.S.; Halwe, N.J.; Berenguer Veiga, I.; Kratzel, A.; Ulrich, L.; Kelly, J.N.; Brügger, M.; Wylezich, C.; et al. A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications. Nat. Microbiol. 2024, 9, 2099–2112. [Google Scholar] [CrossRef]
- Stanfield, B.A.; Kousoulas, K.G.; Fernandez, A.; Gershburg, E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021, 13, 1637. [Google Scholar] [CrossRef]
- Stanfield, B.A.; Stahl, J.; Chouljenko, V.N.; Subramanian, R.; Charles, A.-S.; Saied, A.A.; Walker, J.D.; Kousoulas, K.G. A Single Intramuscular Vaccination of Mice with the HSV-1 VC2 Virus with Mutations in the Glycoprotein K and the Membrane Protein UL20 Confers Full Protection against Lethal Intravaginal Challenge with Virulent HSV-1 and HSV-2 Strains. PLoS ONE 2014, 9, e109890. [Google Scholar] [CrossRef]
- Uche, I.K.; Fowlkes, N.; Vu, L.; Watanabe, T.; Carossino, M.; Nabi, R.; del Piero, F.; Rudd, J.S.; Kousoulas, K.G.; Rider, P.J.F.; et al. Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model. J. Virol. 2021, 95, e01359-20. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, N.; Debrie, A.-S.; Raze, D.; Bertout, J.; Rouanet, C.; Younes, A.B.; Creusy, C.; Engle, J.; Goldman, W.E.; Locht, C. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough. PLoS Pathog. 2006, 2, e65. [Google Scholar] [CrossRef] [PubMed]
- Feunou, P.F.; Ismaili, J.; Debrie, A.-S.; Huot, L.; Hot, D.; Raze, D.; Lemoine, Y.; Locht, C. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 2008, 26, 5722–5727. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Papin, J.F.; Lecher, S.; Debrie, A.-S.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. J. Infect. Dis. 2017, 216, 117–124. [Google Scholar] [CrossRef]
- Keech, C.; Miller, V.E.; Rizzardi, B.; Hoyle, C.; Pryor, M.J.; Ferrand, J.; Solovay, K.; Thalen, M.; Noviello, S.; Goldstein, P.; et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus–diphtheria–acellular pertussis vaccine: A randomised, double-blind, phase 2b trial. Lancet 2023, 401, 843–855. [Google Scholar] [CrossRef]
- Mueller, S.; Coleman, J.R.; Papamichail, D.; Ward, C.B.; Nimnual, A.; Futcher, B.; Skiena, S.; Wimmer, E. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol. 2010, 28, 723–726. [Google Scholar] [CrossRef]
- Kaufmann, J.K.; Wyllie, K.; Zhao, Y.; Tea, L.; Tasker, S.; Yeolekar, L.R.; Dhere, R.; Mueller, S. 1938. CoviLivTM, a Novel Intranasal Live-Attenuated COVID-19 Vaccine Candidate, Induces Robust Humoral and Cellular Immunity in First-In-Human Clinical Trial CDX-CoV-001. Open Forum Infect. Dis. 2023, 10, ofad500.2469. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, L.; Li, L.; Liu, C.; Jin, H.; Lin, L. Willingness to Vaccinate Against Herpes Zoster and Its Associated Factors Across WHO Regions: Global Systematic Review and Meta-Analysis. JMIR Public Health Surveill. 2023, 9, e43893. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Fu, Y.-X.; Peng, H. Mucosal vaccine development for respiratory viral infections. hLife 2024, 2, 50–63. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Frankland, T.B.; Puzniak, L.; Hong, V.; Ackerson, B.K.; Stern, J.A.; Zamparo, J.; Simmons, S.; Jodar, L.; et al. Estimated Effectiveness of the BNT162b2 XBB Vaccine Against COVID-19. JAMA Intern. Med. 2024, 184, 932–940. [Google Scholar] [CrossRef]
- Eagan, R.L.; Larson, H.J.; de Figueiredo, A. Recent trends in vaccine coverage and confidence: A cause for concern. Hum. Vaccin. Immunother. 2023, 19, 2237374. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; White, T.M.; Wyka, K.; Ratzan, S.C.; Rabin, K.; Larson, H.J.; Martinon-Torres, F.; Kuchar, E.; Abdool Karim, S.S.; Giles-Vernick, T.; et al. Influence of COVID-19 on trust in routine immunization, health information sources and pandemic preparedness in 23 countries in 2023. Nat. Med. 2024, 30, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Armah, G.E.; Mwenda, J.M.; Kirkwood, C.D. The Full Impact of Rotavirus Vaccines in Africa Has Yet to Be Realized. Clin. Infect. Dis. 2023, 76, S1–S4. [Google Scholar] [CrossRef]
- Progress Toward Poliomyelitis Eradication—India, January 2007–May 2009. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5826a3.htm (accessed on 17 June 2025).
- CVDPVFactSheetMarch2015.pdf. Available online: https://polioeradication.org/wp-content/uploads/2016/09/CVDPVFactSheetMarch2015.pdf (accessed on 16 June 2025).
- Shah, N.; Ghosh, A.; Kumar, K.; Dutta, T.; Mahajan, M. A review of safety and immunogenicity of a novel measles, mumps, rubella (MMR) vaccine. Hum. Vaccin. Immunother. 2024, 20, 2302685. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Sarkar, K.; Haldar, P.; Ghosh, R. Oral cholera vaccine delivery strategy in India: Routine or campaign?—A scoping review. Vaccine 2020, 38, A184–A193. [Google Scholar] [CrossRef]
- Gessner, B.D. Haemophilus influenzae type b vaccine impact in resource-poor settings in Asia and Africa. Expert Rev. Vaccines 2009, 8, 91–102. [Google Scholar] [CrossRef]
- Mwenda, J.M.; Mandomando, I.; Worwui, A.K.; Gacic-Dobo, M.; Katsande, R.; Bwaka, A.M.; Messa, A.; Kiulia, N.M.; Massora, S.; Garrine, M.; et al. A decade of rotavirus vaccination in the World Health Organization African Region: An in-depth analysis of vaccine coverage from 2012 to 2023. Vaccine 2025, 48, 126768. [Google Scholar] [CrossRef]
- Kopp, E.; Zimmerman, N.; Yu, A.; Pejas, A. A Case Study of the Barriers to Eradicating Polio in Nigeria and India’s Urban and Rural Settings. Undergrad. J. Public Health 2022, 6, 53–68. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Pulendran, B.; Davis, M.M. The science and medicine of human immunology. Science 2020, 369, eaay4014. [Google Scholar] [CrossRef]
- Plotkin, S.A. Correlates of Protection Induced by Vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
Technology | Function | Antigenic Breadth | Examples | Neutralizing Antibodies | True Sterilizing Immunity | Protection/Prevention Outcomes | Tier | Exceptions | |
---|---|---|---|---|---|---|---|---|---|
Inactivated | Killed pathogens induce systemic antibodies; typically lacks mucosal immunity. Requires boosters/adjuvants. | Moderate; whole pathogen | Inactivated Polio Vaccine (IPV), Hepatitis A, Sinovac | Yes, effective for disease | No; viral shedding possible | Prevents disease; limited impact on transmission | 2 or 3 (e.g., Sinovac) | ||
Live Attenuated | Mimics natural infection; stimulates humoral (IgG, IgA), cellular (T-cell), and mucosal immunity | Broad; multiple antigens | Measles, Mumps and Rubella (MMR), Oral Polio Vaccine (OPV), Yellow Fever, Varicella * | Yes, strong correlation | Yes, blocks infection and transmission | Prevents disease and halts community spread | 1 Dengvaxia (2), Influenza Nasal (3) | BCG (2-C) | |
Subunit/Conjugate/Toxoid | Specific antigens induce targeted antibodies (often with adjuvants); limited mucosal immunity due to narrow antigen focus. Exception: Hib induces mucosal IgA and reduces carriage. | Narrow; single/few antigens | Hepatitis B, Human Papillomavirus (HPV), Diphtheria, Tetanus, and Pertussis (DTaP), Pneumococcal Conjugate Vaccine (PCV13), Hib | Yes, effective for disease. Hib: strong correlation with transmission prevention | No; does not block transmission. Hib: Yes; blocks infection and transmission | Prevents disease; does not prevent spread. Hib: Prevents disease and halts community spread | 2 | Hib (1) | |
Viral Vector | Delivers DNA encoding antigens via viral carrier; induces systemic immunity. Mucosal response generally lacking. | Narrow; single antigen | COVID-19 (Janssen, Sputnik V) | Yes, moderate antibody titers | No; does not block transmission | Reduces disease severity; limited transmission control | 3 | ||
mRNA | Encodes antigen via mRNA; induces systemic antibodies and T-cell responses. Mucosal (IgA) response is minimal. | Narrow; single antigen | COVID-19 (Pfizer–BioNTech, Moderna) | Yes, induces high titers | No; minimal effect on transmission | Reduces disease severity; limited transmission control | 3 | ||
Genetically Engineered, Replication-Competent and virus-like particles | Mimics natural infection; stimulates humoral (IgG, IgA), cellular (T-cell), and mucosal immunity | Broad; multiple antigens | Hepatitis B vaccines (Engerix-B, Recombivax HB, GenHevac B, GenVac B, and Heberbiovac HB) HPV vaccines (Gardasil-9, Gardasil-4, and Cervarix) Malaria vaccine (Mosquirix) | Yes, strong correlation | Yes; blocks infection and transmission | Prevents disease and halts community spread | Expected Tier 1 |
Product | Infection Prevention (%) | Transmission Prevention (%) | Reference |
---|---|---|---|
mRNA (Pfizer/Moderna) | 35% (2024–2025 VE) | 0% (No significant reduction) | [59] |
IPV (Inactivated Polio) | Near-100% (Paralytic polio) | ~70% (20–30% still shed virus) | [19] |
MMR (Measles) | 97% (Measles) | Near-100% (<5% transmissible breakthroughs) | [18] |
OPV (Oral Polio) | >95% (Polio) | 90% (Significant shedding reduction) | [19] |
Hib | 95–100% (Invasive disease) | >90% (Carriage reduced to <1%) | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousoulas, K.G.; Dutta, O.; Mohan, H.; Santana, A.F. A Tiered Vaccine Framework: Prioritizing Tier 1 Vaccines to Restore Public Confidence. Hygiene 2025, 5, 33. https://doi.org/10.3390/hygiene5030033
Kousoulas KG, Dutta O, Mohan H, Santana AF. A Tiered Vaccine Framework: Prioritizing Tier 1 Vaccines to Restore Public Confidence. Hygiene. 2025; 5(3):33. https://doi.org/10.3390/hygiene5030033
Chicago/Turabian StyleKousoulas, Konstantin Gus, Ojasvi Dutta, Harikrishnan Mohan, and Agustin Fernandez Santana. 2025. "A Tiered Vaccine Framework: Prioritizing Tier 1 Vaccines to Restore Public Confidence" Hygiene 5, no. 3: 33. https://doi.org/10.3390/hygiene5030033
APA StyleKousoulas, K. G., Dutta, O., Mohan, H., & Santana, A. F. (2025). A Tiered Vaccine Framework: Prioritizing Tier 1 Vaccines to Restore Public Confidence. Hygiene, 5(3), 33. https://doi.org/10.3390/hygiene5030033