Removal of Fluoride from Aqueous Solution Using Biochar Derived from Brown Macroalgae (Sargassum Polycystum) Impregnated with Fe3O4 Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Preparation Using Brown Seaweed and Its Iron Modification
2.2. Chemicals and Reagents
2.3. Analysis
2.4. Characterization of Biochar (BC) and Iron Impregnated Biochar (MBC)
2.5. Batch Experiments
2.6. Isotherm Modelling
2.7. Kinetic Models
2.8. Desorption Study
3. Results and Discussion
3.1. Characterization
3.1.1. Surface Morphology of the Biochar
3.1.2. Elemental Composition of the Biochar
3.1.3. Functional Groups Analysis of BC and MBC Using FTIR
3.2. Fluoride Removal Batch Experiments
3.2.1. Influence of Fluoride Initial Concentration
3.2.2. Influence of Contact Time
3.2.3. Influence of Adsorbent Dose
3.2.4. Effect of pH
3.3. Isotherm Modeling
3.4. Adsorption Kinetics
3.5. Comparison of the Fluoride Adsorption Efficiencies of Different Adsorbents
3.6. Desorption Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maity, J.P.; Vithanage, M.; Kumar, M.; Ghosh, A.; Mohan, D.; Ahmad, A.; Bhattacharya, P. Seven 21st Century Challenges of Arsenic-Fluoride Contamination and Remediation. Groundw. Sustain. Dev. 2021, 12, 100538. [Google Scholar] [CrossRef]
- Vithanage, M.; Bhattacharya, P. Fluoride in Drinking Water: Health Effects and Remediation. In CO2 Sequestration, Biofuels and Depollution; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 105–151. [Google Scholar] [CrossRef]
- Kumar, H.; Patel, M.; Mohan, D. Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. ACS Omega 2019, 4, 19513–19525. [Google Scholar] [CrossRef]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride Occurrence in Groundwater Systems at Global Scale and Status of Defluoridation—State of the Art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Bundschuh, J.; Maity, J.P.; Mushtaq, S.; Vithanage, M.; Seneweera, S.; Schneider, J.; Bhattacharya, P.; Khan, N.I.; Hamawand, I.; Guilherme, L.R.G.; et al. Medical Geology in the Framework of the Sustainable Development Goals. Sci. Total Environ. 2017, 581–582, 87–104. [Google Scholar] [CrossRef]
- Ali, S.; Fakhri, Y.; Golbini, M.; Thakur, S.K.; Alinejad, A.; Parseh, I.; Shekhar, S.; Bhattacharya, P. Concentration of Fluoride in Groundwater of India: A Systematic Review, Meta-Analysis and Risk Assessment. Groundw. Sustain. Dev. 2019, 9, 100224. [Google Scholar] [CrossRef]
- Ijumulana, J.; Ligate, F.; Irunde, R.; Bhattacharya, P.; Maity, J.P.; Ahmad, A.; Mtalo, F. Spatial Uncertainties in Fluoride Levels and Health Risks in Endemic Fluorotic Regions of Northern Tanzania. Groundw. Sustain. Dev. 2021, 14, 100618. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, H.; Ni, J. Fluoride Distribution in Electrocoagulation Defluoridation Process. Sep. Purif. Technol. 2007, 56, 184–191. [Google Scholar] [CrossRef]
- Mameri, N.; Yeddou, A.R.; Lounici, H.; Belhocine, D.; Grib, H.; Bariou, B. Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process Using Bipolar Aluminium Electrodes. Water Res. 1998, 32, 1604–1612. [Google Scholar] [CrossRef]
- Araga, R.; Soni, S.; Sharma, C.S. Fluoride Adsorption from Aqueous Solution Using Activated Carbon Obtained from KOH-Treated Jamun (Syzygium cumini) Seed. J. Environ. Chem. Eng. 2017, 5, 5608–5616. [Google Scholar] [CrossRef]
- Zúñiga-Muro, N.M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Tapia-Picazo, J.C. Fluoride Adsorption Properties of Cerium-Containing Bone Char. J. Fluor. Chem. 2017, 197, 63–73. [Google Scholar] [CrossRef]
- Ndiaye, P.I.; Moulin, P.; Dominguez, L.; Millet, J.C.; Charbit, F. Removal of Fluoride from Electronic Industrial Effluentby RO Membrane Separation. Desalination 2005, 173, 25–32. [Google Scholar] [CrossRef]
- Shen, J.; Schäfer, A. Removal of Fluoride and Uranium by Nanofiltration and Reverse Osmosis: A Review. Chemosphere 2014, 117, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Khatibikamal, V.; Torabian, A.; Janpoor, F.; Hoshyaripour, G. Fluoride Removal from Industrial Wastewater Using Electrocoagulation and Its Adsorption Kinetics. J. Hazard. Mater. 2010, 179, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhou, W.; Tang, W. Metal-organic framework-derived diatomic catalysts for environmental remediation: Synthesis, applications and improvement strategies. Coord. Chem. Rev. 2025, 526, 216357. [Google Scholar] [CrossRef]
- Kanwal, S.; Devi, P.; Ahmed, Z.; Qambrani, N.A. Adsorption Isotherm, Kinetic and Thermodynamic Studies for Adsorption of Fluoride on Waste Marble Powder. Desalination Water Treat. 2024, 319, 100441. [Google Scholar] [CrossRef]
- Bordoloi, N.; Goswami, R.; Kumar, M.; Kataki, R. Biosorption of Co (II) from Aqueous Solution Using Algal Biochar: Kinetics and Isotherm Studies. Bioresour. Technol. 2017, 244, 1465–1469. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Prog. Sustain. Energy 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, S.; Srivastava, A. Fluoride Removal from Ground Water Using Magnetic and Nonmagnetic Corn Stover Biochars. Ecol. Eng. 2014, 73, 798–808. [Google Scholar] [CrossRef]
- Gandhi, N.; Sirisha, D.; Shekar, K.B.; Asthana, S. Removal of Fluoride from Water and Waste Water by Using Low Cost Adsorbents. Int. J. Chemtech Res. 2012, 4, 1646–1653. [Google Scholar]
- Tarazona-Díaz, M.P.; Viegas, J.; Moldao-Martins, M.; Aguayo, E. Bioactive Compounds from Flesh and By-Product of Fresh-Cut Watermelon Cultivars. J. Sci. Food Agric. 2011, 91, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Kavisri, M.; Abraham, M.; Moovendhan, M. Effective Removal of Fluoride Ions from Aqueous Solution by Marine Microalgae as Natural Biosorbent. Chemosphere 2023, 313, 137312. [Google Scholar] [CrossRef]
- Dan, S.; Chattree, A. Sorption of Fluoride Using Chemically Modified Moringa Oleifera Leaves. Appl. Water Sci. 2018, 8, 76. [Google Scholar] [CrossRef]
- Mittal, Y.; Srivastava, P.; Kumar, N.; Yadav, A.K. Remediation of Fluoride Contaminated Water Using Encapsulated Active Growing Blue-Green Algae, Phormidium Sp. Environ. Technol. Innov. 2020, 19, 100855. [Google Scholar] [CrossRef]
- Hota, A.; Patro, S.G.K.; Panda, S.K.; Khan, M.A.; Hasan, M.A.; Islam, S.; Alsubih, M.; Khan, N.A.; Zahmatkesh, S. Removing Fluoride Ions from Wastewater by Fe3O4 Nanoparticles: Modified Rhodophytes (Red algae) as Biochar. J. Water Process Eng. 2024, 58, 104776. [Google Scholar] [CrossRef]
- Tefera, N.; Mulualem, Y.; Fito, J. Adsorption of Fluoride from Aqueous Solution and Groundwater onto Activated Carbon of Avocado Seeds. Water Conserv. Sci. Eng. 2020, 5, 187–197. [Google Scholar] [CrossRef]
- Devrajani, S.K.; Ahmed, Z.; Qambrani, N.A.; Kanwal, S.; Sundaram, U.M.; Mubarak, N.M. Mechanism of Arsenic Removal Using Brown Seaweed Derived Impregnated with Iron Oxide Biochar for Batch and Column Studies. Sci. Rep. 2024, 14, 18102. [Google Scholar] [CrossRef]
- Kumar, G.; Sivagurunathan, P.; Zhen, G.; Kobayashi, T.; Kim, S.-H.; Xu, K. Combined Pretreatment of Electrolysis and Ultra-Sonication towards Enhancing Solubilization and Methane Production from Mixed Microalgae Biomass. Bioresour. Technol. 2017, 245, 196–200. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, G.; Liu, J.; Xiao, Y.; Wang, T.; Xue, Y. Magnetic Biochar Prepared by Electromagnetic Induction Pyrolysis of Cellulose: Biochar Characterization, Mechanism of Magnetization and Adsorption Removal of Chromium (VI) from Aqueous Solution. Bioresour. Technol. 2021, 337, 125429. [Google Scholar] [CrossRef]
- Wu, F.; Chen, L.; Hu, P.; Zhou, X.; Zhou, H.; Wang, D.; Lu, X.; Mi, B. Comparison of properties, adsorption performance and mechanisms to Cd (II) on lignin-derived biochars under different pyrolysis temperatures by microwave heating. Environ. Technol. Innova 2022, 25, 102196. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- Tomiyasu, H.; Fukutomi, H.; Gordon, G. Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution. Inorg. Chem. 1985, 24, 2962–2966. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and Adsorptive Characterization of Biochar in Metal Ions Removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M. Preparation of a Carboxymethylcellulose-Iron Composite for Uptake of Atorvastatin in Water. Int. J. Biol. Macromol. 2019, 132, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Alqadami, A.A.; Wabaidur, S.M.; Jeon, B.-H.; Khan, M.A. Co-Hydrothermal Valorization of Food Waste: Process Optimization, Characterization, and Water Decolorization Application. Biomass Convers. Biorefinery 2024, 14, 15757–15768. [Google Scholar] [CrossRef]
- Ren, J.; Li, N.; Li, L.; An, J.-K.; Zhao, L.; Ren, N.-Q. Granulation and Ferric Oxides Loading Enable Biochar Derived from Cotton Stalk to Remove Phosphate from Water. Bioresour. Technol. 2015, 178, 119–125. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.; Zimmerman, A.R.; Wang, S.; Gao, B. Batch and Column Sorption of Arsenic onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar] [CrossRef]
- Khanzada, A.K.; Rizwan, M.; Al-Hazmi, H.E.; Majtacz, J.; Kurniawan, T.A.; Mąkinia, J. Removal of Arsenic from Wastewater Using Hydrochar Prepared from Red Macroalgae: Investigating Its Adsorption Efficiency and Mechanism. Water 2023, 15, 3866. [Google Scholar] [CrossRef]
- Deng, S.; Ting, Y.-P. Characterization of PEI-Modified Biomass and Biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 2005, 39, 2167–2177. [Google Scholar] [CrossRef]
- Regmi, P.; Garcia Moscoso, J.L.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. Removal of Copper and Cadmium from Aqueous Solution Using Switchgrass Biochar Produced via Hydrothermal Carbonization Process. J. Environ. Manag. 2012, 109, 61–69. [Google Scholar] [CrossRef]
- Bhaumik, R.; Mondal, N.K. Adsorption of Fluoride from Aqueous Solution by a New Low-Cost Adsorbent: Thermally and Chemically Activated Coconut Fibre Dust. Clean. Technol. Environ. Policy 2015, 17, 2157–2172. [Google Scholar] [CrossRef]
- Mondal, N.K.; Bhaumik, R.; Sen, K.; Debnath, P. Adsorption of Fluoride in Aqueous Solutions Using Saline Water Algae (Rhodophyta Sp.): An Insight into Isotherm, Kinetics, Thermodynamics and Optimization Studies. Model. Earth Syst. Environ. 2022, 8, 3507–3521. [Google Scholar] [CrossRef]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Dehghani, M.H.; Jaafari, J.; Balarak, D.; Asif, M. Rapid Removal of Noxious Nickel (II) Using Novel γ-Alumina Nanoparticles and Multiwalled Carbon Nanotubes: Kinetic and Isotherm Studies. J. Mol. Liq. 2016, 224, 618–623. [Google Scholar] [CrossRef]
- Mohammadnia, M.; Naghizadeh, A. Surveying of Kinetics, Thermodynamic, and Isotherm Processes of Fluoride Removal from Aqueous Solutions Using Graphene Oxide Nano Particles. J. Birjand Univ. Med. Sci. 2016, 23, 29–43. [Google Scholar]
- Sadhu, M.; Bhattacharya, P.; Vithanage, M.; Padmaja Sudhakar, P. Adsorptive Removal of Fluoride Using Biochar—A Potential Application in Drinking Water Treatment. Sep. Purif. Technol. 2021, 278, 119106. [Google Scholar] [CrossRef]
Elements | Total (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Mg | K | Na | Si | N | Al | Cl | P | Ca | S | Fe | |||
BC | Atomic weight (%) | 37.85 | 52.24 | 1.13 | 1.22 | 0.59 | 2.48 | - | 1.47 | - | 1.44 | 1.58 | - | - | 100 |
Compound weight (%) | 33.79 | 49.93 | 1.40 | 1.84 | 1.34 | 4.66 | - | 2.35 | - | 1.96 | 1.58 | - | - | 100 | |
MBC | Atomic weight (%) | 40.52 | 24.46 | 0.22 | - | 0.83 | 1.03 | 0.09 | - | 0.27 | - | - | 0.33 | 32.25 | 100 |
Compound weight (%) | 41.93 | 16.25 | 0.36 | - | 1.54 | 2.28 | 0.33 | - | 1.40 | - | - | 0.86 | 35.05 | 100 |
Parameters | Units | Values | ||
---|---|---|---|---|
Isotherms | Langmuir Isotherm | qm | mgg−1 | 3.41 |
hL | Lmg−1 | 0.2 | ||
R2 | - | 0.998 | ||
Freundlich Isotherm | f | - | 0.4 | |
hF | (mgg−1) (Lmg−1)1/n | 3.55 | ||
R2 | - | 0.941 | ||
Kinetics | Pseudo-first-order kinetics | h1 | min−1 | 0.000242 |
qe | mgg−1 | 25.2 | ||
R2 | - | 0.89 | ||
Pseudo-second-order kinetics | h2 | (g mg−1min−1) | 0.003 | |
qe | mgg−1 | 19.61 | ||
R2 | - | 0.994 | ||
Infraparticle Diffusion Kinetics | qt | mgg−1 | 12.1 | |
B | g/mg−1min−0.5 | 0.8 | ||
C | - | 7.74 | ||
R2 | - | 0.95 |
Adsorbent Materials | Adsorption Efficiency/ Capacity qm (mg/g) | Operational Conditions | References |
---|---|---|---|
Moringa oleifera leaves | 1.14 mg/g | pH = 1, fluoride concentration = 2 mg/L, adsorbent dosage = 250 mg, contact time = 150 min | [24] |
Dunaliella salina | 98.22% | pH=7, temperature = 42.50 °C, fluoride concentration = 50 mg/L, contact time = 40 min, adsorbent dosage = 0.6 g/L | [25] |
Blue–green algae, Phormidium sp. | 60% | Fluoride concentration = 3 mg/L, pH = 4.5, contact time = 90 hrs, adsorbent dosage = 4.5 g | [26] |
Waste marble powder (WMP) | 1.165 mg/g, 97.13% | pH = 6, fluoride concentration = 6 mg/L, dosage = 500 mg, contact time = 60 min | [16] |
Fe3O4 modified Rhodophytes (red algae) | 96.4 mg/g | pH = 2, fluoride concentration = 60 g/L, adsorbent dosage = 50 g, contact time = 200 min | [27] |
Activated carbon of avocado seeds | 1.2 mg/g, 86% | pH = 6, Fluoride concentration = 5.2 mg/L, dosage = 190 mg, contact time = 60 min | [28] |
Iron oxide magnetic biochar using brown seaweed (Fe-BC) | 3.41 mg/g, 90.2% | Fluoride concentration = 30 mg/L, contact time = 150 min, pH = 2, adsorbent dosage = 60 mg | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, S.; Devrajani, S.K.; Hashmani, S.A.K. Removal of Fluoride from Aqueous Solution Using Biochar Derived from Brown Macroalgae (Sargassum Polycystum) Impregnated with Fe3O4 Nanoparticles. Phycology 2025, 5, 37. https://doi.org/10.3390/phycology5030037
Kanwal S, Devrajani SK, Hashmani SAK. Removal of Fluoride from Aqueous Solution Using Biochar Derived from Brown Macroalgae (Sargassum Polycystum) Impregnated with Fe3O4 Nanoparticles. Phycology. 2025; 5(3):37. https://doi.org/10.3390/phycology5030037
Chicago/Turabian StyleKanwal, Sania, Satesh Kumar Devrajani, and Saif Ali Khan Hashmani. 2025. "Removal of Fluoride from Aqueous Solution Using Biochar Derived from Brown Macroalgae (Sargassum Polycystum) Impregnated with Fe3O4 Nanoparticles" Phycology 5, no. 3: 37. https://doi.org/10.3390/phycology5030037
APA StyleKanwal, S., Devrajani, S. K., & Hashmani, S. A. K. (2025). Removal of Fluoride from Aqueous Solution Using Biochar Derived from Brown Macroalgae (Sargassum Polycystum) Impregnated with Fe3O4 Nanoparticles. Phycology, 5(3), 37. https://doi.org/10.3390/phycology5030037