Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review
Abstract
:1. Introduction
2. Potentially Toxic Elements
Heavy Metal | Associated Risk | References |
---|---|---|
Cadmium | Renal damage Infertility Organ dysfunction, damage, and cell death Bone diseases Lung injuries Cancer | [20] |
Arsenic | Cancer in the lungs, kidneys, and bladder Cardiovascular dysfunction Skin and hair changes Liver damage | [21] |
Lead | Lung dysfunction Cardiovascular dysfunction Reduced pulmonary function | [22] |
Mercury | Brain, lung, and kidney damage Nervous and immune system diseases Cardiovascular system diseases | [23] |
3. Review of Acid Mine Drainage
4. Algae and Their Bioremediation Capacity
5. Factors That Affect Microalgal Bioremediation Capacity
5.1. pH
5.2. Temperature
5.3. Biomass Concentration
5.4. PTE Interactions
5.5. Metals Speciation
6. Uptake Mechanism of Heavy Metals in Microalgae
7. Previous Studies on the Application of Spirogyra and Chlorella to Remove Heavy Metals and Toxic Contaminants
8. Future Perspective
8.1. Circular Bioeconomy Approach
8.2. Biorefinery as a Solution
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, Treatment and Case Studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological Remediation of Acid Mine Drainage: Review of Past Trends and Current Outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediat. Biotechnol. Sustain. Approaches Pollut. Degrad. 2020, 7, 1801961. [Google Scholar] [CrossRef] [Green Version]
- Bwapwa, J.K.; Jaiyeola, A.T.; Chetty, R. Bioremediation of Acid Mine Drainage Using Algae Strains: A Review. South Afr. J. Chem. Eng. 2017, 24, 62–70. [Google Scholar] [CrossRef]
- Pozo-Antonio, S.; Puente-Luna, I.; Lagüela-López, S.; Veiga-Ríos, M. Techniques to Correct and Prevent Acid Mine Drainage: A Review. Dyna 2014, 81, 73. [Google Scholar] [CrossRef]
- Ahmad, A.; Tariq, S.; Zaman, J.U.; Perales, A.I.M.; Mubashir, M.; Luque, R. Recent Trends and Challenges with the Synthesis of Membranes: Industrial Opportunities towards Environmental Remediation. Chemosphere 2022, 306, 135634. [Google Scholar] [CrossRef]
- Azhar, U.; Bashir, M.S.; Babar, M.; Arif, M.; Hassan, A.; Riaz, A.; Mujahid, R.; Sagir, M.; Suri, S.U.K.; Show, P.L.; et al. Template-Based Textural Modifications of Polymeric Graphitic Carbon Nitrides towards Waste Water Treatment. Chemosphere 2022, 302, 134792. [Google Scholar] [CrossRef]
- Znad, H.; Awual, M.R.; Martini, S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules 2022, 27, 21. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef] [PubMed]
- Nabila, T.I.; Ibrahim, S.; Umar, F.S.; Isyaku, H.I.; Muhammad, A.A. Assessment of Bioremediation Potential of Spirogyra Porticalis and Chlorella Vulgaris on Copper and Chromium in Tannery Effluent from Challawa Industrial Area, Kano State. FUDMA J. Sci. 2021, 5, 29–35. [Google Scholar] [CrossRef]
- Prasanna, R.; Ratha, S.K.; Rojas, C.; Bruns, M.A. Algal Diversity in Flowing Waters at an Acidic Mine Drainage “Barrens” in Central Pennsylvania, USA. Folia Microbiol. 2011, 56, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Brahmbhatt, N.; Patel, R.V.; Jasrai, R.T. Bioremediation Potential of Spirogyra Sps & Oscillatoria Sps for Cadmium. Asian J. Biochem. Pharm. Res. 2012, 2, 102–107. [Google Scholar]
- Soeprobowati, T.R.; Hariyati, R. The Potential Used of Microalgae for Heavy Metals Remediation. Proceeding Isnpinsa 2012, 3, 274–278. [Google Scholar]
- Pan, L.; Fang, G.; Wang, Y.; Wang, L.; Su, B.; Li, D.; Xiang, B. Potentially Toxic Element Pollution Levels and Risk Assessment of Soils and Sediments in the Upstream River, Miyun Reservoir, China. Int. J. Environ. Res. Public Health 2018, 15, 2364. [Google Scholar] [CrossRef] [Green Version]
- Said, I.; Salman, S.A.E.R.; Samy, Y.; Awad, S.A.; Melegy, A.; Hursthouse, A.S. Environmental Factors Controlling Potentially Toxic Element Behaviour in Urban Soils, El Tebbin, Egypt. Environ. Monit. Assess. 2019, 191, 267. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, P.; Sawidis, T.; Breuste, J.; Kostić, O.; Čakmak, D.; Đorđević, D.; Pavlović, D.; Pavlović, M.; Perović, V.; Mitrović, M. Fractionation of Potentially Toxic Elements (Ptes) in Urban Soils from Salzburg, Thessaloniki and Belgrade: An Insight into Source Identification and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 8064. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A.; et al. Arsenic, Cadmium, Lead and Mercury Content and Health Risk Assessment of Consuming Freshwater Fish with Elements of Chemometric Analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef]
- Nurchi, V.M.; Djordjevic, A.B.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Mohod, C.V.; Dhote, J. Review of Heavy Metals in Drinking Water and Their Effect on Human Health. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2992–2996. [Google Scholar]
- Oosthuizen, J. Environmental Health—Emerging Issues and Practice Edited by Jacques Oosthuizen; BoD–Books on Demand: Norderstedt, Germany, 2012; ISBN 9789533078540. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 227. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef] [Green Version]
- Costello, C. Acid Mine Drainage: Innovative Treatment Technologies. National Network for Environmental Management Studies (NNEMS) Program; U.S. Environmental Protection Agency: Washington, D.C., USA, 2003. [Google Scholar]
- Perales-Vela, H.V.; Peña-Castro, J.M.; Cañizares-Villanueva, R.O. Heavy Metal Detoxification in Eukaryotic Microalgae. Chemosphere 2006, 64, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Metal Uptake by Microalgae: Underlying Mechanisms and Practical Applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.K.; Gaur, J.P. Use of Algae for Removing Heavy Metal Ions from Wastewater: Progress and Prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chang, H.W.; Kao, P.C.; Pan, J.L.; Chang, J.S. Biosorption of Cadmium by CO 2-Fixing Microalga Scenedesmus Obliquus CNW-N. Bioresour. Technol. 2012, 105, 74–80. [Google Scholar] [CrossRef]
- Arunakumara, K.K.I.U.; Zhang, X. Heavy Metal Bioaccumulation and Toxicity with Special Reference to Microalgae. J. Ocean Univ. China 2007, 7, 60–64. [Google Scholar] [CrossRef]
- Kong, Q.X.; Li, L.; Martinez, B.; Chen, P.; Ruan, R. Culture of Microalgae Chlamydomonas Reinhardtii in Wastewater for Biomass Feedstock Production. Appl. Biochem. Biotechnol. 2010, 160, 9–18. [Google Scholar] [CrossRef]
- Lee, M.G.; Lim, J.H.; Kam, S.K. Biosorption Characteristics in the Mixed Heavy Metal Solution by Biosorbents of Marine Brown Algae. Korean J. Chem. Eng. 2002, 19, 277–284. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Rodrigues, M.S.; de Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Perego, P.; Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto Dry Biomass of Arthrospira (Spirulina) Platensis and Chlorella Vulgaris. I. Single Metal Systems. Chem. Eng. J. 2011, 173, 326–333. [Google Scholar] [CrossRef]
- Qiu, R.; Gao, S.; Lopez, P.A.; Ogden, K.L. Effects of PH on Cell Growth, Lipid Production and CO2 Addition of Microalgae Chlorella Sorokiniana. Algal Res. 2017, 28, 192–199. [Google Scholar] [CrossRef]
- Aksu, Z. Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of the Batch Biosorption of Nickel(II) Ions onto Chlorella Vulgaris. Process Biochem. 2002, 38, 89–99. [Google Scholar] [CrossRef]
- Aksu, Z. Equilibrium and Kinetic Modelling of Cadmium(II) Biosorption by C. Vulgaris in a Batch System: Effect of Temperature. Process Biochem. 2001, 21, 285–294. [Google Scholar] [CrossRef]
- Esposito, A.; Pagnanelli, F.; Lodi, A.; Solisio, C.; Vegliò, F. Biosorption of Heavy Metals by Sphaerotilus Natans: An Equilibrium Study at Different PH and Biomass Concentrations. Hydrometallurgy 2001, 60, 129–141. [Google Scholar] [CrossRef]
- Ahuja, P.; Gupta, R.; Saxena, R.K. Zn2+ Biosorption by Oscillatoria Anguistissima. Process Biochem. 1999, 34, 77–85. [Google Scholar] [CrossRef]
- Mehta, S.K.; Singh, A.; Gaur, J.P. Kinetics of Adsorption and Uptake of Cu2+ by Chlorella Vulgaris: Influence of PH, Temperature, Culture Age, and Cations. J. Environ. Sci. Heal.—Part A Toxic/Hazard. Subst. Environ. Eng. 2002, 37, 399–414. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A Promising Tool for Heavy Metal Remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Elbaz-Poulichet, F.; Dupuy, C.; Cruzado, A.; Velasquez, Z.; Achterberg, E.P.; Braungardt, C.B. Influence of Sorption Processes by Iron Oxides and Algae Fixation on Arsenic and Phosphate Cycle in an Acidic Estuary (Tinto River, Spain). Water Res. 2000, 34, 3222–3230. [Google Scholar] [CrossRef]
- Mary Kensa, V. Bioremediation—An Overview. J. Ind. Pollut. Control. 2011, 27, 161–168. [Google Scholar]
- Sharma, I. Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. In Intech; IntechOpen: London, UK, 2021; p. 16. [Google Scholar]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M.N. In-Situ, Ex-Situ, and Nano-Remediation Strategies to Treat Polluted Soil, Water, and Air—A Review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Muñoz, R.; Alvarez, M.T.; Muñoz, A.; Terrazas, E.; Guieysse, B.; Mattiasson, B. Sequential Removal of Heavy Metals Ions and Organic Pollutants Using an Algal-Bacterial Consortium. Chemosphere 2006, 63, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Garnham, G.W.; Codd, G.A.; Gadd, G.M. Biotechnology Kinetics of Uptake and Intracellular Location of Cobalt, Manganese and Zinc in the Estuarine Green Alga Chlorella Salina. Appl. Microbiol. Biotechnol. 1992, 37, 270–276. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Shah, M.P.; Verma, P. Bioremediation of Heavy Metals from Wastewater: A Current Perspective on Microalgae-Based Future. Lett. Appl. Microbiol. 2022, 75, 701–717. [Google Scholar] [CrossRef]
- Cotas, J.; Pacheco, D.; Gonçalves, A.M.; Pereira, L. Criteria for the Development of Culture Media Applied to Microalgae-Based Fuel Production. In 3rd Generation Biofuels; Jacob-Lopes, E., Zepka, L.Q., Severo, I.A., Maroneze, M.M., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 33–45. [Google Scholar]
- Bermanec, V.; Palinkaš, L.A.; Fiket, Ž.; Hrenović, J.; Plenković-Moraj, A.; Kniewald, G.; Boev, I.; Boev, B. Interaction of Acid Mine Drainage with Biota in the Allchar Carlin-Type As-Tl-Sb-Au Deposit, Macedonia. J. Geochem. Explor. 2018, 194, 104–119. [Google Scholar] [CrossRef]
- Olal, F.O. Biosorption of Selected Seavy Metals Using Green Algae, Spirogyra Species. J. Nat. Sci. Res. 2016, 6, 22–34. [Google Scholar]
- Lee, Y.C.; Chang, S.P. The Biosorption of Heavy Metals from Aqueous Solution by Spirogyra and Cladophora Filamentous Macroalgae. Bioresour. Technol. 2011, 102, 5297–5304. [Google Scholar] [CrossRef]
- Bakare, B.F.; Adeyinka, G.C. Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics 2022, 10, 340. [Google Scholar] [CrossRef]
- Nimisha, P.; Joseph, S. Assessment of Phycoremediation Efficiency of Spirogyra Maxima by Using Heavy Metals Manganese and Lead. Int. J. Environ. Agric. Biotechnol. 2020, 5, 616–620. [Google Scholar] [CrossRef]
- Shah, N.; Sohani, S.; Thakkar, S.; Doshi, H.; Gupta, G. Potential of Live Spirogyra Sp. in the Bioaccumulation of Copper and Nickel Ions: A Study on Suitability and Sustainability. J. Appl. Microbiol. 2022, 132, 331–339. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A.; Saini, V.K.; Jain, N. Biosorption of Copper(II) from Aqueous Solutions by Spirogyra Species. J. Colloid Interface Sci. 2006, 296, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Biodeg, J.B.; Sibi, G. Biosorption of Arsenic by Living and Dried Biomass of Fresh Water Microalgae—Potentials and Equilibrium Studies. J. Bioremediat. Biodegrad. 2014, 05. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Dubey, V.K.; Thakkar, S.; Doshi, H.; Mahawar, P. Bioaccumulation of Arsenic(V) from Wastewater by Live and Dead Spirogyra Sp. J. Basic Microbiol. 2022, 62, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Shing, W.L.; Hwang, T.Y.; Yi, K.W.; Han, L.J.; Hock, O.G. Using the Responses of Green Algae Spirogyra as Bioindicator for Metals and Pesticides Pollution. J. Environ. Sci. Manag. 2018, 21, 1–6. [Google Scholar] [CrossRef]
- Amiri, R.; Ahmadi, M. Treatment of Wastewater in Sewer by Spirogyra Sp. Green Algae: Effects of Light and Carbon Sources. Water Environ. J. 2020, 34, 311–321. [Google Scholar] [CrossRef]
- Mei, D.; Ni, M.; Liang, X.; Hou, L.; Wang, F.; He, C. Filamentous Green Algae Spirogyra Regulates Methane Emissions from Eutrophic Rivers. Environ. Sci. Pollut. Res. 2021, 28, 3660–3671. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Phycoremediation of Arsenic from Wastewaters by Chlorella Pyrenoidosa. Groundw. Sustain. Dev. 2015, 1, 78–91. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Giráldez, I.; Vega, J.M.; Vigara, J. Impact of Heavy Metals in the Microalga Chlorella Sorokiniana and Assessment of Its Potential Use in Cadmium Bioremediation. Aquat. Toxicol. 2021, 239, 105941. [Google Scholar] [CrossRef]
- Sayadi, M.H.; Rashki, O.; Shahri, E. Application of Modified Spirulina Platensis and Chlorella Vulgaris Powder on the Adsorption of Heavy Metals from Aqueous Solutions. J. Environ. Chem. Eng. 2019, 7, 103169. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, S.H.; Cheng, C.L.; Guo, W.Q.; Nagarajan, D.; Ren, N.Q.; Lee, D.J.; Chang, J.S. Perspectives on the Feasibility of Using Microalgae for Industrial Wastewater Treatment. Bioresour. Technol. 2016, 222, 485–497. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource Recovery through Bioremediation of Wastewaters and Waste Carbon by Microalgae: A Circular Bioeconomy Approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jian, J.; Fa, Y. Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production. Molecules 2020, 25, 5220. [Google Scholar] [CrossRef]
- Fisher, C.L.; Ward, C.S.; Lane, P.D.; Kimbrel, J.A.; Sale, K.L.; Stuart, R.K.; Mayali, X.; Lane, T.W. Bacterial Communities Protect the Alga Microchloropsis Salina from Grazing by the Rotifer Brachionus Plicatilis. Algal Res. 2019, 40, 101500. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating Micro-Algae into Wastewater Treatment: A Review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, R.; Vijayaraghavan, K.; Thilakavathi, M.; Iyer, P.V.R.; Velan, M. Seaweeds for the Remediation of Wastewaters Contaminated with Zinc(II) Ions. J. Hazard. Mater. 2006, 136, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, N.R.; Kumar, R.; Kumar, S.; Rani, S. Biosorption of Cr(III) from Aqueous Solution Using Algal Biomass Spirogyra Sp. J. Hazard. Mater. 2007, 145, 142–147. [Google Scholar] [CrossRef]
- Lau, T.C.; Ang, P.O.; Wong, P.K. Development of Seaweed Biomass as Biosorbent for Metal Ions. Water Sci. Technol. 2003, 47, 49–54. [Google Scholar] [CrossRef]
- Kumar, J.; Khan, S.; Mandotra, S.K.; Dhar, P.; Tayade, A.B.; Verma, S.; Toppo, K.; Arora, R.; Upreti, D.K.; Chaurasia, O.P. Nutraceutical Profile and Evidence of Alleviation of Oxidative Stress by Spirogyra Porticalis (Muell.) Cleve Inhabiting the High Altitude Trans-Himalayan Region. Sci. Rep. 2019, 9, 4091. [Google Scholar] [CrossRef] [Green Version]
- Pardilhó, S.; Cotas, J.; Gonçalves, A.M.M.; Dias, J.M.; Pereira, L. Seaweeds Used in Wastewater Treatment: Steps to Industrial Commercialization. In Phycology-Based Approaches for Wastewater Treatment and Resource Recovery; CRC Press: Boca Raton, FL, USA, 2021; pp. 247–262. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Sharma, P.K.; Saharia, M.; Srivstava, R.; Kumar, S. Tailoring Microalgae for Efficient Biofuel Production. Front. Mar. Sci. 2018, 5, 382. [Google Scholar] [CrossRef]
- Sulfahri; Amin, M.; Sumitro, S.B.; Saptasari, M. Bioethanol Production from Algae Spirogyra hyalina Using Zymomonas mobilis. Biofuels 2016, 7, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Encarnação, T.; Mateus, A.; Gaspar, F.; Massano, A.; Biscaia, S.; Guincho, P.B.; Nogueira, B.A.; Castro, R.A.E.; de Carvalho, T.A.; Eusébio, M.E.S.; et al. Bioremediation Using Microalgae and Circular Economy Approach: A Case Study. Mater. Proc. 2022, 8, 108. [Google Scholar] [CrossRef]
Techniques | Examples | Advantages | Constraints | Factors to Consider |
---|---|---|---|---|
In situ | In situ bioremediationBiosparging Bioventing Bioaugmentation Bioslurping Permeable reactive barrier (PRB) | Noninvasive and least expensive Relatively inactive Natural attenuation mechanisms Treatment for soil and water | Environmental restrictions Treatment period lengthened Difficulties with monitoring Heavy metal and organic compound concentration inhibit the activity of some indigenous microorganisms Acclimatization of microorganisms is frequently required for in situ bioremediation | The depth of pollution, the kind of pollutant, the degree of pollution, the cost of remediation, and the geographical location of the contaminated site are all factors to consider |
Ex situ | Landfarming Composting Biopiles Windrows Biofilter | Cutting costs Low price Can be completed on-site | Heavy metal pollution and chlorinated hydrocarbons, such as trichloroethylene, are not covered Non-permeable soil needs further treatment Before placing the pollutant in the bioreactor, it can be removed from the soil by soil washing or physical extraction | See above |
Bioreactors | Slurry reactors Aqueous reactors | Kinetics of rapid deterioration Environmental characteristics have been optimized Improves mass transferInoculants and surfactants are used effectively | Excavation is required for soil. Capital at a somewhat high cost Operating costs are rather expensive | Process requires bioaugmentation Amendment toxicity Contaminant concentrations that are toxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, Â.; Cotas, J.; Pereira, L.; Carvalho, P. Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review. Phycology 2023, 3, 186-201. https://doi.org/10.3390/phycology3010012
Almeida Â, Cotas J, Pereira L, Carvalho P. Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review. Phycology. 2023; 3(1):186-201. https://doi.org/10.3390/phycology3010012
Chicago/Turabian StyleAlmeida, Ângelo, João Cotas, Leonel Pereira, and Paula Carvalho. 2023. "Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review" Phycology 3, no. 1: 186-201. https://doi.org/10.3390/phycology3010012
APA StyleAlmeida, Â., Cotas, J., Pereira, L., & Carvalho, P. (2023). Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review. Phycology, 3(1), 186-201. https://doi.org/10.3390/phycology3010012