The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments
Abstract
:1. Introduction
2. MeHg Interaction with Organic Matter (OM), S and Se Organic Compounds
3. Biogeochemical Cycling of MeHg and Its Presence in Global Aquatic Ecosystem
4. MeHg Implementation into the Aquatic Food Web and Its Consequences to Living Organisms
5. Biochemical Response of Microalgae to Heavy Metals
6. MeHg Interaction with Microalgae in Aquatic Environments on Molecular and Physiological Levels
7. Future Prospective and Challenges
- (1)
- Physiological effects of realistic levels of MeHg on natural algal consortiums in contaminated areas;
- (2)
- Predictions of whether OM will have an overall positive or negative impact on future MeHg concentrations [11];
- (3)
- Effects of S and Se compounds on Hg methylation rates under various OM conditions;
- (4)
- Relationship between realistic levels of MeHg and composition shifts in natural microalgae consortiums, as well as seasonal changes;
- (5)
- MeHg and Hg(II) internalization capacities in the Hg-resistant strains with possible applications in Hg-contaminated water remediation.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Swain, E.B.; Jakus, P.M.; Rice, G.; Lupi, F.; Maxson, P.A.; Pacyna, J.M.; Penn, A.; Spiegel, S.J.; Veiga, M.M. Socioeconomic Consequences of Mercury Use and Pollution. Ambio 2007, 36, 45–61. [Google Scholar] [CrossRef]
- Le Faucheur, S.; Campbell, P.G.C.; Fortin, C.; Slaveykova, V.I. Interactions between Mercury and Phytoplankton: Speciation, Bioavailability, and Internal Handling. Environ. Toxicol. Chem. 2014, 33, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Pickhardt, P.C.; Fisher, N.S. Accumulation of Inorganic and Methylmercury by Freshwater Phytoplankton in Two Contrasting Water Bodies. Environ. Sci. Technol. 2007, 41, 125–131. [Google Scholar] [CrossRef]
- Moye, H.A.; Miles, C.J.; Phlips, E.J.; Sargent, B.; Merritt, K.K. Kinetics and Uptake Mechanisms for Monomethylmercury between Freshwater Algae and Water. Environ. Sci. Technol. 2002, 36, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, A.L.; Schartup, A.T.; Gustafsson, E.; Gustafsson, B.G.; Undeman, E.; Björn, E. Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea—A Baltic Sea Case Study. Environ. Sci. Technol. 2016, 50, 11787–11796. [Google Scholar] [CrossRef]
- Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P. Influence of Natural Dissolved Organic Carbon on the Bioavailability of Mercury to a Freshwater Alga. Environ. Pollut. 2008, 154, 116–123. [Google Scholar] [CrossRef]
- Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Shafer, M.M. Speciation of Aqueous Methylmercury Influences Uptake by a Freshwater Alga (Selenastrum capricornutum). Environ. Toxicol. Chem. 2006, 25, 534–540. [Google Scholar] [CrossRef]
- Bravo, A.G.; Faucheur, S.L.; Monperrus, M.; Amouroux, D.; Slaveykova, V.I. Species-Specific Isotope Tracers to Study the Accumulation and Biotransformation of Mixtures of Inorganic and Methyl Mercury by the Microalga Chlamydomonas reinhardtii. Environ. Pollut. 2014, 192, 212–215. [Google Scholar] [CrossRef]
- Skrobonja, A.; Gojkovic, Z.; Soerensen, A.L.; Westlund, P.-O.; Funk, C.; Björn, E. Uptake Kinetics of Methylmercury in a Freshwater Alga Exposed to Methylmercury Complexes with Environmentally Relevant Thiols. Environ. Sci. Technol. 2019, 53, 13757–13766. [Google Scholar] [CrossRef]
- Soerensen, A.L.; Schartup, A.T.; Skrobonja, A.; Björn, E. Organic Matter Drives High Interannual Variability in Methylmercury Concentrations in a Subarctic Coastal Sea. Environ. Pollut. 2017, 229, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, A.L.; Schartup, A.T.; Skrobonja, A.; Bouchet, S.; Amouroux, D.; Liem-Nguyen, V.; Björn, E. Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations from the Baltic Sea. Glob. Biogeochem. Cycles 2018, 32, 1498–1513. [Google Scholar] [CrossRef]
- Deutsch, B.; Alling, V.; Humborg, C.; Korth, F.; Mörth, C.M. Tracing Inputs of Terrestrial High Molecular Weight Dissolved Organic Matter within the Baltic Sea Ecosystem. Biogeosciences 2012, 9, 4465–4475. [Google Scholar] [CrossRef]
- Ripszam, M.; Paczkowska, J.; Figueira, J.; Veenaas, C.; Haglund, P. Dissolved Organic Carbon Quality and Sorption of Organic Pollutants in the Baltic Sea in Light of Future Climate Change. Environ. Sci. Technol. 2015, 49, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.J.; Moye, H.A.; Phlips, E.J.; Sargent, B. Partitioning of Monomethylmercury between Freshwater Algae and Water. Environ. Sci. Technol. 2001, 35, 4277–4282. [Google Scholar] [CrossRef]
- Luengen, A.C.; Fisher, N.S.; Bergamaschi, B.A. Dissolved Organic Matter Reduces Algal Accumulation of Methylmercury. Environ. Toxicol. Chem. 2012, 31, 1712–1719. [Google Scholar] [CrossRef]
- Ndu, U.; Mason, R.P.; Zhang, H.; Lin, S.; Visscher, P.T. Effect of Inorganic and Organic Ligands on the Bioavailability of Methylmercury as Determined by Using a Mer-Lux Bioreporter. Appl. Environ. Microbiol. 2012, 78, 7276–7282. [Google Scholar] [CrossRef]
- Berthon, G. Critical Evaluation of the Stability Constants of Metal Complexes of Amino Acids with Polar Side Chains (Technical Report). Pure Appl. Chem. 1995, 67, 1117–1240. [Google Scholar] [CrossRef]
- Mason, R.P.; Reinfelder, J.R.; Morel, F.M.M. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environ. Sci. Technol. 1996, 30, 1835–1845. [Google Scholar] [CrossRef]
- Rodríguez, J.; Andersson, A.; Björn, E.; Timonen, S.; Brugel, S.; Skrobonja, A.; Rowe, O. Inputs of Terrestrial Dissolved Organic Matter Enhance Bacterial Production and Methylmercury Formation in Oxic Coastal Water. Front. Microbiol. 2022, 13, 809166. [Google Scholar] [CrossRef]
- Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O.F.; Figueroa, D.; Kratzer, S.; Legrand, C. Influence of Allochthonous Dissolved Organic Matter on Pelagic Basal Production in a Northerly Estuary. Estuar. Coast. Shelf Sci. 2018, 204, 225–235. [Google Scholar] [CrossRef]
- Quiroga-Flores, R.; Guédron, S.; Achá, D. High Methylmercury Uptake by Green Algae in Lake Titicaca: Potential Implications for Remediation. Ecotoxicol. Environ. Saf. 2021, 207, 111256. [Google Scholar] [CrossRef] [PubMed]
- Achá, D.; Guédron, S.; Amouroux, D.; Point, D.; Lazzaro, X.; Fernandez, P.E.; Sarret, G. Algal Bloom Exacerbates Hydrogen Sulfide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences 2018, 8, 438. [Google Scholar] [CrossRef]
- Schartup, A.T.; Ndu, U.; Balcom, P.H.; Mason, R.P.; Sunderland, E.M. Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environ. Sci. Technol. 2015, 49, 5965–5972. [Google Scholar] [CrossRef] [PubMed]
- Gojkovic, Ž.; Garbayo, I.; Ariza, J.L.G.; Márová, I.; Vílchez, C. Selenium Bioaccumulation and Toxicity in Cultures of Green Microalgae. Algal Res. 2015, 7, 106–116. [Google Scholar] [CrossRef]
- Umysová, D.; Vítová, M.; Doušková, I.; Bišová, K.; Hlavová, M.; Čížková, M.; Machát, J.; Doucha, J.; Zachleder, V. Bioaccumulation and Toxicity of Selenium Compounds in the Green Alga Scenedesmus Quadricauda. BMC Plant Biol. 2009, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Gojkovic, Ž.; Vílchez, C.; Torronteras, R.; Vigara, J.; Gómez-Jacinto, V.; Janzer, N.; Garbayo, I. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture. Sci. World J. 2014, 2014, 13. [Google Scholar] [CrossRef]
- Wang, W.-X.; Wong, R.S.K.; Wang, J.; Yen, Y. Influences of Different Selenium Species on the Uptake and Assimilation of Hg(II) and Methylmercury by Diatoms and Green Mussels. Aquat. Toxicol. 2004, 68, 39–50. [Google Scholar] [CrossRef]
- Scheuhammer, A.M.; Meyer, M.W.; Sandheinrich, M.B.; Murray, M.W. Effects of Environmental Methylmercury on the Health of Wild Birds, Mammals, and Fish. Ambio 2007, 36, 12–18. [Google Scholar] [CrossRef]
- Gębka, K.; Bełdowska, M. Variation in the Content of Different Forms of Mercury in River Catchments of the Southern Baltic Sea—Case Study. Pol. Hyperb. Res. 2020, 72, 63–72. [Google Scholar] [CrossRef]
- Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in Marine and Oceanic Waters—A Review. Water Air Soil Pollut. 2016, 227, 371. [Google Scholar] [CrossRef] [PubMed]
- Selin, N.E. Global Biogeochemical Cycling of Mercury: A Review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef]
- Malm, O.; Pfeiffer, W.C.; Souza, C.M.M.; Reuther, R. Mercury Pollution Due to Gold Mining in the Madeira River Basin, Brazil. AMBIO A J. Hum. Environ. 1990, 19, 11–15. [Google Scholar]
- Zhang, H.; Feng, X.; Larssen, T.; Qiu, G.; Vogt, R.D. In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure. Environ. Health Perspect. 2010, 118, 1183–1188. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency, US EPA. Biennial National Listing of Fish Advisories Fact Sheet EPA-823-F-09-007 September 2009. Available online: https://www.epa.gov/sites/default/files/2019-05/documents/2008-biennial-nlfa.pdf (accessed on 13 August 2022).
- Jiang, G.-B.; Shi, J.-B.; Feng, X.-B. Mercury Pollution in China. An Overview of the Past and Current Sources of the Toxic Metal. Environ. Sci. Technol. 2006, 40, 3673–3678. [Google Scholar] [CrossRef] [PubMed]
- Krabbenhoft, D. Methylmercury Contamination of Aquatic Ecosystems: A Widespread Problem with Many Challenges for the Chemical Sciences; Norling, P., Wood-Black, F., Masciangioli, T., Eds.; Water and Sustainable Development: Opportunities for the Chemical Sciences—A Workshop Report to the Chemical Sciences Roundtable; National Academy of Sciences: Washington, DC, USA, 2004; ISBN 0-309-53173-X. [Google Scholar]
- Sams, C.E. Methylmercury Contamination: Impacts on Aquatic Systems and Terrestrial Species, and Insights for Abatement. In Advancing the Fundamental Sciences: Proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, USA, 18–22 October 2004; Furniss, M., Clifton, C., Ronnenberg, K., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: San Diego, CA, USA, 2007. [Google Scholar]
- Emmerton, C.A.; Cooke, C.A.; Wentworth, G.R.; Graydon, J.A.; Ryjkov, A.; Dastoor, A. Total Mercury and Methylmercury in Lake Water of Canada’s Oil Sands Region. Environ. Sci. Technol. 2018, 52, 10946–10955. [Google Scholar] [CrossRef] [PubMed]
- Cinnirella, S.; Bruno, D.E.; Pirrone, N.; Horvat, M.; Živković, I.; Evers, D.C.; Johnson, S.; Sunderland, E.M. Mercury Concentrations in Biota in the Mediterranean Sea, a Compilation of 40 Years of Surveys. Sci. Data 2019, 6, 205. [Google Scholar] [CrossRef]
- Bravo, A.G.; Peura, S.; Buck, M.; Ahmed, O.; Mateos-Rivera, A.; Ortega, S.H.; Schaefer, J.K.; Bouchet, S.; Tolu, J.; Björn, E.; et al. Methanogens and Iron-Reducing Bacteria: The Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Appl. Environ. Microbiol. 2018, 84, e01774-18. [Google Scholar] [CrossRef]
- Compeau, G.C.; Bartha, R. Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment. Appl. Environ. Microbiol 1985, 50, 498–502. [Google Scholar] [CrossRef]
- Kerin, E.J.; Gilmour, C.C.; Roden, E.; Suzuki, M.T.; Coates, J.D.; Mason, R.P. Mercury Methylation by Dissimilatory Iron-Reducing Bacteria. Appl. Environ. Microbiol. 2006, 72, 7919–7921. [Google Scholar] [CrossRef]
- Gilmour, C.C.; Podar, M.; Bullock, A.L.; Graham, A.M.; Brown, S.D.; Somenahally, A.C.; Johs, A.; Hurt, R.A.; Bailey, K.L.; Elias, D.A. Mercury Methylation by Novel Microorganisms from New Environments. Environ. Sci. Technol. 2013, 47, 11810–11820. [Google Scholar] [CrossRef]
- Parks, J.M.; Johs, A.; Podar, M.; Bridou, R.; Hurt, R.A.J.; Smith, S.D.; Tomanicek, S.J.; Qian, Y.; Brown, S.D.; Brandt, C.C.; et al. The Genetic Basis for Bacterial Mercury Methylation. Science 2013, 339, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.-Q.; Reinfelder, J.R.; Hines, M.E.; Barkay, T. Mercury Methylation by the Methanogen Methanospirillum hungatei. Appl. Environ. Microbiol. 2013, 79, 6325–6330. [Google Scholar] [CrossRef] [PubMed]
- Canário, J.; Vale, C.; Poissant, L.; Nogueira, M.; Pilote, M.; Branco, V. Mercury in Sediments and Vegetation in a Moderately Contaminated Salt Marsh (Tagus Estuary, Portugal). J. Environ. Sci. 2010, 22, 1151–1157. [Google Scholar] [CrossRef]
- Bravo, A.G.; Cosio, C.; Amouroux, D.; Zopfi, J.; Chevalley, P.-A.; Spangenberg, J.E.; Ungureanu, V.-G.; Dominik, J. Extremely Elevated Methyl Mercury Levels in Water, Sediment and Organisms in a Romanian Reservoir Affected by Release of Mercury from a Chlor-Alkali Plant. Water Res. 2014, 49, 391–405. [Google Scholar] [CrossRef]
- Sinclair, K.A.; Xie, Q.; Mitchell, C.P.J. Methylmercury in Water, Sediment, and Invertebrates in Created Wetlands of Rouge Park, Toronto, Canada. Environ. Pollut. 2012, 171, 207–215. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K. Declining Oxygen in the Global Ocean and Coastal Waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Rak, D.; Walczowski, W.; Dzierzbicka-Głowacka, L.; Shchuka, S. Dissolved Oxygen Variability in the Southern Baltic Sea in 2013–2018. Oceanologia 2020, 62, 525–537. [Google Scholar] [CrossRef]
- Canário, J.; Santos-Echeandia, J.; Padeiro, A.; Amaro, E.; Strass, V.; Klaas, C.; Hoppema, M.; Ossebaar, S.; Koch, B.P.; Laglera, L.M. Mercury and Methylmercury in the Atlantic Sector of the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 138, 52–62. [Google Scholar] [CrossRef]
- Mao, L.; Liu, X.; Wang, B.; Lin, C.; Xin, M.; Zhang, B.-T.; Wu, T.; He, M.; Ouyang, W. Occurrence and Risk Assessment of Total Mercury and Methylmercury in Surface Seawater and Sediments from the Jiaozhou Bay, Yellow Sea. Sci. Total Environ. 2020, 714, 136539. [Google Scholar] [CrossRef]
- Ci, Z.; Zhang, X.; Wang, Z.; Niu, Z. Phase Speciation of Mercury (Hg) in Coastal Water of the Yellow Sea, China. Mar. Chem. 2011, 126, 250–255. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Zhang, G.; Xu, W.; Li, X.; Yao, H.; Liang, P.; Li, J.; Sommar, J.; Yin, R.; et al. Mercury in the Marine Boundary Layer and Seawater of the South China Sea: Concentrations, Sea/Air Flux, and Implication for Land Outflow. J. Geophys. Res. Atmos. 2010, 115, 1–11. [Google Scholar] [CrossRef]
- Mason, R.P.; Rolfhus, K.R.; Fitzgerald, W.F. Mercury in the North Atlantic. Mar. Chem. 1998, 61, 37–53. [Google Scholar] [CrossRef]
- Laurier, F.J.G.; Mason, R.P.; Gill, G.A.; Whalin, L. Mercury Distributions in the North Pacific Ocean—20 Years of Observations. Mar. Chem. 2004, 90, 3–19. [Google Scholar] [CrossRef]
- Cossa, D.; Martin, J.-M.; Takayanagi, K.; Sanjuan, J. The Distribution and Cycling of Mercury Species in the Western Mediterranean. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 721–740. [Google Scholar] [CrossRef]
- Lamborg, C.H.; Fitzgerald, W.F.; Damman, A.W.H.; Benoit, J.M.; Balcom, P.H.; Engstrom, D.R. Modern and Historic Atmospheric Mercury Fluxes in Both Hemispheres: Global and Regional Mercury Cycling Implications. Glob. Biogeochem. Cycles 2002, 16, 51-1–51-11. [Google Scholar] [CrossRef]
- Ramlal, P.S.; Bugenyi, F.W.B.; Kling, G.W.; Nriagu, J.O.; Rudd, J.W.M.; Campbell, L.M. Mercury Concentrations in Water, Sediment, and Biota from Lake Victoria, East Africa. J. Great Lakes Res. 2003, 29, 283–291. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Engstrom, D.R. Fish Respond When the Mercury Rises. Proc. Natl. Acad. Sci. USA 2007, 104, 16394–16395. [Google Scholar] [CrossRef]
- Wiener, J.G.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, A.M. Ecotoxicology of Mercury. In Handbook of Ecotoxicology, 2nd ed.; Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairns, J., Jr., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2003; pp. 409–463. [Google Scholar]
- Hong, Y.-S.; Kim, Y.-M.; Lee, K.-E. Methylmercury Exposure and Health Effects. J. Prev. Med. Public Health 2012, 45, 353–363. [Google Scholar] [CrossRef]
- De Giovanni, A.; Giuliani, C.; Marini, M.; Luiselli, D. Methylmercury and Polycyclic Aromatic Hydrocarbons in Mediterranean Seafood: A Molecular Anthropological Perspective. Appl. Sci. 2021, 11, 1179. [Google Scholar] [CrossRef]
- EC Regulation No 1881/2006 Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). 2006. Available online: https://eur-lex.eu/eli/reg/2006/1881/oj (accessed on 13 August 2022).
- United States Environmental Protection Agency, US EPA. EPA-823-F-01-001 Water Quality Criterion for the Protection of Human Health: Methylmercury (Executive Summary). 2001. Available online: https://www.epa.gov/sites/default/files/2020-01/documents/methylmercury-criterion-2001.pdf (accessed on 13 August 2022).
- Harada, M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Berlin, M.; Zalups, R.; Fowler, B. Hg. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G., Fowler, B., Nordberg, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-397339-9. [Google Scholar]
- Beasley, D.M.G.; Schep, L.J.; Slaughter, R.J.; Temple, W.A.; Michel, J.M. Full Recovery from a Potentially Lethal Dose of Mercuric Chloride. J. Med. Toxicol. 2014, 10, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Weihe, P.; Budtz-Jørgensen, E.; Jørgensen, P.J.; Grandjean, P. Delayed Brainstem Auditory Evoked Potential Latencies in 14-Year-Old Children Exposed to Methylmercury. J. Pediatr. 2004, 144, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Murata, K.; Budtz-Jørgensen, E.; Weihe, P. Cardiac Autonomic Activity in Methylmercury Neurotoxicity: 14-Year Follow-up of a Faroese Birth Cohort. J. Pediatr. 2004, 144, 169–176. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L. The Toxicology of Mercury and Its Chemical Compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Dorea, J.G. Mercury and Lead during Breast-Feeding. Br. J. Nutr. 2004, 92, 21–40. [Google Scholar] [CrossRef]
- Nowicka, B. Heavy Metal-Induced Stress in Eukaryotic Algae-Mechanisms of Heavy Metal Toxicity and Tolerance with Particular Emphasis on Oxidative Stress in Exposed Cells and the Role of Antioxidant Response. Environ. Sci. Pollut. Res. Int. 2022, 29, 16860–16911. [Google Scholar] [CrossRef]
- DalCorso, G. Heavy Metal Toxicity in Plants. In Plants and Heavy Metals; Furini, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–25. ISBN 978-94-007-4441-7. [Google Scholar]
- Kaur, R.; Nayyar, H. Ascorbic Acid: A Potent Defender Against Environmental Stresses. In Oxidative Damage to Plants: Antioxidant Networks and Signaling, 1st ed.; Parvaiz, A., Ed.; Elsevier Academic Press: Cambridge, MA, USA; pp. 235–287. ISBN 978-0-12-799963-0.
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; Whether Toxic or Essential for Plants and Environment—A Review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Benavides, M.; Gallego, S.; Tomaro, M. Cadmium Toxicity in Plants. Braz. J. Plant Physiol. 2005, 17, 21–34. [Google Scholar] [CrossRef]
- Chekroun, K.B.; Baghour, M. The Role of Algae in Phytoremediation of Heavy Metals: A Review. J. Mater. Environ. Sci. 2013, 4, 873–880. [Google Scholar]
- Nowicka, B.; Kruk, J. Powered by Light: Phototrophy and Photosynthesis in Prokaryotes and Its Evolution. Microbiol. Res. 2016, 186–187, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Balzano, S.; Sardo, A.; Blasio, M.; Chahine, T.B.; Dell’Anno, F.; Sansone, C.; Brunet, C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front. Microbiol. 2020, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Zolotareva, E.; Mokrosnop, V.; Stepanov, S. Polyphenol Compounds of Macroscopic and Microscopic Algae. Int. J. Algae 2019, 21, 5–24. [Google Scholar] [CrossRef]
- Ajitha, V.; Sreevidya, C.P.; Sarasan, M.; Park, J.C.; Mohandas, A.; Singh, I.S.B.; Puthumana, J.; Lee, J.-S. Effects of Zinc and Mercury on ROS-Mediated Oxidative Stress-Induced Physiological Impairments and Antioxidant Responses in the Microalga Chlorella vulgaris. Environ. Sci. Pollut. Res. 2021, 28, 32475–32492. [Google Scholar] [CrossRef]
- Küpper, H.; Andresen, E. Mechanisms of Metal Toxicity in Plants. Metallomics 2016, 8, 269–285. [Google Scholar] [CrossRef]
- Manomita Patra; Archana Sharma Mercury Toxicity in Plants. Bot. Rev. 2000, 66, 379–422. [CrossRef]
- Shrivastava, S.; Shrivastav, A.; Sharma, J. Detoxification Mechanisms of Mercury Toxicity in Plants—A Review. Recent Adv. Biol. Med. 2015, 1, 60–68. [Google Scholar] [CrossRef]
- Sharaf, A.; De Michele, R.; Sharma, A.; Fakhari, S.; Oborník, M. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia. Biomolecules 2019, 9, 647. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.-X. Intracellular Speciation and Transformation of Inorganic Mercury in Marine Phytoplankton. Aquat. Toxicol. 2014, 148, 122–129. [Google Scholar] [CrossRef]
- Tredici, M.R. Photobiology of Microalgae Mass Cultures: Understanding the Tools for the next Green Revolution. Biofuels 2010, 1, 143–162. [Google Scholar] [CrossRef]
- Borisov, A.Y.; Björn, L.O. On Oxygen Production by Photosynthesis: A Viewpoint. Photosynthetica 2018, 56, 44–47. [Google Scholar] [CrossRef]
- Spain, O.; Plöhn, M.; Funk, C. The Cell Wall of Green Microalgae and Its Role in Heavy Metal Removal. Physiol. Plant 2021, 173, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, V.; Alavi, S.A.; Zilouei, H. Mechanisms of Heavy Metal Removal Using Microorganisms as Biosorbent. Water Sci. Techno.l 2014, 69, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.G.C.; Errécalde, O.; Fortin, C.; Hiriart-Baer, V.P.; Vigneault, B. Metal Bioavailability to Phytoplankton—Applicability of the Biotic Ligand Model. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 133, 189–206. [Google Scholar] [CrossRef]
- Dranguet, P.; Flück, R.; Regier, N.; Cosio, C.; Le Faucheur, S.; Slaveykova, V.I. Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers. CHIMIA Int. J. Chem. 2014, 68, 799–805. [Google Scholar] [CrossRef]
- Shchukarev, A.; Gojkovic, Z.; Funk, C.; Ramstedt, M. Cryo-XPS Analysis Reveals Surface Composition of Microalgae. Appl. Surf. Sci. 2020, 526, 146538. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Shchukarev, A.; Ramstedt, M.; Funk, C. Cryogenic X-ray Photoelectron Spectroscopy Determines Surface Composition of Algal Cells and Gives Insights into Their Spontaneous Sedimentation. Algal Res. 2020, 47, 101836. [Google Scholar] [CrossRef]
- Hadjoudja, S.; Deluchat, V.; Baudu, M. Cell Surface Characterisation of Microcystis Aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 2010, 342, 293–299. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.-X. Accumulation, Subcellular Distribution and Toxicity of Inorganic Mercury and Methylmercury in Marine Phytoplankton. Environ. Pollut. 2011, 159, 3097–3105. [Google Scholar] [CrossRef]
- Luoma, S.N.; Rainbow, P.S. Why Is Metal Bioaccumulation So Variable? Biodynamics as a Unifying Concept. Environ. Sci. Technol. 2005, 39, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Slaveykova, V.I.; Majumdar, S.; Regier, N.; Li, W.; Keller, A.A. Metabolomic Responses of Green Alga Chlamydomonas reinhardtii Exposed to Sublethal Concentrations of Inorganic and Methylmercury. Environ. Sci. Technol. 2021, 55, 3876–3887. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Jacinto, V.; García-Barrera, T.; Gómez-Ariza, J.L.; Garbayo-Nores, I.; Vílchez-Lobato, C. Elucidation of the Defence Mechanism in Microalgae Chlorella sorokiniana under Mercury Exposure. Identification of Hg–Phytochelatins. Chem.-Biol. Interact. 2015, 238, 82–90. [Google Scholar] [CrossRef]
- Duboc, P.; Marison, I.; von Stockar, U. Quantitative Calorimetry and Biochemical Engineering. In Handbook of Thermal Analysis and Calorimetry; Kemp, R., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 4, pp. 267–365. ISBN 978-0-08-053569-2. [Google Scholar]
- Beauvais-Flück, R.; Slaveykova, V.I.; Cosio, C. Cellular Toxicity Pathways of Inorganic and Methyl Mercury in the Green Microalga Chlamydomonas reinhardtii. Sci. Rep. 2017, 7, 8034. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, W.-X. Controls of Dissolved Organic Matter and Chloride on Mercury Uptake by a Marine Diatom. Environ. Sci. Technol. 2009, 43, 8998–9003. [Google Scholar] [CrossRef]
- Bouchet, S.; Björn, E. Analytical Developments for the Determination of Monomethylmercury Complexes with Low Molecular Mass Thiols by Reverse Phase Liquid Chromatography Hyphenated to Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2014, 1339, 50–58. [Google Scholar] [CrossRef]
- Duanmu, D.; Miller, A.R.; Horken, K.M.; Weeks, D.P.; Spalding, M.H. Knockdown of Limiting-CO2–Induced Gene HLA3 Decreases HCO3− Transport and Photosynthetic Ci Affinity in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 2009, 106, 5990–5995. [Google Scholar] [CrossRef] [Green Version]
Location | Total Hg 1 | MeHg | References |
---|---|---|---|
- | pM or ng/L | pM, fM or ng/L | - |
Southern Baltic Sea | 1.5 ± 0.7 pM | 23 ± 13 fM | [12] |
Northern Baltic Sea | 1.0 ± 0.3 pM | 37 ± 15 fM; 21 ± 9 fM | [6,12] |
Bothnian Bay (Baltic) | 1.24 ± 0.3 pM | 80 ± 25 fM | [11] |
Bothnian Sea (Baltic) | 0.84 ± 0.24 pM | 21 ± 9 fM | [11] |
Bothnian Bay (Baltic) | 11.5 ± 1.66 pM | 116–236 fM | [20] |
Atlantic Ocean (Southern Polar Front) | 0.93 ± 0.69 ng/L | 0.26 ± 0.12 ng/L | [52] |
Jiaozhou Bay (Yellow Sea) | 8.46–27.3 ng/L | 0.08–0.83 ng/L | [53] |
Yellow Sea | 6.7–27.5 pM | – 2 | [54] |
South China Sea | 0.8–2.3 ng/L | 0.05–0.22 ng/L | [55] |
North Atlantic Ocean | 2.4 pM | – | [56] |
Pacific Ocean | 1.2 pM | – | [57] |
Mediterranean Sea | 1.0 pM; 2.5 pM | – | [40,58] |
Average in oceans | 1.5 pM | – | [59] |
Lake Titicaca (Bolivia) | – | 0.01–0.18 ng/L | [23] |
Olt River (Romania) | 8–88 ng/L | 0.7 ng/L | [48] |
Råne River estuary (Baltic) | 2.0–5.95 pM | 306 fM | [11] |
Wetlands in Rouge Park, Canada | 1.45 ± 0.91 ng/L | 0.59 ± 0.45 ng/L | [49] |
Lakes in Oil Sands Region, Canada | 0.4–5.3 ng/L | 0.01–0.34 ng/L | [39] |
Lake Victoria, Africa | 3–15 ng/L | – | [60] |
Average in surface water of lakes and rivers | – | 0.003–1.03 ng/L | [22] |
Microalgae | Experimental MeHg Conc. | Time of Exposure | MeHg Uptake | References |
---|---|---|---|---|
- | pM, nM or ng/L | h | ng/gDW or µg/gDW | - |
Chlamydomonas reinhardtii | 5–50 nM | 2 h | 2–18 ng/gDW | [101] |
Chlamydomonas reinhardtii | 97 ± 11 pM | 48 h | 0.072 a ng/gDW | [9] |
Chlamydomonas reinhardtii | 0.8 nM (160 ng/L) | 48 h | 17 a ng/gDW | [4] |
Chlamydomonas reinhardtii | 10 nM | 2 h | 0.06 b ng/gDW | [105] |
Chlorella autotrophica | 3 nM (600 ng/L) | 72 h | 132.7 c µg/gDW | [99] |
Isochrysis galbana | 3 nM (600 ng/L) | 72 h | 88.5 c µg/gDW | [99] |
Selenastrum capricornutum | 1.9 nM | 0.083 h | 10.7 ± 0.8 ng/gDW | [5] |
Selenastrum capricornutum | 233 nM | 45 h | 0.294 a ng/gDW | [107] |
Selenastrum capricornutum | 10 pM (2 ng/L) | 48 h | 180.7 a ng/gDW | [104] |
Thalassiosira weissflogii | 1.9 nM | 0.083 h | 473 ± 30.5 ng/gDW | [5] |
Thalassiosira pseudonana | 3 nM (600 ng/L) | 72 h | 22.1 c µg/gDW | [99] |
Schizothrix calcicola | 1.9 nM | 0.083 h | 356 ± 22.1 ng/gDW | [5] |
Natural consortium: Oedogonium spp. 63 d % Chlorella spp. 18 d % Scenedesmus spp. 19 d % | 0.997 nM (200 ng/L) | 6 h | 340–400 ng/gDW | [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gojkovic, Z.; Skrobonja, A.; Funk, C.; Garbayo, I.; Vílchez, C. The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments. Phycology 2022, 2, 344-362. https://doi.org/10.3390/phycology2030019
Gojkovic Z, Skrobonja A, Funk C, Garbayo I, Vílchez C. The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments. Phycology. 2022; 2(3):344-362. https://doi.org/10.3390/phycology2030019
Chicago/Turabian StyleGojkovic, Zivan, Aleksandra Skrobonja, Christiane Funk, Ines Garbayo, and Carlos Vílchez. 2022. "The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments" Phycology 2, no. 3: 344-362. https://doi.org/10.3390/phycology2030019
APA StyleGojkovic, Z., Skrobonja, A., Funk, C., Garbayo, I., & Vílchez, C. (2022). The Role of Microalgae in the Biogeochemical Cycling of Methylmercury (MeHg) in Aquatic Environments. Phycology, 2(3), 344-362. https://doi.org/10.3390/phycology2030019