Impacts of Climate Change on Cattle Health and Production in the Brazilian Amazon Biome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Climate Change and Cattle Production: A Global Perspective
3.1. Livestock as Victims and Drivers
3.2. Evidence from IPCC and FAO Reports
3.3. Multi-Hazard Risks
4. Vulnerabilities of the Amazon Biome
4.1. Heat Stress and Physiology
4.2. Nutritional Vulnerabilities
4.3. Extreme Weather and Disease Ecology
5. Metabolic and Deficiency Diseases
5.1. Rumen Disorders
5.2. Mineral and Vitamin Deficiencies
5.3. Plant Intoxications
6. Infectious Diseases and Climate Change
6.1. Bacterial and Mycotic Diseases
6.2. Viral and Vector-Borne Diseases
6.3. Parasitic Diseases
7. Socio-Economic Dimensions and Food Security
8. Mitigation and Adaptation Strategies
8.1. Climate-Smart Husbandry
8.2. Reproductive Health and Fertility
8.3. Genetic and Genomic Selection
8.4. Policy and Systemic Approaches
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2016; Available online: https://openknowledge.fao.org/handle/20.500.14283/i5188e (accessed on 12 October 2025).
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The Impacts of Climate Change on Livestock and Livestock Systems in Developing Countries: A Review of What We Know and What We Need to Know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; p. 139. Available online: https://www.fao.org/4/i3437e/i3437e.pdf (accessed on 12 October 2025).
- Melillo, M.J.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- De Rensis, F.; Garcia-Ispierto, I.; Lopez-Gatius, F. Seasonal Heat Stress: Clinical Implications and Hormone Treatments for the Fertility of Dairy Cows. Theriogenology 2015, 84, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Reproductive Physiology of the Heat-Stressed Dairy Cow: Implications for Fertility and Assisted Reproduction. Anim. Reprod. 2019, 16, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Polsky, L.; von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Fox, N.J.; White, P.C.L.; McClean, C.J.; Marion, G.; Evans, A.; Hutchings, M.R. Predicting Impacts of Climate Change on Fasciola hepatica Risk. PLoS ONE 2011, 6, e16126. [Google Scholar] [CrossRef]
- Caminade, C.; Van Dijk, J.; Baylis, M.; Williams, D. Modelling Recent and Future Climatic Suitability for Fasciola hepatica in Europe. Geospat. Health 2015, 9, 301–308. [Google Scholar] [CrossRef]
- Marques, R.V.; Krüger, R.F.; Peterson, A.T.; de Melo, L.F.; Vicenzi, N.; Jiménez-García, D. Climate Change Implications for the Distribution of the Babesiosis and Anaplasmosis Tick Vector, Rhipicephalus (Boophilus) microplus. Vet. Res. 2020, 51, 81. [Google Scholar] [CrossRef]
- Ogden, N.H.; Ben Beard, C.; Ginsberg, H.S.; Tsao, J. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J. Med. Entomol. 2021, 58, 1536–1545. [Google Scholar] [CrossRef]
- Nuttall, P.A. Climate Change Impacts on Ticks and Tick-Borne Infections. Biologia 2022, 77, 1503–1515. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’cRoz, D.; Mayberry, D.; Thornton, P.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; A Review of the Evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.C.; Printes, O.V.N.; Lima, D.O.; da Silva, É.B.R.; Dos Santos, M.R.P.; Camargo Júnior, R.N.C.; Barbosa, A.V.C.; da Silva, J.A.R.; e Silva, A.G.M.; Silva, L.K.X.; et al. Evaluation of the Temperature and Humidity Index to Support the Implementation of a Rearing System for Ruminants in the Western Amazon. Front. Vet. Sci. 2023, 14, 1198678. [Google Scholar] [CrossRef]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of Heat Stress on Feed Intake, Milk Yield, Milk Composition, and Feed Efficiency in Dairy Cows: A Meta-analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [CrossRef]
- De Rensis, F.; Scaramuzzi, R.J. Heat Stress and Seasonal Effects on Reproduction in the Dairy Cow—A Review. Theriogenology 2003, 60, 1139–1151. [Google Scholar] [CrossRef]
- Purse, B.V.; Mellor, P.S.; Rogers, D.J.; Samuel, A.R.; Mertens, P.P.C.; Baylis, M. Climate Change and the Recent Emergence of Bluetongue in Europe. Nat. Rev. Microbiol. 2005, 3, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Aparecido, L.E.O.; Lorençone, J.A.; Lorençone, P.A.; Torsoni, G.B.; Moraes, J.R.d.S.C.d.; de Meneses, K.C. Bioclimatic Zoning for Dairy Cows in Brazil by Statistical Modeling. J. Sci. Food Agric. 2022, 102, 6048–6063. [Google Scholar] [CrossRef]
- Sousa, A.C.; de Sousa, A.M.; Corrêa, W.C.; Marques, J.I.; de Meneses, K.C.; Pandorfi, H.; da Silva, T.G.F.; da Silva, J.L.B.; da Silva, M.V.; Machado, N.A.F. Bioclimatic Zoning and Climate Change Impacts on Dairy Farming in Maranhão (Brazil). Animals 2025, 15, 1646. [Google Scholar] [CrossRef]
- Messeri, A.; Mancini, M.; Bozzi, R.; Parrini, S.; Sirtori, F.; Morabito, M.; Crisci, A.; Messeri, G.; Ortolani, A.; Gozzini, B.; et al. Temperature-humidity Index Monitoring During Two Summer Seasons in Dairy Cow Sheds in Mugello (Tuscany). Int. J. Biometeorol. 2023, 67, 1555–1567. [Google Scholar] [CrossRef]
- Jo, J.H.; Nejad, J.G.; Peng, D.-Q.; Kim, H.-R.; Kim, S.-H.; Lee, H.-G. Characterization of Short-Term Heat Stress in Holstein Dairy Cows Using Altered Indicators of Metabolomics, Blood Parameters, Milk MicroRNA-216 and Characteristics. Animals 2021, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sharma, A.; Joy, A.; Dunshea, F.R.; Chauhan, S.S. The Impact of Heat Stress on Immune Status of Dairy Cattle and Strategies to Ameliorate the Negative Effects. Animals 2022, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.B.; Douglas, M.L.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; Nguyen, T.T.T.; Reich, C.M.; Hayes, B.J. Genomic Selection Improves Heat Tolerance in Dairy Cattle. Sci. Rep. 2016, 6, 34114. [Google Scholar] [CrossRef]
- McWhorter, T.M.; Sargolzaei, M.; Sattler, C.; Utt, M.D.; Tsuruta, S.; Misztal, I.; Lourenco, D. Single-step Genomic Predictions for Heat Tolerance of Production Yields in US Holsteins and Jerseys. J. Dairy Sci. 2023, 106, 7861–7879. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Haile-Mariam, M.; Cocks, B.G.; Pryce, J.E. Improving Genomic Selection for Heat Tolerance in Dairy Cattle: Current Opportunities and Future Directions. Front. Genet. 2022, 13, 894067. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; de Oliveira, C.A.F.; Akhtar, S.; Ali, S.W.; Nadeem, H.; Park, S.; Balasubramanian, B. Aflatoxin M1 in Milk and Dairy Products: Global Occurrence and Decontamination Methods. Toxin Rev. 2022, 41, 588–605. [Google Scholar] [CrossRef]
- Menta, P.R.; Machado, V.; Piñeiro, J.; Thatcher, W.; Santos, J.; Vieira-Neto, A. Heat Stress During the Transition Period is Associated with Impaired Production, Reproduction, and Survival in Dairy Cows. J. Dairy Sci. 2022, 105, 4474–4489. [Google Scholar] [CrossRef]
- Molinari, P.C.C.; Davidson, B.D.; Laporta, J.; Dahl, G.E.; Sheldon, I.M.; Bromfield, J.J. Prepartum Heat Stress in Dairy Cows Increases Postpartum Inflammatory Responses in Blood of Lactating Dairy Cows. J. Dairy Sci. 2023, 106, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Cattaneo, L.; Piccioli-Cappelli, F.; Mezzetti, M.; Minuti, A. International Symposium on Ruminant Physiology: The Immunometabolism of Transition Dairy Cows from Dry-off to Early Lactation-Lights and Shadows. J. Dairy Sci. 2025, 108, 7662–7674. [Google Scholar] [CrossRef]
- Gomes, F.J.; Pedreira, B.C.; Santos, P.M.; Bosi, C.; Lulu, J.; Pedreira, C.G. Microclimate Effects on canopy characteristics of shaded palisadegrass pastures in a silvopastoral system in the Amazon biome of central Brazil. Eur. J. Agron. 2020, 115, 126029. [Google Scholar] [CrossRef]
- Lehmann, J.; Kern, D.; German, L.; Mccann, J.; Martins, G.C.; Moreira, A. Soil Fertility and Production Potential. In Amazonian Dark Earths; Lehmann, J., Kern, D.C., Glaser, B., Wodos, W.I., Eds.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Lemes, A.P.; Garcia, A.R.; Pezzopane, J.R.M.; Brandão, F.Z.; Watanabe, Y.F.; Cooke, R.F.; Sponchiado, M.; de Paz, C.C.P.; Camplesi, A.C.; Binelli, M.; et al. Silvopastoral System is an Alternative to Improve Animal Welfare and Productive Performance in Meat Production Systems. Sci. Rep. 2021, 11, 14092. [Google Scholar] [CrossRef]
- Mezzetti, M.; Cattaneo, L.; Passamonti, M.M.; Lopreiato, V.; Minuti, A.; Trevisi, E. The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy 2021, 2, 617–636. [Google Scholar] [CrossRef]
- Sanou, C.L.; Agodzo, S.K.; Balima, L.H.; Bessah, E.; Antwi-Agyei, P.; Traoré, K. Influence of Climate Change on Livestock Diseases Occurrence in Burkina Faso, West Africa. Int. J. Biometeorol. 2025, 12, 1–15. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Modabbernia, G.; Meshgi, B.; Kinsley, A.C. Climatic Variations and Fasciola: A Review of Impacts Across the Parasite Life Cycle. Parasitol. Res. 2024, 123, 300. [Google Scholar] [CrossRef]
- Rakib, M.R.H.; Marion, G.; Davidson, R.S.; White, P.C.L.; Hutchings, M.R. Effect of Heat Stress on Udder Health of Dairy Cows. J. Dairy Res. 2020, 87, 315–321. [Google Scholar] [CrossRef]
- Fox, N.J.; Marion, G.; Davidson, R.S.; White, P.C.L.; Hutchings, M.R. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals 2012, 2, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.P.; de Sousa, F.C.; da Silva, A.L.; Schultz, É.B.; Londoño, R.I.V.; de Souza, P.A.R. Heat Stress in Dairy Cows: Impacts, Identification and Mitigation. Animals 2025, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Matera, R.; Cotticelli, A.; Carpio, M.G.; Biffani, S.; Iannacone, F.; Salzano, A.; Neglia, G. Relationship among Production Traits, Somatic Cell Score and THI. Ital. J. Anim. Sci. 2022, 21, 1026–1036. [Google Scholar] [CrossRef]
- Hudson, A.R.; McGregor, B.L.; Shults, P.; England, M.; Silbernagel, C.; Mayo, C.; Carpenter, M.; Sherman, T.J.; Cohnstaedt, L.W. Culicoides-Borne Orbivirus Epidemiology in a Changing Climate: A Review. J. Med. Entomol. 2023, 60, 1221–1239. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hAmdi, N.; Montaldo, H.; Gengler, N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef]
- Bokharaeian, M.; Toghdory, A.; Ghoorchi, T.; Nejad, J.G.; Esfahani, I.J. Quantitative Associations between Season, Month, and Temperature-Humidity Index with Milk Yield, Composition, Somatic Cell Counts, and Microbial Load: A Comprehensive Study across Ten Dairy Farms over an Annual Cycle. Animals 2023, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Toghdory, A.; Ghoorchi, T.; Asadi, M.; Bokharaeian, M.; Najafi, M.; Nejad, J.G. Effects of Environmental Temperature and Humidity on Milk Composition, Microbial Load, and Somatic Cells in Milk of Holstein Dairy Cows in the Northeast Regions of Iran. Animals 2022, 12, 2484. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.M.; Vyas, D.; Adesogan, A.T. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Mitigation Strategies. Toxins 2021, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Abril, A.G.; Villa, T.G.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Zentai, A.; Jóźwiak, Á.; Süth, M.; Farkas, Z. Carry-Over of Aflatoxin B1 from Feed to Cow Milk—A Review. Toxins 2023, 15, 195. [Google Scholar] [CrossRef] [PubMed]
- Samy, A.M.; Peterson, A.T. Climate Change Influences on the Global Potential Distribution of Bluetongue Virus. PLoS ONE 2016, 11, e0150489. [Google Scholar] [CrossRef]
- Sanders, C.J.; Shortall, C.R.; England, M.; Harrington, R.; Purse, B.; Burgin, L.; Carpenter, S.; Gubbins, S. Long-Term Shifts in the Seasonal Abundance of Adult Culicoides Biting Midges and Their Impact on Potential Arbovirus Outbreaks. J. Appl. Ecol. 2019, 56, 1649–1660. [Google Scholar] [CrossRef]
- Navarro, D.A.M.; Huere, H.R.; Buendia, R.V.; Rojas, M.; Chunga, W.A.; Gutierrez, E.V.; Abarca, W.V.; Gerónimo, H.R.; Altamiranda-Saavedra, M. Would Climate Change Influence the Potential Distribution and Ecological Niche of Bluetongue Virus and Its Main Vector in Peru? Viruses 2023, 15, 892. [Google Scholar] [CrossRef]
- Wang, H.H.; Grant, W.E.; Teel, P.D.; Hamer, S.A. Quantitative Models of Rhipicephalus (Boophilus) Ticks: Historical Review and Synthesis. Ecosphere 2017, 8, e01942. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Mallón, A.R.; Bermúdez, S.; de la Fuente, J.; Domingos, A.; García, M.P.E.; Labruna, M.B.; Merino, O.; Mosqueda, J.; Nava, S.; et al. One Health Approach to Identify Research Needs on Rhipicephalus microplus in the Americans. Pathogens 2022, 11, 1180. [Google Scholar] [CrossRef]
- Hossain, D.; Rahman, N.; Karim, M.R.; Bristi, S.Z.T.; Uddin, N.; Uddin, A.H.M.M. Climate Resilient Livestock Production System in Tropical and Subtropical Countries. In Climate-Resilient Agriculture; Hasanuzzaman, M., Ed.; Springer: Cham, Germany, 2023; Volume 1. [Google Scholar] [CrossRef]
- World Health Organization. Climate Change and Health Vulnerability and Adaptation Assessment; World Health Organization: Geneva, Switzerland, 2021; Available online: https://iris.who.int/server/api/core/bitstreams/6edda8d7-451e-4edc-b096-c84d76e1355b/content (accessed on 12 October 2025).
- Nam, K.T.; Choi, N.; Na, Y.; Choi, Y. Effect of the Temperature–Humidity Index on the Productivity of Dairy Cows and the Correlation between the Temperature–Humidity Index and Rumen Temperature Using a Rumen Sensor. Animals 2024, 14, 2848. [Google Scholar] [CrossRef] [PubMed]
- Reis, N.S.; Ferreira, I.C.; Mazocco, L.A.; Souza, A.C.B.; Pinho, G.A.S.; Neto, Á.M.d.F.; Malaquias, J.V.; Macena, F.A.; Muller, A.G.; Martins, C.F.; et al. Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System. Animals 2021, 11, 2411. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Nicodemo, M.L.F.; Bosi, C.; Garcia, A.R.; Lulu, J. Animal Thermal Comfort Indexes in Silvopastoril Systems with Different Tree Arrangements. J. Thermal Biol. 2019, 79, 103–111. [Google Scholar] [CrossRef]
- Magalhães, C.A.S.; Zolin, C.A.; Lulu, J.; Lopes, L.B.; Furtini, I.V.; Vendrusculo, L.G.; Zaiatz, A.P.; Pedreira, B.C.; Pezzopane, J.R.M. Improvement of Thermal Comfort Indices in Agroforestry Systems in the Southern Brazilian Amazon. J. Therm. Biol. 2020, 91, 102636. [Google Scholar] [CrossRef]
- da Silva, W.C.; da Silva, J.A.R.; da Silva, É.B.R.; Barbosa, A.V.C.; Sousa, C.E.L.; de Carvalho, K.C.; dos Santos, M.R.P.; Neves, K.A.L.; Martorano, L.G.; Júnior, R.N.C.C.; et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals 2023, 13, 2735. [Google Scholar] [CrossRef]
- da Silva, W.C.; da Silva, J.A.R.; Martorano, L.G.; da Silva, É.B.R.; de Carvalho, K.C.; Sousa, C.E.L.; Neves, K.A.L.; Júnior, R.N.C.C.; Belo, T.S.; de Santos, A.G.S.; et al. Thermal Comfort of Nelore Cattle (Bos indicus) Managed in Silvopastoral and Traditional Systems Associated with Rumination in a Humid Tropical Environment in the Eastern Amazon, Brazil. Vet. Sci. 2024, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.J.; Edwards, J.P.; Shirley, A.K.; Clark, C.E.F.; Schütz, K.E.; Verhoek, K.J.; Jago, J.G. Heat stress amelioration for pasture-based dairy cattle: Challenges and opportunities. Anim. Front. 2025, 15, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Woodward, S.J.R.; Edwards, J.; Verhoek, K.; Jago, J. Identifying and Predicting Heat Stress Events for Grazing Dairy Cows Using Rumen Temperature Boluses. JDS Commun. 2024, 5, 431–435. [Google Scholar] [CrossRef]
- Werlen, G.; Jain, R.; Jacinto, E. MTOR Signaling and Metabolism in Early T Cell Development. Genes 2021, 12, 728. [Google Scholar] [CrossRef]
- Pryce, J.E.; Haile-Mariam, M. Symposium review: Genomic selection for reducing environmental impact and adapting to climate change. J. Dairy Sci. 2020, 103, 5366–5375. [Google Scholar] [CrossRef] [PubMed]
- Macciotta, N.P.P.; Biffani, S.; Bernabucci, U.; Lacetera, N.; Vitali, A.; Ajmone-Marsan, P.; Nardone, A. Derivation and Genome-wide Association Study of a Principal Component-based Measure of Heat Tolerance in Dairy Cattle. J. Dairy Sci. 2017, 100, 4683–4697. [Google Scholar] [CrossRef]
- Bohlouli, M.; Halli, K.; Yin, T.; Gengler, N.; König, S. Genome-Wide Associations for Heat Stress Response Suggest Potential Candidate Genes Underlying Milk Fatty Acid Composition in Dairy Cattle. J. Dairy Sci. 2022, 105, 3323–3340. [Google Scholar] [CrossRef]
- Luo, H.; Hu, L.; Brito, L.F.; Dou, J.; Sammad, A.; Chang, Y.; Ma, L.; Guo, G.; Liu, L.; Zhai, L.; et al. Weighted single-step GWAS and RNA sequencing Reveals Key Candidate Genes Associated with Physiological Indicators of Heat Stress in Holstein Cattle. J. Anim. Sci. Biotechnol. 2022, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Khan, F.A.; Huson, H.J.; Sonstegard, T.S.; Moss, J.I.; Dahl, G.E.; Hansen, P.J. The SLICK Hair Locus Derived from Senepol Cattle Confers Thermotolerance to Intensively Managed Lactating Holstein Cows. J. Dairy Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef] [PubMed]
- Sosa, F.; Carmickle, A.T.; Jiménez-Cabán, E.; Ortega, M.S.; Dikmen, S.; Negrón-Pérez, V.; Jannaman, E.A.; Baktula, A.; Rincon, G.; Larson, C.C.; et al. Inheritance of the SLICK1 Allele of PRLR in Cattle. Anim. Genet. 2021, 52, 624–629. [Google Scholar] [CrossRef]
- Littlejohn, M.; Henty, K.M.; Tiplady, K.; Johnson, T.; Harland, C.; Lopdell, T.; Sherlock, R.G.; Li, W.; Lukefahr, S.D.; Shanks, B.C.; et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 2014, 5, 5861. [Google Scholar] [CrossRef]
- Zayas, G.A.; Dikmen, S.; Mateescu, R.G.; Hansen, P.J. Maintaining Breed Integrity: Successful Introgression of the SLICK1 Allele into the Holstein Breed. J. Hered. 2025, 116, 216–224. [Google Scholar] [CrossRef]
- Cuellar, C.J.; Amaral, T.F.; Rodriguez-Villamil, P.; Ongaratto, F.; Martinez, D.O.; Labrecque, R.; Losano, J.D.d.A.; Estrada-Cortés, E.; Bostrom, J.R.; Martins, K.; et al. Consequences of gene editing of PRLR on thermotolerance, growth, and male reproduction in cattle. FASEB Bioadv. 2024, 6, 223–234. [Google Scholar] [CrossRef]
- Martin-Collado, D. Are Farmers Motivated to Select for Heat Tolerance? Linking Attitudinal Factors, Perceived Climate Change Impacts, and Social Trust to Farmers Breeding Desires. J. Dairy Sci. 2024, 107, 2156–2174. [Google Scholar] [CrossRef]
- Santos, S.G.C.G.; Saraiva, E.P.; Neto, S.G.; Maia, M.I.L.; Lees, A.M.; Sejian, V.; Maia, A.S.C.; de Medeiros, G.R.; Fonsêca, V.d.F.C. Heat tolerance, Thermal Equilibrium and Environmental Management Strategies for Dairy Cows Living in Intertropical Regions. Front. Vet. Sci. 2022, 9, 982781. [Google Scholar] [CrossRef]
- Ainsworth, J.A.W.; Kingwell, R.S.; Pannell, D.J. Pasture Shade and Farm Management Effects on Cow Productivity in the Tropics. Agric. Ecosyst. Environ. 2012, 155, 105–110. [Google Scholar] [CrossRef]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited Review: Physiological and Behavioral Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef] [PubMed]
- Lemal, P.; Tran, M.-N.; Atashi, H.; Schroyen, M.; Gengler, N. Adding Behavior Traits to Select for Heat Tolerance in Dairy Cattl. JDS Commun. 2024, 5, 368–373. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, J.B.; Salvarani, F.M. Impacts of Climate Change on Cattle Health and Production in the Brazilian Amazon Biome. Ruminants 2025, 5, 58. https://doi.org/10.3390/ruminants5040058
dos Santos JB, Salvarani FM. Impacts of Climate Change on Cattle Health and Production in the Brazilian Amazon Biome. Ruminants. 2025; 5(4):58. https://doi.org/10.3390/ruminants5040058
Chicago/Turabian Styledos Santos, Janayna Barroso, and Felipe Masiero Salvarani. 2025. "Impacts of Climate Change on Cattle Health and Production in the Brazilian Amazon Biome" Ruminants 5, no. 4: 58. https://doi.org/10.3390/ruminants5040058
APA Styledos Santos, J. B., & Salvarani, F. M. (2025). Impacts of Climate Change on Cattle Health and Production in the Brazilian Amazon Biome. Ruminants, 5(4), 58. https://doi.org/10.3390/ruminants5040058

