The Impact of Oregano Essential Oil and the Finishing System on Performance, Carcass Characteristics and Meat Quality in Heifers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Experiment
2.2. Animals, Treatments and Experimental Design
- Finishing in confinement + MON (282.2 mg/animal/day);
- Finishing in confinement + OEO (300 mg/animal/day);
- Finishing on pasture + MON (282.2 mg/animal/day);
- Finishing on pasture + OEO (300 mg/animal/day).
2.3. Intake and Performance
2.4. Assessment of pH, SFT (Subcutaneous Fat Thickness) and LLA (Longissimus Lumborum Area)
2.5. Assessment of Meat Colour, TL (Thawing Loss), SF (Shear Force) and Chemical Composition
2.6. Sensory Panel
2.7. Statistical Analysis
3. Results
3.1. Performance and Carcass Quality
3.2. Meat Quality
3.3. Sensory Panel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ABIEC. Brazilian Association of Meat Exporting Industries. Brazilian Beef Exports. ABIEC: Brazil, 2024. Available online: http://www.abiec.com.br/publicacoes/beef-report-2024-perfil-da-pecuaria-no-brasil/ (accessed on 30 September 2024).
- Nunes, C.L.d.C.; Pflanzer, S.B.; Rezende-de-Souza, J.H.; Chizzotti, M.L. Beef Production and Carcass Evaluation in Brazil. Anim. Front. 2024, 14, 15–20. [Google Scholar] [CrossRef]
- Malheiros, J.M.; Enriquez-Valencia, C.E.; Silva, J.A.I.d.V.; Curi, R.A.; de Oliveira, H.N.; de Albuquerque, L.G.; Chardulo, L.A.L. Carcass and Meat Quality of Nellore Cattle (Bos Taurus Indicus) Belonging to the Breeding Programs. Livest. Sci. 2020, 242, 104277. [Google Scholar] [CrossRef]
- Ramos, P.M.; Santos-Donado, P.R.d.; Oliveira, G.M.d.; Contreras–Castillo, C.J.; Scheffler, T.L.; Silva, S.d.L.e.; Martello, L.S.; Delgado, E.F. Beef of Nellore Cattle Has Limited Tenderization despite pH Decline in Longissimus lumborum. Sci. Agric. 2022, 79, e20200340. [Google Scholar] [CrossRef]
- Antonelo, D.S.; Gómez, J.F.M.; Goulart, R.S.; Beline, M.; Cônsolo, N.R.B.; Corte, R.R.S.; Silva, H.B.; Ferrinho, A.M.; Pereira, A.S.C.; Gerrard, D.E.; et al. Performance, Carcass Traits, Meat Quality and Composition of Non-Castrated Nellore and Crossbred Male Cattle Fed Soybean Oil. Livest. Sci. 2020, 236, 104059. [Google Scholar] [CrossRef]
- Magalhães, A.F.B.; Schenkel, F.S.; Garcia, D.A.; Gordo, D.G.M.; Tonussi, R.L.; Espigolan, R.; Silva, R.M.d.O.; Braz, C.U.; Fernandes Júnior, G.A.; Baldi, F.; et al. Genomic Selection for Meat Quality Traits in Nelore Cattle. Meat Sci. 2019, 148, 32–37. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Berça, A.S.; Silva, M.L.C.; Leite, R.G.; Dallantonia, E.E.; Romanzini, E.P.; Barbero, R.P.; Cardoso, A.d.S.; Lage, J.F.; Tedeschi, L.O.; et al. Effects of Supplement Type during the Pre-Finishing Growth Phase on Subsequent Performance of Nellore Bulls Finished in Confinement or on Tropical Pasture. Appl. Anim. Sci. 2022, 38, 474–486. [Google Scholar] [CrossRef]
- Gómez, J.F.M.; Antonelo, D.S.; Beline, M.; Pavan, B.; Bambil, D.B.; Fantinato-Neto, P.; Saran-Netto, A.; Leme, P.R.; Goulart, R.S.; Gerrard, D.E.; et al. Feeding Strategies Impact Animal Growth and Beef Color and Tenderness. Meat Sci. 2022, 183, 108599. [Google Scholar] [CrossRef]
- Detmann, E.; Paulino, M.F.; Filho, S.d.C.V.; Huhtanen, P. Nutritional Aspects Applied to Grazing Cattle in the Tropics: A Review Based on Results Obtained in Brazil. Semin. Ciências Agrárias 2014, 35, 2829–2854. [Google Scholar] [CrossRef]
- Malafaia, G.C.; Mores, G.d.V.; Casagranda, Y.G.; Barcellos, J.O.J.; Costa, F.P. The Brazilian Beef Cattle Supply Chain in the next Decades. Livest. Sci. 2021, 253, 104704. [Google Scholar] [CrossRef]
- Smith, W.B.; Banta, J.P.; Foster, J.L.; Redmon, L.A.; Machado, T.J.; Tedeschi, L.O.; Rouquette, F.M. Effects of Supplementation of Dried Distillers Grains with Solubles to Beef Steers Grazing Coastal Bermudagrass on Performance on Pasture and in Feedlot, and Carcass Characteristics. Appl. Anim. Sci. 2021, 37, 155–165. [Google Scholar] [CrossRef]
- Torrecilhas, J.A.; Vito, E.S.; Fiorentini, G.; Castagnino, P.d.S.; Simioni, T.A.; Lage, J.F.; Baldi, F.; Duarte, J.M.; Silva, L.G.d.; Reis, R.A.; et al. Effects of Supplementation Strategies during the Growing Phase on Meat Quality of Beef Cattle Finished in Different Systems. Livest. Sci. 2021, 247, 104465. [Google Scholar] [CrossRef]
- Silvestre, A.M.; Millen, D.D. The 2019 Brazilian Survey on Nutritional Practices Provided by Feedlot Cattle Consulting Nutritionists. Rev. Bras. Zootec. 2021, 50, e20200189. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Newbold, C.J.; van Nevel, C.J.; Demeyer, D.I. Manipulation of Ruminal Fermentation. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 523–632. [Google Scholar]
- Russell, J.B.; Houlihan, A.J. Ionophore Resistance of Ruminal Bacteria and Its Potential Impact on Human Health. FEMS Microbiol. Rev. 2003, 27, 65–74. [Google Scholar] [CrossRef]
- Nuñez, A.J.C.; Caetano, M.; Berndt, A.; Demarchi, J.J.A.d.A.; Leme, P.R.; Lanna, D.P.D. Combined Use of Ionophore and Virginiamycin for Finishing Nellore Steers Fed High Concentrate Diets. Sci. Agric. 2013, 70, 229–236. [Google Scholar] [CrossRef]
- Carresi, C.; Marabelli, R.; Roncada, P.; Britti, D. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics 2024, 13, 129. [Google Scholar] [CrossRef]
- Ornaghi, M.G.; Guerrero, A.; Vital, A.C.P.; de Souza, K.A.; Passetti, R.A.C.; Mottin, C.; de Araújo Castilho, R.; Sañudo, C.; do Prado, I.N. Improvements in the Quality of Meat from Beef Cattle Fed Natural Additives. Meat Sci. 2020, 163, 108059. [Google Scholar] [CrossRef]
- Melo, A.C.B.; Pereira, M.C.S.; Rigueiro, A.L.N.; Estevam, D.D.; Toledo, A.F.; Assumpção, A.H.P.M.; Dellaqua, J.V.T.; Lelis, A.L.J.; Millen, D.D. Impacts of Adding Functional Oils or Sodium Monensin in High-Concentrate Diets on Performance, Feeding Behaviour and Rumen Morphometrics of Finishing Nellore Cattle. J. Agric. Sci. 2020, 158, 136–142. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Paschoaloto, J.R.; Ezequiel, J.M.B.; da Silva, D.A.V.; Almeida, M.T.C. Meta-Analysis of the Effects of Essential Oil as an Alternative to Monensin in Diets for Beef Cattle. Vet. J. 2021, 272, 105659. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- Maciel, I.C.F.; Saturnino, H.M.; Barbosa, F.A.; Malacco, V.M.R.; Andrade, J.M.C.; Maia, G.H.B.; Costa, P.M. Virginiamycin and Sodium Monensin Supplementation for Beef Cattle on Pasture. Arq. Bras. Med. Veterinária E Zootec. 2019, 71, 1999–2008. [Google Scholar] [CrossRef]
- Mottin, C.; Ornaghi, M.G.; Carvalho, V.M.; Guerrero, A.; Vital, A.C.P.; Ramos, T.R.; Bonin, E.; Lana de Araújo, F.; de Araújo Castilho, R.; do Prado, I.N. Carcass Characteristics and Meat Evaluation of Cattle Finished in Temperate Pasture and Supplemented with Natural Additive Containing Clove, Cashew Oil, Castor Oils, and a Microencapsulated Blend of Eugenol, Thymol, and Vanillin. J. Sci. Food Agric. 2022, 102, 1271–1280. [Google Scholar] [CrossRef]
- Silva, F.A.S.; Silva, B.C.; Lopes, S.A.; Millen, D.D.; Berchielli, T.T.; Borges, A.L.C.; Prados, L.F.; Chizzotti, M.L.; Pacheco, M.V.C.; Silva, F.F.; et al. Feed Additives for Beef Cattle. In BR—Corte: Tabela Brasileira de Exigências Nutricionais. Nutrient requirements of Zebu Cattle and Feed Composition; Valadares Filho, S.C., Silva, L.F.C., Gionbelli, M.P., Rotta, P.P., Marcondes, M.I., Chizzotti, M.L., Prados, L.F., Eds.; Editora Scienza: São Carlos, Brazil, 2023; pp. 389–430. [Google Scholar]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-Analysis of the Effects of Monensin in Beef Cattle on Feed Efficiency, Body Weight Gain, and Dry Matter Intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef] [PubMed]
- Benetel, G.; Silva, T.D.S.; Fagundes, G.M.; Welter, K.C.; Melo, F.A.; Lobo, A.A.G.; Muir, J.P.; Bueno, I.C.S. Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules 2022, 27, 2227. [Google Scholar] [CrossRef]
- Weiss, W.P. Predicting Energy Values of Feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Smith, R.C.G.; Williams, W.A. Deferred Grazing of Mediterranean Annual Pasture for Increased Winter Sheep Production. Agric. Syst. 1976, 1, 37–45. [Google Scholar] [CrossRef]
- Barthram, G.T. Experimental Techniques: The HFRO Sward Stick. In Biennial Report of the Hill Farming Research Organization; Alcock, M.M., Ed.; Hill Farming Research Organization: Midlothian, UK, 1985; pp. 29–30. [Google Scholar]
- Benedeti, P.D.B.; Saraiva, D.T.; Silva, F.A.S.; Lopes, S.A.; Costa e Silva, L.F.; Zanetti, D.; Valadares Filho, S.C. Planilha Para Cálculo Das Exigências Nutricionais de Zebuínos Puros e Cruzados 2023. Available online: https://brcorte.com.br/site (accessed on 16 June 2025).
- Carvalho, P.C.d.F.; Kozloski, G.V.; Ribeiro Filho, H.M.N.; Reffatti, M.V.; Genro, T.C.M.; Euclides, V.P.B. Methodological advances in determining the consumption of grazing ruminants. Rev. Bras. Zootec. 2007, 36, 151–170. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; Imprensa Universitária da UFV: Viçosa, Brazil, 2002. [Google Scholar]
- AOAC, Association of Official Analytical Chemist. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a System for Meeting the Fiber Requirements of Dairy Cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- MAPA, Ministry of Agriculture, Livestock and Supply of Brazil. Manual of Inspection and Supervision Procedures for Cattle and Buffalo and Their Byproducts in Establishments Under Federal Inspection. MAPA: Brazil, 2024. Available online: https://wikisda.agricultura.gov.br/pt-br/Inspe%C3%A7%C3%A3o-Animal/Produto-Origem-Animal/manual_bovinos (accessed on 30 September 2024).
- Muller, L. Técnicas Para Determinar La Composición de La Canal; ALPA, Memoria de la Asociación Latinoamericana de Producción Animal: Guadalajara, Mexico, 1973; p. 75. [Google Scholar]
- Ferreira, O.G.L.; Rossi, F.D.; Coelho, R.A.T.; Fucilini, V.F.; Benedetti, M. Measurement of Rib-Eye Area by the Method of Digital Images. Rev. Bras. Zootec. 2012, 41, 811–814. [Google Scholar] [CrossRef]
- Hankins, O.G.; Howe, P.E. Estimation of the Composition of Beef Carcasses and Cuts. In Technical Bulletin; U.S. Department of Agriculture: Washington, DC, USA, 1946. [Google Scholar]
- CIE, International Commission on Illumination. Technical Report: Colorimetry. CIE: 2004. Available online: https://cielab.xyz/pdf/cie.15.2004%20colorimetry.pdf (accessed on 30 January 2025).
- MacDougall, D.B. Colour of Meat. In Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. Advances in Meat Research; Pearson, A.M., Dutson, T.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 79–93. [Google Scholar]
- LaRoche, E.M.; Wu, W.J.; Garcia, P.; Song, B.; Chun, C.K.Y.; Jones, C.K.; Crane, A.R.; O’Quinn, T.G.; Chao, M.D. Evaluation of Skin-on Goat Meat Processing on Processing Efficiency, Carcass Yield, Meat Quality, and Sensory Attributes. Meat Sci. 2022, 184, 108675. [Google Scholar] [CrossRef] [PubMed]
- Baldassini, W.; Coutinho, M.; Rovadoscki, G.; Menezes, B.; Tagiariolli, M.; Torrecilhas, J.; Leonel, J.; Pereira, G.; Curi, R.; Machado Neto, O.; et al. Bos Indicus Carcasses Suspended by the Pelvic Bone Require a Shorter Aging Time to Meet Consumer Expectations Regarding Meat Quality. Foods 2023, 12, 930. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System) Institute Inc. SAS/STAT® 9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Rigueiro, A.L.N.; Squizatti, M.M.; Silvestre, A.M.; Pinto, A.C.J.; Estevam, D.D.; Felizari, L.D.; Dias, E.F.F.; Demartini, B.L.; Nunes, A.B.P.C.; Costa, V.C.M.; et al. The Potential of Shortening the Adaptation of Nellore Cattle to High-Concentrate Diets Using Only Virginiamycin as Sole Feed Additive. Front. Vet. Sci. 2021, 8, 692705. [Google Scholar] [CrossRef]
- Silvestre, A.M.; Souza, J.M.; Millen, D.D. Adoption of Adaptation Protocols and Feed Additives to Improve Performance of Feedlot Cattle. J. Appl. Anim. Res. 2023, 51, 282–299. [Google Scholar] [CrossRef]
- Park, C.S.; Erickson, G.M.; Choi, Y.J.; Marx, G.D. Effect of Compensatory Growth on Regulation of Growth and Lactation: Response of Dairy Heifers to a Stair-Step Growth Pattern2. J. Anim. Sci. 1987, 64, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.D.; De la Torre, F.; Oltjen, J.W. Compensatory Growth and Carcass Quality in Growth-Restricted and Refed Beef Steers. J. Anim. Sci. 1995, 73, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.I.; Silva, A.L.; Gionbelli, M.P.; Valadares Filho, S.C. Exigências de Energia Para Bovinos de Corte. In BR—Corte: Tabela Brasileira de Exigências Nutricionais. Nutrient Requirements of Zebu Cattle and Feed Composition, 3rd ed.; Valadares Filho, S.C., Silva, L.F.C., Gionbelli, M.P., Rotta, P.P., Marcondes, M.I., Chizzotti, M.L., Prados, L.F., Eds.; UFV: Viçosa, MG, Brazil, 2016; pp. 163–190. [Google Scholar]
- Carvalho, V.M.; Silva, R.R.; Lins, T.O.J.D.; Lisboa, M.d.M.; Pereira, M.M.S.; Filho, G.A.; Silva, J.W.D.d.; Souza, S.O.d.; Avila, V.D.; do Prado, I.N. Effects of Supplementation Strategies for Beef Cattle in Tropical Grassland Conditions. Res. Soc. Dev. 2020, 9, e15996384. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.; Lei, Y.; Bai, Y.; Jia, L.; Li, Z.; Liu, T.; Xu, Y.; Sun, J.; Wang, Y.; et al. Oregano Essential Oils Promote Rumen Digestive Ability by Modulating Epithelial Development and Microbiota Composition in Beef Cattle. Front. Nutr. 2021, 8, 722557. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, J.; Lang, X.; Liu, L.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effects of Oregano Essential Oil on in Vitro Ruminal Fermentation, Methane Production, and Ruminal Microbial Community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef]
- Castañeda-Serrano, R.D.; Barreto-Cruz, O.T.; Coneglian, S.M.; Branco, A.F. Use of Cashew and Castor Essential Oils to Improve Fibre Digestibility in High Forage Diets: Digestibility, Ruminal Fermentation and Microbial Protein Synthesis. Semin. Ciências Agrárias 2020, 41, 3429–3440. [Google Scholar] [CrossRef]
- Carvalho, V.M.; Ávila, V.A.D.; Bonin, E.; Matos, A.M.; Prado, R.M.d.; Castilho, R.A.; Silva, R.R.; Abreu Filho, B.A.d.; Prado, I.N.d. Effect of Extracts from Baccharis, Tamarind, Cashew Nut Shell Liquid and Clove on Animal Performance, Feed Efficiency, Digestibility, Rumen Fermentation and Feeding Behavior of Bulls Finished in Feedlot. Livest. Sci. 2021, 244, 104361. [Google Scholar] [CrossRef]
- Ferreira, F.d.J.; Fernandes, L.d.D.; Lobo Júnior, A.R.; Rosado, G.L.; Bento, C.B.P. Meta-Analysis of the Effects of Essential Oils on Consumption, Performance, and Ruminal Fermentation of Beef Cattle. Anim. Feed Sci. Technol. 2024, 311, 115956. [Google Scholar] [CrossRef]
- Coelho, B.P.L.; Neiva, J.N.M.; Mora-Luna, R.E.; Saúde, M.E.; Santos, E.P.; Marinho, S.G.R.; Maciel, R.P.; Miotto, F.R.C. Oregano Essential Oil and Monensin in Supplementing Cattle on Deferred Pasture. Trop. Anim. Health Prod. 2025, 57, 103. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.M.S.; Araújo, G.G.L.; Oliveira, B.Y.S.; Azevêdo, J.a.G.; Filho, E.C.P.; Azevedo, P.S.; Santos, E.M. Different Roughage: Concentrate Ratios and Water Supplies to Feedlot Lambs: Carcass Characteristics and Meat Chemical Composition. J. Agric. Sci. 2019, 157, 643–649. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Jiang, L.; Mao, S. Effect of High-Concentrate Diets on Microbial Composition, Function, and the VFAs Formation Process in the Rumen of Dairy Cows. Anim. Feed Sci. Technol. 2020, 269, 114619. [Google Scholar] [CrossRef]
- Allen, M.S.; Sousa, D.O.; VandeHaar, M.J. Equation to Predict Feed Intake Response by Lactating Cows to Factors Related to the Filling Effect of Rations. J. Dairy Sci. 2019, 102, 7961–7969. [Google Scholar] [CrossRef]
- Pinto, A.C.J.; Bertoldi, G.P.; Felizari, L.D.; Demartini, B.L.; Dias, E.F.F.; Squizatti, M.M.; Silvestre, A.M.; Perna Junior, F.; Mesquita, L.G.; Souza, J.M.; et al. Influence of Nutritional Management Prior to Adaptation to a Feedlot Diet on Ruminal Microbiota of Nellore Cattle. Rev. Bras. Zootec. 2023, 52, e20210229. [Google Scholar] [CrossRef]
- Gomes, M.N.B.; Feijó, G.L.D.; Duarte, M.T.; Silva, L.G.P.; Surita, L.M.A.; Pereira, M.W.F. Manual de Avaliação de Carcaças Bovinas, 1st ed.; UFMS: Campo Grande, Brazil, 2021. [Google Scholar]
- Rodrigues, L.D.S.; Moura, A.F.D.; Pacheco, R.F.; Paula, P.C.D.; Brondani, I.L.; Alves Filho, D.C. Carcass and meat characteristics of cull cows slaughtered at different weights and degrees of finish—A meta-analytical approach. Ciênc. Anim. Bras. 2015, 16, 508–516. [Google Scholar] [CrossRef]
- Patino, H.O.; Medeiros, F.S.; Pereira, C.H.; Swanson, K.C.; McManus, C. Productive Performance, Meat Quality and Fatty Acid Profile of Steers Finished in Confinement or Supplemented at Pasture. Animal 2015, 9, 966–972. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.L.; Dijkstra, J.; Bannink, A.; Kebreab, E.; Hook, S.E.; Archibeque, S.; France, J. Quantifying the Effect of Monensin Dose on the Rumen Volatile Fatty Acid Profile in High-Grain-Fed Beef Cattle1. J. Anim. Sci. 2012, 90, 2717–2726. [Google Scholar] [CrossRef]
- Cooke, R.F.; Eloy, L.R.; Bosco, S.C.; Lasmar, P.V.F.; de Simas, J.M.C.; Leiva, T.; de Medeiros, S.R. An Updated Meta-Analysis of the Anti-Methanogenic Effects of Monensin in Beef Cattle. Transl. Anim. Sci. 2024, 8, txae032. [Google Scholar] [CrossRef]
- Sousa, L.C.O.; Palma, M.N.N.; Franco, M.O.; Detmann, E. Does Frequency of Protein Supplementation Affect Performance of Cattle under Grazing in Tropical Pastures? Anim. Feed Sci. Technol. 2022, 289, 115316. [Google Scholar] [CrossRef]
- Owens, F.N.; Dubeski, P.; Hanson, C.F. Factors That Alter the Growth and Development of Ruminants. J. Anim. Sci. 1993, 71, 3138–3150. [Google Scholar] [CrossRef] [PubMed]
- Valle, F.R.A.F.d.; Fontes, C.A.d.A.; Fernandes, A.M.; Oliveira, T.S.d.; Processi, E.F. Carcass Traits and Meat Quality of Brangus × Zebu Steers in Grazing Systems Receiving Supplementation. Sci. Agric. 2021, 78, e20190228. [Google Scholar] [CrossRef]
- He, P.; Lei, Y.; Zhang, K.; Zhang, R.; Bai, Y.; Li, Z.; Jia, L.; Shi, J.; Cheng, Q.; Ma, Y.; et al. Dietary Oregano Essential Oil Supplementation Alters Meat Quality, Oxidative Stability, and Fatty Acid Profiles of Beef Cattle. Meat Sci. 2023, 205, 109317. [Google Scholar] [CrossRef]
- Nunes, J.L.; Piquerez, M.; Pujadas, L.; Armstrong, E.; Fernández, A.; Lecumberry, F. Beef Quality Parameters Estimation Using Ultrasound and Color Images. BMC Bioinform. 2015, 16, S6. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.J.d.P.; Alexandrino, E.; Junior, W.S.d.C.; Rezende, J.M.d.; Silva, A.A.M.; Melo, J.C. Performance and carcass characteristics of Nellore cattle finished in different feeding systems. Semina Ciênc. Agrár. 2018, 39, 1725–1736. [Google Scholar] [CrossRef]
- Lonergan, E.H.; Zhang, W.; Lonergan, S.M. Biochemistry of Postmortem Muscle—Lessons on Mechanisms of Meat Tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Bose, U.; Broadbent, J.A.; Hughes, J.; Sikes, A.; Anderson, A.; Caron, K.; Schmoelzl, S.; Colgrave, M.L. Biomarkers and Biosensors for the Diagnosis of Noncompliant pH, Dark Cutting Beef Predisposition, and Welfare in Cattle. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2391–2432. [Google Scholar] [CrossRef]
- Lawrie, R.A. Meat Science, 2nd ed.; Pergamon Press: Oxford, UK, 1974. [Google Scholar]
- De Oliveira Monteschio, J.; de Souza, K.A.; Vital, A.C.P.; Guerrero, A.; Valero, M.V.; Kempinski, E.M.B.C.; Barcelos, V.C.; Nascimento, K.F.; do Prado, I.N. Clove and Rosemary Essential Oils and Encapsuled Active Principles (Eugenol, Thymol and Vanillin Blend) on Meat Quality of Feedlot-Finished Heifers. Meat Sci. 2017, 130, 50–57. [Google Scholar] [CrossRef]
- Orffer, Z.; van Zyl, J.H.C.; Semwogerere, F.; Mapiye, C.; Strydom, P.E. Substituting Monensin in Lamb Finisher Diets with a Citral and Linalool Blend on Meat Physicochemical Properties, Shelf-Display Stability and Fatty Acid Composition. Anim. Feed Sci. Technol. 2025, 321, 116256. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between Beef Consumer Tenderness Perception and Warner–Bratzler Shear Force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Ramos, P.M.; Scheffler, T.L.; Beline, M.; Bodmer, J.; Gerrard, D.E.; Silva, S.L. Challenges and Opportunities of Using Bos indicus Cattle to Meet Consumers’ Demand for Quality Beef. Meat Sci. 2024, 207, 109375. [Google Scholar] [CrossRef] [PubMed]
- Reiche, A.-M.; Silacci, P.; Dohme-Meier, F.; Terlouw, E.M.C. Grazing Intensity and Associated Frequency of Human Contact, and Horn Status, Influence Activity on Pasture, Physiological Pre-Slaughter Reactions and Meat Quality in Beef Heifers. Livest. Sci. 2024, 289, 105578. [Google Scholar] [CrossRef]
- Apaoblaza, A.; Gerrard, S.D.; Matarneh, S.K.; Wicks, J.C.; Kirkpatrick, L.; England, E.M.; Scheffler, T.L.; Duckett, S.K.; Shi, H.; Silva, S.L.; et al. Muscle from Grass- and Grain-Fed Cattle Differs Energetically. Meat Sci. 2020, 161, 107996. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, J.B.S.; Felício, P.E.D. Production Systems—An Example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some Biochemical Aspects Pertaining to Beef Eating Quality and Consumer Health: A Review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Dunne, P.G.; Monahan, F.J.; Moloney, A.P. Current Perspectives on the Darker Beef Often Reported from Extensively-Managed Cattle: Does Physical Activity Play a Significant Role? Livest. Sci. 2011, 142, 1–22. [Google Scholar] [CrossRef]
- Gómez, J.F.M.; Ramos, P.M.; Beline, M.; Antonelo, D.S.; Pavan, B.; Goulart, R.S.; Kirkpatrick, L.T.; Gerrard, D.E.; Silva, S.L. Growth Rate and Finishing System Alter Beef Color and Early Postmortem Metabolism in Bos indicus Crossbred Cattle. Meat Sci. 2025, 230, 109930. [Google Scholar] [CrossRef]
- Hughes, J.; Clarke, F.; Li, Y.; Purslow, P.; Warner, R. Differences in Light Scattering between Pale and Dark Beef Longissimus thoracis Muscles Are Primarily Caused by Differences in the Myofilament Lattice, Myofibril and Muscle Fibre Transverse Spacings. Meat Sci. 2019, 149, 96–106. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat Color Is Determined Not Only by Chromatic Heme Pigments but Also by the Physical Structure and Achromatic Light Scattering Properties of the Muscle. Compr. Rev. Food Sci. Food Saf. 2020, 19, 44–63. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A Structural Approach to Understanding the Interactions between Colour, Water-Holding Capacity and Tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Rivaroli, D.C.; Guerrero, A.; Valero, M.V.; Zawadzki, F.; Eiras, C.E.; del Mar Campo, M.D.M.; Sañudo, C.; Jorge, A.; do Prado, I.N. Effect of Essential Oils on Meat and Fat Qualities of Crossbred Young Bulls Finished in Feedlots. Meat Sci. 2016, 121, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Bi, Y.; Du, R.; Yuan, H.; Hou, Y.; Luo, R. The Impact of Freezing Methods on the Quality, Moisture Distribution, Microstructure, and Flavor Profile of Hand-Grabbed Mutton during Long-Term Frozen Storage. Food Res. Int. 2023, 173, 113346. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gao, H.; He, J.; Yu, A.; Sun, C.; Xie, Y.; Yao, H.; Wang, H.; Duan, Y.; Hu, J.; et al. Effects of Dietary Allium mongolicum Regel Powder Supplementation on the Growth Performance, Meat Quality, Antioxidant Capacity and Muscle Fibre Characteristics of Fattening Angus Calves under Heat Stress Conditions. Food Chem. 2024, 453, 139539. [Google Scholar] [CrossRef]
- Antonelo, D.S.; Gómez, J.F.M.; Silva, S.L.; Beline, M.; Zhang, X.; Wang, Y.; Pavan, B.; Koulicoff, L.A.; Rosa, A.F.; Goulart, R.S.; et al. Proteome Basis for the Biological Variations in Color and Tenderness of Longissimus Thoracis Muscle from Beef Cattle Differing in Growth Rate and Feeding Regime. Food Res. Int. 2022, 153, 110947. [Google Scholar] [CrossRef]
- Forte, L.; Natrella, G.; Seccia, A.; De Palo, P.; Tomasevic, I.; De Angelis, D.; Ceci, E.; Hopkins, D.L.; Maggiolino, A. Artichoke Bracts Silage in the Finishing Diet of Beef Steers: Meat Quality during Dry Aging. Meat Sci. 2025, 228, 109900. [Google Scholar] [CrossRef]
| Item | Concentrate 2 | Forage | ||
|---|---|---|---|---|
| MON | OEO | Silage | Grass | |
| Ingredients, % | - | - | ||
| Corn meal | 89.9 | 89.9 | - | - |
| Soybean meal | 6.47 | 6.47 | - | - |
| Urea | 1.03 | 1.03 | - | - |
| Mineral mix 1 | 2.07 | 2.07 | - | - |
| NaCl | 0.52 | 0.52 | - | - |
| Monensin sodium (mg/day) 3 | 282.2 | - | - | - |
| Chemical composition, g/kg DM | ||||
| Dry matter, g/kg as feed | 855.5 | 860.5 | 292.9 | 784.8 |
| Crude protein | 127.3 | 127.9 | 60.4 | 65.8 |
| Neutral detergent fibre | 174.5 | 160.3 | 777.6 | 639.1 |
| Acid detergent fibre | 38.3 | 42.1 | 407.3 | 558.8 |
| Ether extract | 38.1 | 38.1 | 19.7 | 14.7 |
| Non-fibre carbohydrates | 609.0 | 620.1 | 57.2 | 239.9 |
| Total digestible nutrients 4 | 700.6 | 704.1 | - | - |
| Variable | Treatment | p-Value | ||||||
|---|---|---|---|---|---|---|---|---|
| Confinement | Pasture | |||||||
| MON | OEO | MON | OEO | SEM 2 | System | Additive | S × A 3 | |
| Concentrate intake 1 | ||||||||
| DM, kg/d | 4.34 | 4.46 | 4.69 | 4.61 | 0.056 | <0.001 | 0.233 | 0.591 |
| CP, kg/d | 0.55 | 0.57 | 0.60 | 0.59 | 0.007 | <0.001 | 0.041 | 0.593 |
| NDF, kg/d | 0.67 | 0.71 | 0.72 | 0.74 | 0.009 | <0.001 | <0.001 | 0.749 |
| Performance | ||||||||
| IBW, kg | 227.3 | 231.4 | 265.6 | 258.8 | 4.376 | <0.001 | 0.704 | 0.839 |
| FBW, kg | 331.0 | 342.0 | 331.3 | 330.0 | 3.870 | <0.001 | 0.208 | 0.804 |
| ADG, kg/d | 1.00 | 1.06 | 0.63 | 0.68 | 0.038 | <0.001 | 0.208 | 0.804 |
| Variable 1 | Treatment | p-Value | ||||||
|---|---|---|---|---|---|---|---|---|
| Confinement | Pasture | |||||||
| MON | OEO | MON | OEO | SEM 2 | System | Additive | S × A 3 | |
| HCW, kg | 175.9 | 170.3 | 174.0 | 175.6 | 2.092 | 0.670 | 0.608 | 0.436 |
| HCY, % | 53.3 | 50.1 | 52.6 | 53.4 | 0.722 | 0.376 | 0.409 | 0.178 |
| SFT, mm | 4.44 | 4.78 | 4.52 | 4.30 | 0.306 | 0.751 | 0.931 | 0.666 |
| LLA, cm2 | 54.1 | 55.1 | 55.1 | 52.6 | 0.929 | 0.707 | 0.713 | 0.372 |
| Muscle, % | 61.9 | 61.3 | 62.9 | 60.9 | 0.391 | 0.721 | 0.103 | 0.407 |
| Carcass fat, % | 21.5 | 22.6 | 20.8 | 23.1 | 0.486 | 0.898 | 0.094 | 0.549 |
| Bone, % | 16.6 | 16.1 | 16.3 | 16.0 | 0.179 | 0.677 | 0.326 | 0.859 |
| EP/B | 5.08 | 5.23 | 5.15 | 5.24 | 0.067 | 0.735 | 0.394 | 0.828 |
| M/F | 2.94 | 2.75 | 3.12 | 2.67 | 0.084 | 0.768 | 0.057 | 0.443 |
| Variable 1 | Treatment | p-Value | ||||||
|---|---|---|---|---|---|---|---|---|
| Confinement | Pasture | |||||||
| MON | OEO | MON | OEO | SEM 2 | System | Additive | S × A 3 | |
| pH | 5.39 | 5.44 | 5.45 | 5.51 | 0.026 | 0.197 | 0.328 | 0.881 |
| SF, N | 58.7 | 66.6 | 65.9 | 68.6 | 3.446 | 0.524 | 0.458 | 0.719 |
| L* | 39.9 | 40.8 | 37.9 | 38.4 | 0.390 | 0.006 | 0.331 | 0.391 |
| a* | 18.4 | 19.1 | 18.8 | 19.9 | 0.226 | 0.120 | 0.040 | 0.641 |
| b* | 7.0 | 7.6 | 7.0 | 7.5 | 0.159 | 0.821 | 0.117 | 0.980 |
| C* | 19.7 | 20.5 | 20.1 | 21.3 | 0.257 | 0.222 | 0.042 | 0.716 |
| H* | 21.0 | 21.6 | 20.2 | 20.5 | 0.295 | 0.120 | 0.381 | 0.817 |
| TL, % | 8.36 | 7.97 | 6.92 | 7.76 | 0.271 | 0.134 | 0.676 | 0.258 |
| CL, % | 27.4 | 26.6 | 22.9 | 22.9 | 0.564 | <0.001 | 0.647 | 0.679 |
| Moisture, % | 74.3 a | 73.2 b | 74.0 ab | 74.9 a | 0.197 | 0.055 | 0.716 | 0.005 |
| CP, % | 22.0 | 21.4 | 21.0 | 21.9 | 0.270 | 0.622 | 0.784 | 0.176 |
| Intramuscular fat, % | 2.96 | 3.53 | 3.58 | 2.68 | 0.201 | 0.785 | 0.680 | 0.076 |
| MM, % | 1.10 b | 1.19 a | 1.17 ab | 1.12 ab | 0.012 | 0.984 | 0.375 | 0.007 |
| Variable | Treatment 1 | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Confinement | Pasture | ||||||||
| MON | OEO | MON | OEO | Mean | SEM 2 | System | Additive | S × A 3 | |
| Aroma | 52.8 | 56.2 | 56.0 | 51.4 | 54.1 | 3.20 | 0.800 | 0.800 | 0.210 |
| Colour | 59.7 | 57.8 | 61.3 | 63.4 | 60.6 | 2.55 | 0.170 | 0.900 | 0.430 |
| Tenderness | 58.4 | 66.8 | 64.2 | 61.4 | 62.7 | 3.04 | 0.960 | 0.360 | 0.070 |
| Juiciness | 56.1 | 59.4 | 59.9 | 60.0 | 58.9 | 3.12 | 0.480 | 0.580 | 0.610 |
| Overall liking | 54.8 | 59.8 | 59.8 | 57.9 | 58.3 | 3.00 | 0.740 | 0.400 | 0.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Souza, M.M.; Vargas, J.A.C.; Carvalho, A.M.; Conti, A.C.M.; Tavares, D.H.S.; Coelho, B.P.L.; Santos, E.P.; Neiva, J.N.M.; Miotto, F.R.C. The Impact of Oregano Essential Oil and the Finishing System on Performance, Carcass Characteristics and Meat Quality in Heifers. Ruminants 2026, 6, 2. https://doi.org/10.3390/ruminants6010002
Souza MM, Vargas JAC, Carvalho AM, Conti ACM, Tavares DHS, Coelho BPL, Santos EP, Neiva JNM, Miotto FRC. The Impact of Oregano Essential Oil and the Finishing System on Performance, Carcass Characteristics and Meat Quality in Heifers. Ruminants. 2026; 6(1):2. https://doi.org/10.3390/ruminants6010002
Chicago/Turabian StyleSouza, Mirelle Magalhães, Julián Andrés Castillo Vargas, Andressa Moraes Carvalho, Ana Carolina Müller Conti, Daniel Henrique Souza Tavares, Bárbara Pércya Lopes Coelho, Eduardo Pereira Santos, José Neuman Miranda Neiva, and Fabrícia Rocha Chaves Miotto. 2026. "The Impact of Oregano Essential Oil and the Finishing System on Performance, Carcass Characteristics and Meat Quality in Heifers" Ruminants 6, no. 1: 2. https://doi.org/10.3390/ruminants6010002
APA StyleSouza, M. M., Vargas, J. A. C., Carvalho, A. M., Conti, A. C. M., Tavares, D. H. S., Coelho, B. P. L., Santos, E. P., Neiva, J. N. M., & Miotto, F. R. C. (2026). The Impact of Oregano Essential Oil and the Finishing System on Performance, Carcass Characteristics and Meat Quality in Heifers. Ruminants, 6(1), 2. https://doi.org/10.3390/ruminants6010002

