Environmental, Physiological, Metabolic, and Growth Factors Defining the Presence of Oxidative Stress in Feedlot Hair Lambs Subjected to Heat Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Animals and Management
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Te | Environmental temperature |
| HS | Heat stress |
| ROS | Reactive oxygen species |
| THI | Temperature-humidity index |
| OSI | Oxidative stress index |
| MDA | Malondialdehyde |
| RR | Respiratory rate |
| BW | Body weight |
| DM | Dry matter |
| RH | Relative humidity |
| RT | Rectal temperature |
| BUN | Urea nitrogen |
| T3 | Triiodothyronine hormone |
| T4 | Thyroxine hormone |
| CV | Coefficient of variation |
| AOPP | Advanced oxidation protein products |
| TOC | Total oxidant capacity |
| TAC | Total antioxidant capacity |
| ADG | Average daily gain |
| r | Pearson correlation coefficient |
| PC | Principal components |
| MLR | Multiple linear regression |
| R2 | Coefficient of determination |
| R2adj | Adjusted coefficient of determination |
| RMSE | Root mean square error |
| VIF | Variance inflation factor |
| DW | Durbin-Watson parameter |
| LF | Lack of fit |
References
- Ngcobo, J.N.; Egerszegi, I.; Nephawe, K.A. Recent Advances in Understanding the Impact of Environmental Heat Stress on Sheep Production and Reproductive Performance: A Subtropical Climate Perspective. Climate 2025, 13, 130. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality—Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Yaghoobpour, T.; Sheikhi, Z.; Nazifi, S. The Impact of Stress in Domestic Animals: Roles of Heat Shock Proteins and Acute-Phase Proteins. Vet. Res. Commun. 2025, 49, 258. [Google Scholar] [CrossRef] [PubMed]
- Tüfekci, H.; Sejian, V. Stress Factors and Their Effects on Productivity in Sheep. Animals 2023, 13, 2769. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.M.; Lucci, C.M.; Maranhão, A.Q.; Pimentel, D.; Pimentel, F.; Rezende Paiva, S. Response to Heat Stress for Small Ruminants: Physiological and Genetic Aspects. Livest. Sci. 2022, 263, 105028. [Google Scholar] [CrossRef]
- Vicente Pérez, R.; Macías Cruz, U.; Avendaño Reyes, L.; Correa Calderón, A.; López Baca, M.D.l.Á.; Lara Rivera, A.L. Impacto Del Estrés Por Calor En La Producción de Ovinos de Pelo. Revisión. Rev. Mex. Cienc. Pecu. 2020, 11, 205–222. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of Heat Stress on Immune Responses and Oxidative Stress in Farm Animals and Nutritional Strategies for Amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Nicolás-López, P.; Macías-Cruz, U.; Correa-Calderón, A.; Mellado-Bosque, M.; Díaz-Molina, R.; Avendaño-Reyes, L. Ajustes Asociados a La Aclimatación y Estrés Oxidativo En Ovinos Bajo Estrés Calórico: Una Revisión. ITEA-Inf. Tec. Econ. Agrar. 2021, 117, 494–512. [Google Scholar] [CrossRef]
- Wanjala, G.; Bagi, Z.; Gavojdian, D.; Badaoui, B.; Astuti, P.K.; Mizeranschi, A.; Ilisiu, E.; Ohran, H.; Juhas, E.P.; Loukovitis, D.; et al. Genetic Diversity and Adaptability of Native Sheep Breeds from Different Climatic Zones. Sci. Rep. 2025, 15, 14143. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat Stress Effects on Sheep: Are Hair Sheep More Heat Resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; Gastélum, M.A.; Álvarez, F.D.; Correa, A.; Díaz, R.; Meza-Herrera, C.A.; Mellado, M.; Avendaño-Reyes, L. Effects of Summer Heat Stress on Physiological Variables, Ovulation and Progesterone Secretion in Pelibuey Ewes under Natural Outdoor Conditions in an Arid Region. Anim. Sci. J. 2016, 87, 354–360. [Google Scholar] [CrossRef]
- Nicolás-López, P.; Macías-Cruz, U.; Mellado, M.; Correa-Calderón, A.; Meza-Herrera, C.A.; Avendaño-Reyes, L. Growth Performance and Changes in Physiological, Metabolic and Hematological Parameters Due to Outdoor Heat Stress in Hair Breed Male Lambs Finished in Feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Macías-Cruz, U.; Saavedra, O.R.; Correa-Calderón, A.; Mellado, M.; Torrentera, N.G.; Chay-Canul, A.; López-Baca, M.A.; Avendaño-Reyes, L. Feedlot Growth, Carcass Characteristics and Meat Quality of Hair Breed Male Lambs Exposed to Seasonal Heat Stress (Winter vs. Summer) in an Arid Climate. Meat Sci. 2020, 169, 108202. [Google Scholar] [CrossRef]
- Romero, R.D.; Montero Pardo, A.; Montaldo, H.H.; Rodríguez, A.D.; Hernández Cerón, J. Differences in Body Temperature, Cell Viability, and HSP-70 Concentrations between Pelibuey and Suffolk Sheep under Heat Stress. Trop. Anim. Health Prod. 2013, 45, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Valadez-García, K.M.; Avendaño-Reyes, L.; Díaz-Molina, R.; Mellado, M.; Meza-Herrera, C.A.; Correa-Calderón, A.; Macías-Cruz, U. Free Ferulic Acid Supplementation of Heat-Stressed Hair Ewe Lambs: Oxidative Status, Feedlot Performance, Carcass Traits and Meat Quality. Meat Sci. 2021, 173, 108395. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between Heat Stress and Oxidative Stress in Poultry; Mitochondrial Dysfunction and Dietary Interventions with Phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Chniter, M.; Najar, T.; Ghram, A. Meta-Analysis of Some Physiologic, Metabolic and Oxidative Responses of Sheep Exposed to Environmental Heat Stress. Livest. Sci. 2019, 229, 179–187. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Leury, B.; Liu, F.; Dunshea, F.R. Exhaled Breath Condensate Hydrogen Peroxide Concentration, a Novel Biomarker for Assessment of Oxidative Stress in Sheep during Heat Stress. Anim. Prod. Sci. 2016, 56, 1105–1112. [Google Scholar] [CrossRef]
- Nussey, D.H.; Pemberton, J.M.; Pilkington, J.G.; Blount, J.D. Life History Correlates of Oxidative Damage in a Free-Living Mammal Population. Funct. Ecol. 2009, 23, 809–817. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.R.; Warner, R.D.; DiGiacomo, K.; Joy, A.; Abhijith, A.; Prathap, P.; Ma, T.; Chauhan, S.S. Short Duration Heatwaves Increase Body Temperature and Alter Blood Gas Balance but May Not Cause Oxidative Stress and Intestinal Structure Variations in Lambs. Small Rumin. Res. 2024, 240, 107367. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Kumar, P.; Choudhary, P.K.; Srivastava, A.; Nirala, R.K. Study of Oxidative Stress Biomarkers and Physio-Haematological Conditions during Different Seasons in Sonadi Corriedale Sheep. Int. J. Adv. Biochem. Res. 2025, 9, 688–693. [Google Scholar] [CrossRef]
- Al-Dawood, A. Towards Heat Stress Management in Small Ruminants—A Review. Ann. Anim. Sci. 2017, 17, 59–88. [Google Scholar] [CrossRef]
- Theusme, C.; Avendaño-Reyes, L.; Macías-Cruz, U.; Correa-Calderón, A.; García-Cueto, R.O.; Mellado, M.; Vargas-Villamil, L.; Vicente-Pérez, A. Climate Change Vulnerability of Confined Livestock Systems Predicted Using Bioclimatic Indexes in an Arid Region of México. Sci. Total Environ. 2021, 751, 141779. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Technical Specifications for the Production, Care, and Use of Laboratory Animals. Ciudad de México, México. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 10 September 2025).
- FASS—Federation Animal Science Society. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd ed.; Federation Animal Science Society: Champaign, IL, USA, 2010; p. 177. [Google Scholar]
- NRC. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007; Volume 9, ISBN 978-0-309-10213-1. [Google Scholar]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019; Volume I, p. 700. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Sheep; National Academy of Press: Washington, DC, USA, 1985; ISBN 0309035961. [Google Scholar]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological Traits as Affected by Heat Stress in Sheep-A Review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced Oxidation Protein Products as a Novel Marker of Oxidative Stress in Uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Khoa, T.N.; Capeillère-Blandin, C.; Nguyen, A.T.; Canteloup, S.; Dayer, J.-M.; Jungers, P.; Drüeke, T.; Descamps-Latscha, B. Advanced Oxidation Protein Products as Novel Mediators of Inflammation and Monocyte Activation in Chronic Renal Failure. J. Immunol. 1998, 161, 2524–2532. [Google Scholar] [CrossRef]
- Erel, O. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Karaagac, L.; Koruk, S.T.; Koruk, I.; Aksoy, N. Decreasing Oxidative Stress in Response to Treatment in Patients with Brucellosis: Could It Be Used to Monitor Treatment? Int. J. Infect. Dis. 2011, 15, e346–e349. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Discarding Variables in a Principal Component Analysis. II: Real Data. Appl. Stat. 1973, 22, 160–173. [Google Scholar] [CrossRef]
- Valadez-García, K.M.; Avendaño-Reyes, L.; Meza-Herrera, C.A.; Mellado, M.; Díaz-Molina, R.; González-Ríos, H.; Macías-Cruz, U. Ferulic Acid in Animal Feeding: Mechanisms of Action, Productive Benefits, and Future Perspectives in Meat Production. Food Biosci. 2021, 43, 101247. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z.; Guo, J.; Wang, W.; Duan, Y.; Hao, X.; Wang, R.; An, X.; Qi, J. Effect of Wheat Bran Feruloyl Oligosaccharides on the Performance, Blood Metabolites, Antioxidant Status and Rumen Fermentation of Lambs. Small Rumin. Res. 2019, 175, 65–71. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; López-Baca, M.A.; Vicente, R.; Mejía, A.; Álvarez, F.D.; Correa-Calderón, A.; Meza-Herrera, C.A.; Mellado, M.; Guerra-Liera, J.E.; Avendaño-Reyes, L. Effects of Seasonal Ambient Heat Stress (Spring vs. Summer) on Physiological and Metabolic Variables in Hair Sheep Located in an Arid Region. Int. J. Biometeorol. 2016, 60, 1279–1286. [Google Scholar] [CrossRef]
- Shi, L.; Xu, Y.; Mao, C.; Wang, Z.; Guo, S.; Jin, X.; Yan, S.; Shi, B. Effects of Heat Stress on Antioxidant Status and Immune Function and Expression of Related Genes in Lambs. Int. J. Biometeorol. 2000, 64, 2093–2104. [Google Scholar] [CrossRef]
- Christensen, L.L.; Selman, C.; Blount, J.D.; Pilkington, J.G.; Watt, K.A.; Pemberton, J.M.; Reid, J.M.; Nussey, D.H. Marker-Dependent Associations among Oxidative Stress, Growth and Survival during Early Life in a Wild Mammal. Proc. Biol. Sci. 2016, 283, 20161407. [Google Scholar] [CrossRef]
- Kandiel, M.M.M.; El-Khaiat, H.M.; Mahmoud, K.G.M. Changes in Some Hematobiochemical and Hormonal Profile in Barki Sheep with Various Reproductive Statuses. Small Rumin. Res. 2016, 136, 87–95. [Google Scholar] [CrossRef]
- Çelik, H.T.; Aslan, F.A.; Altay, D.U.; Kahveci, M.E.; Konanç, K.; Noyan, T.; Ayhan, S. Effects of Transport and Altitude on Hormones and Oxidative Stress Parameters in Sheep. PLoS ONE 2021, 16, e0244911. [Google Scholar] [CrossRef]
- Celi, P. Biomarkers of Oxidative Stress in Ruminant Medicine. Immunopharmacol. Immunotoxicol. 2011, 33, 233–240. [Google Scholar] [CrossRef]
- Di Trana, A.; Celi, P.; Claps, S.; Fedele, V.; Rubino, R. The Effect of Hot Season and Nutrition on the Oxidative Status and Metabolic Profile in Dairy Goats during Mid Lactation. Anim. Sci. 2006, 82, 717–722. [Google Scholar] [CrossRef]
- Bezerra, H.V.A.; Gallo, S.B.; Rosa, A.F.; Fernandes, A.C.; e Silva, S.d.L.; Leme, P.R. Impact of Purified Lignin on Performance, Rumen Health, Oxidative Stress Control and Meat Quality of Lambs Fed a High-Concentrate Diet. Livest. Sci. 2020, 231, 103882. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef]
- Burgos-Morón, E.; Abad-Jiménez, Z.; Martínez de Marañón, A.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J. Clin. Med. 2019, 8, 1385. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.S.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat Stress: Physiology of Acclimation and Adaptation. Anim. Front 2019, 9, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rebez, E.B.; Sejian, V.; Silpa, M.V.; Kalaignazhal, G.; Devaraj, C.; Nikhil, K.T.; Ninan, J.; Tüfekci, H.; de Franca Carvalho Fonsêca, V.; Chauhan, S.S.; et al. Feed Additives Supplementation: A Potential Strategy to Ameliorate Heat Stress in Sheep—A Review. Ann. Anim. Sci. 2025, 25, 845–864. [Google Scholar] [CrossRef]

| Ingredients 1 | g/kg | Chemical Composition 2 | % |
|---|---|---|---|
| Alfalfa hay | 100 | Dry matter | 90.5 |
| Wheat straw | 150 | Crude protein | 16.1 |
| Ground wheat grain | 620 | Ether extract | 3.5 |
| Soybean meal | 110 | Ash | 7.8 |
| Mineral-vitamin premix | 5 | Acid detergent fiber | 18.0 |
| Limestone | 5 | Neutral detergent fiber | 25.7 |
| Dicalcium phosphate | 5 | Metabolizable energy (Mcal/kg) 3 | 2.8 |
| Common salt | 5 |
| Items | Mean | Standard Deviation | Minimum | Maximum | CV (%) |
|---|---|---|---|---|---|
| Temperature (°C) | |||||
| Average | 33.5 | 0.9 | 32.4 | 34.6 | 2.6 |
| Minimum | 25.3 | 2.4 | 22.6 | 28.4 | 9.5 |
| Maximum | 43.8 | 1.8 | 41.2 | 45.2 | 4.2 |
| Relative humidity (%) | |||||
| Average | 52.5 | 4.5 | 46.1 | 55.8 | 8.7 |
| Minimum | 23.9 | 4.5 | 17.7 | 28.2 | 19.0 |
| Maximum | 79.8 | 2.7 | 76.1 | 82.3 | 3.3 |
| Temperature-humidity index (units) | |||||
| Average | 30.3 | 1.0 | 29.0 | 31.5 | 3.4 |
| Minimum | 24.7 | 2.2 | 22.4 | 27.6 | 8.8 |
| Maximum | 36.9 | 1.1 | 35.3 | 38.0 | 3.1 |
| Items | Mean | SD | Minimum | Maximum | CV (%) |
|---|---|---|---|---|---|
| Physiological variables | |||||
| Respiratory rate at 0600 h (bpm) | 105.0 | 19.0 | 60.0 | 136.0 | 18.1 |
| Respiratory rate at 1800 h (bpm) | 170.2 | 17.0 | 138.0 | 212.0 | 10.0 |
| Rectal temperature at 0600 h (°C) | 39.7 | 0.2 | 39.1 | 40.2 | 0.5 |
| Rectal temperature at 1800 h (°C) | 40.2 | 0.4 | 39.3 | 41.0 | 1.0 |
| Serum metabolic analytes | |||||
| Glucose (mg/dL) | 82.5 | 7.2 | 64.4 | 103.9 | 8.7 |
| Cholesterol (mg/dL) | 43.8 | 10.8 | 25.8 | 68.9 | 24.7 |
| Triglycerides (mg/dL) | 35.4 | 17.4 | 12.1 | 96.6 | 49.2 |
| Urea (mg/dL) | 41.9 | 6.0 | 21.5 | 50.4 | 14.3 |
| Total protein (mg/dL) | 6.5 | 0.7 | 4.8 | 8.3 | 10.8 |
| Triiodothyronine (ng/mL) | 1.4 | 0.5 | 0.9 | 4.6 | 35.7 |
| Thyroxine (µg/dL) | 8.0 | 1.8 | 4.7 | 13.3 | 22.5 |
| Insulin (ng/mL) | 0.9 | 0.5 | 0.2 | 2.2 | 55.5 |
| Cortisol (µg/dL) | 3.3 | 1.8 | 0.6 | 8.3 | 54.5 |
| Productive performance | |||||
| Average daily gain (kg) | 0.2 | 0.1 | 0 | 0.3 | 50.0 |
| Feed intake (kg) | 1.1 | 0.2 | 0.8 | 1.5 | 18.2 |
| Feed efficiency (kg/kg) | 0.2 | 0.1 | 0 | 0.4 | 50.0 |
| Oxidative stress biomarkers | |||||
| AOPP (μmol/L) | 6.9 | 2.4 | 3.7 | 18.4 | 34.8 |
| Malondialdehyde (μmol/L) | 1.5 | 0.6 | 0.8 | 3.9 | 40.0 |
| TOC (μmol Eq H2O/L) | 6.3 | 3.4 | 1.9 | 14.6 | 54.0 |
| TAC (mmol Eq Trolox/L) | 1.2 | 0.8 | 0.4 | 6.0 | 66.7 |
| OSI (arbitrary units) | 0.6 | 0.2 | 0.1 | 1.0 | 33.3 |
| Items | AOPP | MDA | TOC | TAC | OSI |
|---|---|---|---|---|---|
| Climatic conditions | |||||
| Temperature average | 0.66 *** | 0.44 ** | 0.75 *** | 0.47 *** | 0.36 ** |
| Temperature minimum | 0.66 *** | 0.46 *** | 0.78 *** | 0.49 *** | 0.35 ** |
| Temperature maximum | −0.60 *** | −0.53 *** | −0.85 *** | −0.59 *** | −0.28 * |
| Relative humidity average | 0.53 *** | 0.20 | 0.41 ** | 0.18 | 0.36 ** |
| Relative humidity minimum | 0.61 *** | 0.32 ** | 0.58 ** | 0.32 * | 0.38 ** |
| Relative humidity maximum | 0.61 *** | 0.32 * | 0.58 *** | 0.31 | 0.38 ** |
| THI average | 0.65 *** | 0.40 ** | 0.69 *** | 0.41 ** | 0.37 ** |
| THI minimum | 0.65 *** | 0.48 *** | 0.79 *** | 0.51 *** | 0.35 ** |
| THI maximum | −0.52 *** | −0.54 *** | −0.82 *** | −0.61 *** | −0.21 *** |
| Physiological variables | |||||
| Respiratory rate at 0600 h | −0.62 *** | −0.36 ** | −0.55 *** | −0.29 * | −0.28 * |
| Respiratory rate at 1800 h | −0.18 | −0.24 * | −0.48 *** | −0.34 ** | −0.12 |
| Rectal temperature at 0600 h | 0.15 | 0.29 * | 0.34 ** | 0.32 ** | −0.01 |
| Rectal temperature at 1800 h | 0.06 | 0.003 | 0.06 | 0.13 | 0.01 |
| Metabolism | |||||
| Glucose | −0.006 | −0.06 | −0.12 | −0.03 | −0.10 |
| Cholesterol | 0.03 | −0.06 | −0.13 | −0.10 | −0.13 |
| Triglycerides | 0.33 ** | 0.28 * | 0.43 *** | 0.37 ** | 0.15 |
| Urea | −0.21 | −0.14 | −0.20 | −0.24 * | 0.02 |
| Total protein | −0.32 ** | −0.40 *** | −0.52 *** | −0.34 ** | −0.15 |
| Triiodothyronine | 0.17 | −0.04 | 0.17 | 0.01 | 0.18 |
| Thyroxine | −0.04 | 0.001 | 0.04 | 0.05 | 0.008 |
| Cortisol | 0.05 | 0.04 | −0.14 | −0.05 | −0.17 |
| Insulin | 0.55 *** | 0.54 *** | 0.76 *** | 0.38 ** | 0.35 * |
| Feedlot performance | |||||
| Average daily gain | 0.006 | −0.17 | 0.12 | −0.30 * | 0.27 * |
| Feed intake | −0.55 *** | −0.42 *** | −0.44 *** | −0.38 ** | −0.08 |
| Feed efficiency | 0.24 * | 0.002 | 0.33 ** | 0.14 | 0.30 * |
| Equations | n | RMSE | R2 | R2adj | p-Values | P < DW | P > DW | LF (P) |
|---|---|---|---|---|---|---|---|---|
| TOC = 81.40 − 1.82 Temax + 4.38 FI | 64 | 1.62 | 0.77 | 0.76 | <0.0001 | 0.32 | 0.68 | 0.87 |
| TAC = 13.87 − 0.35 THImax | 65 | 0.37 | 0.53 | 0.52 | <0.0001 | 0.11 | 0.89 | 0.83 |
| OSI = −2.04 + 0.03 RHmax + 0.91 ADG | 66 | 0.21 | 0.20 | 0.17 | <0.001 | 0.68 | 0.32 | 0.20 |
| MDA = 10.06–0.20 Temax | 64 | 0.42 | 0.44 | 0.43 | <0.0001 | 0.10 | 0.90 | 0.39 |
| AOPP = 12.91 − 0.07 RRam + 1.54 Insulin | 50 | 1.77 | 0.52 | 0.51 | <0.0001 | 0.14 | 0.86 | 0.18 |
| Items | Estimator | SE | R2 Partial | R2adj Partial | VIF | p |
|---|---|---|---|---|---|---|
| Advanced oxidation protein products | ||||||
| Intercept | 12.91 | 2.13 | - | - | 0 | <0.01 |
| RRam | −0.07 | 0.02 | 0.46 | 0.45 | 1.45 | 0.01 |
| Insulin | 1.32 | 0.65 | 0.06 | 0.06 | 1.45 | 0.01 |
| Malondialdehyde | ||||||
| Intercept | 10.06 | 1.24 | - | - | 0 | <0.01 |
| Temax | −0.20 | 0.03 | 0.44 | 0.43 | 1.00 | <0.01 |
| Total oxidant capacity | ||||||
| Intercept | 81.40 | 5.40 | - | - | 0 | <0.01 |
| Temax | −1.82 | 0.14 | 0.74 | 0.73 | 1.63 | <0.01 |
| FI | 3.95 | 1.74 | 0.03 | 0.03 | 1.63 | <0.01 |
| Total antioxidant capacity | ||||||
| Intercept | 13.87 | 1.51 | - | - | 0 | <0.01 |
| THImax | −0.35 | 0.04 | 0.53 | 0.52 | 1.00 | <0.01 |
| Oxidative stress index | ||||||
| Intercept | −2.04 | 0.79 | - | - | 0 | 0.01 |
| RHmax | 0.03 | 0.01 | 0.14 | 0.13 | 1.00 | <0.01 |
| ADG | 0.91 | 0.44 | 0.06 | 0.04 | 1.00 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-Cruz, U.; Valadez-García, K.M.; López-Baca, M.d.l.Á.; Avendaño-Reyes, L.; Vicente-Pérez, R.; Mellado, M.; Meza-Herrera, C.A.; Roque-Jiménez, J.A.; Díaz-Molina, R.; Luna-Nevárez, P. Environmental, Physiological, Metabolic, and Growth Factors Defining the Presence of Oxidative Stress in Feedlot Hair Lambs Subjected to Heat Stress. Ruminants 2025, 5, 55. https://doi.org/10.3390/ruminants5040055
Macías-Cruz U, Valadez-García KM, López-Baca MdlÁ, Avendaño-Reyes L, Vicente-Pérez R, Mellado M, Meza-Herrera CA, Roque-Jiménez JA, Díaz-Molina R, Luna-Nevárez P. Environmental, Physiological, Metabolic, and Growth Factors Defining the Presence of Oxidative Stress in Feedlot Hair Lambs Subjected to Heat Stress. Ruminants. 2025; 5(4):55. https://doi.org/10.3390/ruminants5040055
Chicago/Turabian StyleMacías-Cruz, Ulises, Karen M. Valadez-García, María de los Ángeles López-Baca, Leonel Avendaño-Reyes, Ricardo Vicente-Pérez, Miguel Mellado, César A. Meza-Herrera, José A. Roque-Jiménez, Raúl Díaz-Molina, and Pablo Luna-Nevárez. 2025. "Environmental, Physiological, Metabolic, and Growth Factors Defining the Presence of Oxidative Stress in Feedlot Hair Lambs Subjected to Heat Stress" Ruminants 5, no. 4: 55. https://doi.org/10.3390/ruminants5040055
APA StyleMacías-Cruz, U., Valadez-García, K. M., López-Baca, M. d. l. Á., Avendaño-Reyes, L., Vicente-Pérez, R., Mellado, M., Meza-Herrera, C. A., Roque-Jiménez, J. A., Díaz-Molina, R., & Luna-Nevárez, P. (2025). Environmental, Physiological, Metabolic, and Growth Factors Defining the Presence of Oxidative Stress in Feedlot Hair Lambs Subjected to Heat Stress. Ruminants, 5(4), 55. https://doi.org/10.3390/ruminants5040055

