In Vitro Evaluation of Cattle Diets with the Inclusion of a Pelletized Concentrate Containing Acacia farnesiana
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of Study Area
2.2. Vegetative Material
2.3. Preparation of the Pelletized Concentrate with A. farnesiana
Pelleting
2.4. Experimental Treatments
2.5. Chemical Composition of Pelleting Ingredients and Treatments
2.5.1. Determination of Phenolic Compounds
2.5.2. In Vitro Digestibility of Dry Matter
2.6. In Vitro Gas Production
2.7. In Vitro Methane Production, Carbon Dioxide, and Ammonia Nitrogen (N-NH3) Concentration
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of the Ingredients Used in the Preparation of Pellets
3.2. Nutritional Characterization of the Experimental Treatments
3.2.1. Phenolic Compounds
3.2.2. In Vitro Digestibility of Dry Matter (IVDMD)
3.3. In Vitro Gas Production
3.4. Methane Production, Carbon Dioxide, and Ammonia Nitrogen (N-NH3) Concentration In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Müller, A.; Cruz, J. La importancia de la ganadería para la agroecología y los sistemas de alimentación sostenibles. Rev. Colomb. Zootec. 2016, 2, 1–7. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2005: Agricultural Trade Reform and Sustainable Development; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/012/i0680s/i0680s00.htm (accessed on 15 August 2024).
- Arriaga-Jordán, C.M.; Flores-Gallegos, F.J.; Peña-Carmona, G.; Albarrán-Portillo, B.; García-Martínez, A.; Espinoza-Ortega, A.; Castelán-Ortega, O.A. Participatory on-farm evaluation of the response to concentrate supplementation by cows in early lactation in smallholder peasant (campesino) dairy production systems in the highlands of central Mexico. J. Agric. Sci. 2001, 137, 97–103. [Google Scholar] [CrossRef]
- Perezgrovas-Garza, R. Los Carneros de San Juan: Antecedentes Históricos y Panorama Actual de la Ovinocultura Tzotzil, 1st ed.; Universidad Autónoma de Chiapas: Chiapas, Mexico, 2018; p. 281. ISBN 978-607-8573-76-9. [Google Scholar]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Escaray, F.J.; Sorlí, P.C. Taninos condensados y ganadería: Reduciendo el impacto medioambiental de los rumiantes. In Presente y Futuro de las Tecnologías Verdes: Contribuciones Desde la Universitat de València; Vicerrectorado de Proyección Territorial y Sociedad, Universitat de València: Valencia, Spain, 2020; Volume 1, p. 117. [Google Scholar]
- Netto, M.V.T.; Massuquetto, A.; Krabbe, E.L.; Surek, D.; Oliveira, S.G.; Maiorka, A. Effect of Conditioning Temperature on Pellet Quality, Diet Digestibility, and Broiler Performance. J. Appl. Poult. Res. 2019, 28, 963–973. [Google Scholar] [CrossRef]
- García-Domínguez, M. Desarrollo y evaluación de un alimento balanceado extruido con la adición de especies vegetales que por sus características nutricionales disminuyen los gases producidos a nivel ruminal. J. Anim. Health Prod. 2022; submitted. [Google Scholar]
- Lalman, D.; Gross, M.; Beck, P. OSU Cowculator Beef Cattle Nutrition Evaluation Software; Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2020; Available online: https://openresearch.okstate.edu/server/api/core/bitstreams/8da80dc8-e3d5-4a70-bdb5-1842813efe77/content (accessed on 23 August 2024).
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019; Volume I, p. 700. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Romani, A. Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J. Agric. Food Chem. 2005, 53, 3053–3056. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Menke, H.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Castañeda-Rodríguez, C.S.; Pámanes-Carrasco, G.A.; Páez-Lerma, J.B.; Herrera-Torres, E.; Araiza-Rosales, E.E.; Hernández-Vargas, V.; Medrano-Roldán, H.; Reyes-Jáquez, D. Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants 2023, 3, 140–148. [Google Scholar] [CrossRef]
- Mills, J.A.N.; Kebreab, E.; Yates, C.M.; Crompton, L.A.; Cammell, S.B.; Dhanoa, M.S.; France, J. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 2003, 81, 3141–3150. [Google Scholar] [CrossRef]
- Galyean, M.L. Laboratory Procedures in Animal Nutrition Research; Department of Animal and Food Sciences, Texas Tech University: Lubbock, TX, USA, 2010; Available online: https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf (accessed on 10 January 2025).
- Luna Chaucanés, M.A.; Guerrero Carvajal, I.P. Reconocimiento, Identificación Taxonómica y Análisis Bromatológico de Arvenses con Potencial Forrajero, Para la Alimentación de Bovinos y Ovinos de Carne, en la Zona de Bosque Muy Seco Tropical (bms-t); Veredas Remolino (Nariño), Mojarras y el Vado (Cauca). Ph.D. Thesis, Universidad de Nariño, Facultad de Ciencias Pecuarias, San Juan de Pasto, Colombia, 2009. [Google Scholar]
- Chaverra, G.; Bernal, E. El Ensilaje en la Alimentación del Ganado Vacuno, 1st ed.; Tercer Mundo Editores: Bogotá, Colombia, 2000; pp. 65–123. [Google Scholar]
- Arenas, F.A.; Noguera, R.R.; Restrepo, L.F. Efecto de diferentes tipos de grasa en dietas para rumiantes sobre la cinética de degradación y fermentación de la materia seca in vitro. Rev. Colomb. Cienc. Pecu. 2010, 23, 55–64. [Google Scholar] [CrossRef]
- Poppi, D.P.; Norton, B.W.; D’Mello, J.P.F.; Devendra, C. Tropical Legumes in Animal Nutrition. Intake of Tropical Legumes, 1st ed.; Department of Agriculture, University of Queensland: Brisbane, Australia, 1995; p. 173. ISBN 978-0-85198-926-6. [Google Scholar]
- Interpreting Forage Analysis. Available online: https://library.ndsu.edu/server/api/core/bitstreams/16e03cb3-623e-4cb2-abac-a9e8d5896fca/content (accessed on 24 August 2024).
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Mantecón, Á.R.; Angulo, G.H.; García, F.J.G. Tannins and Ruminant Nutrition: Review. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar]
- El análisis de la Fibra en el Pienso Animal: Fibra Cruda, Fibra Detergente Neutra (FDN) y Fibra Detergente Ácida (FDA)—Los Estándares y Las Opciones de Automatización. Available online: https://www.studocu.com/latam/document/universidad-de-la-republica/nutricion/fibra-neutro-detergente-van-soerst/9023695 (accessed on 24 August 2024).
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Vu, C.C.; Nguyen, T.V. The current utilisation and possible treatments of rice straw as ruminant feed in Vietnam: A Review. Pak. J. Nutr. 2020, 19, 91–104. [Google Scholar] [CrossRef]
- Piñeiro-Vázquez, A.; Canul-Solís, J.; Alayón-Gamboa, J.; Chay-Canul, A.; Ayala-Burgos, A.; Aguilar-Pérez, C.; Solorio-Sánchez, F.; Ku-Vera, J. Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Arch. Med. Vet. 2015, 47, 263–272. [Google Scholar] [CrossRef]
- Márquez Lara, D.; Suárez Londoño, Á. El uso de taninos condensados como alternativa nutricional y sanitaria en rumiantes. Rev. Med. Vet. 2008, 16, 87–109. [Google Scholar]
- Zárate-Martínez, W.; González-Morales, S.; Ramírez-Godina, F.; Robledo-Olivo, A.; Juárez-Maldonado, A. Efecto de los ácidos fenólicos en el sistema antioxidante de plantas de tomate (Solanum lycopersicum Mill.). Agron. Mesoam. 2021, 32, 854–868. [Google Scholar] [CrossRef]
- Salem, A.Z.M. Impact of season of harvest on in vitro gas production and dry matter degradability of Acacia saligna leaves with inoculums from three ruminant species. Anim. Feed Sci. Technol. 2005, 123, 67–79. [Google Scholar] [CrossRef]
- Torres-Velázquez, D.S.; Murillo-Ortiz, M.; Cervantes-Guerrero, M.; Páez-Lerma, J.B.; Reyes-Jáquez, D.; Soto-Cruz, N.O.; Araiza-Ponce, K.A. Huizache Leaves and Agave Bagasse Incorporated into Granulated and Pelletized Concentrates and Their Effects on Methane Production and in vitro Fermentation Patterns in Ruminant Diets. Indian J. Anim. Res. 2023, 1, 7. [Google Scholar] [CrossRef]
- Rubanza, C.D.K.; Shem, M.N.; Otsyina, R.; Bakengesa, S.S.; Ichinohe, T.; Fujihara, T. Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Anim. Feed Sci. Technol. 2005, 119, 129–142. [Google Scholar] [CrossRef]
- Hervás, G.; Frutos, P.; Giráldez, F.; Mantecón, A.; Álvarez del Pino, M. Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim. Feed Sci. Technol. 2003, 109, 65–78. [Google Scholar] [CrossRef]
- Di Marco, O. Estimación de calidad de los forrajes. Producir XXI 2011, 20, 24–30. [Google Scholar]
- Salinas-Chavira, J.; Gutiérrez-González, J.C.; García-Castillo, R.; López-Trujillo, R.; Duarte-Ortuño, A. Digestibilidad in situ de la materia seca de tres dietas para ovinos de engorda. Agron. Mesoam. 2011, 22, 379–385. [Google Scholar] [CrossRef]
- Velázquez, A.J.; González, M.; Perezgrovas, R.; Bórquez, J.; Domínguez, I. Producción, digestibilidad y rentabilidad en corderos de dietas con vainas de Acacia farnesiana. Arch. Zootec. 2011, 60, 479–488. [Google Scholar] [CrossRef]
- Abdulrazak, S.A.; Fujihara, T.; Ondiek, J.K.; Ørskov, E.R. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim. Feed Sci. Technol. 2000, 85, 89–98. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Araiza-Rosales, E.E.; Pámanes-Carrasco, G.A.; Sánchez-Arroyo, J.F.; Herrera-Torres, E.; Rosales-Castro, M.; Carrete-Carreón, F.O. Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes. Rev. MVZ Córdoba 2022, 27, e2142. [Google Scholar] [CrossRef]
- Rodríguez, R.; Sosa, A.; Rodríguez, Y. Microbial protein synthesis in rumen and its importance to ruminants. Cuban J. Agric. Sci. 2007, 41, 287–294. [Google Scholar]
- Pulido F., R. Dinámica del Nitrógeno Amoniacal y pH Ruminales en Vacas a Pastoreo. 2021. Available online: https://www.engormix.com/ganaderia/sistema-engorde-pastoril/dinamica-nitrogeno-amoniacal-ruminales_a47795/ (accessed on 15 September 2024).
- Abdullah, N.; Ho, Y.W.; Jalaludin, S. Microbial colonization and digestion of feed materials in cattle and buffaloes II. Rice straw and palm press fibre. Asian-Australas. J. Anim. Sci. 1992, 5, 329–335. [Google Scholar] [CrossRef]
| Ingredient | g kg−1 DM * | Crude Protein (g kg−1 DM *) |
|---|---|---|
| Ground corn | 600 | 5.88 |
| Wheat bran | 115 | 1.84 |
| Acacia farnesiana leaves | 100 | 1.71 |
| Sugar cane molasses | 60 | 0.36 |
| Soybean meal | 50 | 2.4 |
| Dried corn distiller’s grains | 40 | 1.2 |
| Cottonseed meal | 35 | 1.4 |
| Ingredient | T0 | T1 | T2 | T3 |
|---|---|---|---|---|
| Pelleted concentrate * | 0 | 25 | 50 | 75 |
| Ground corn | 64 | 44 | 24 | 0 |
| Alfalfa hay | 12.5 | 10 | 7 | 4 |
| Oat hay | 12.5 | 15 | 18 | 20 |
| Dried corn distiller’s grains | 10 | 5 | 0 | 0 |
| Limestone | 1 | 1 | 1 | 1 |
| Chemical Composition | Ground Corn | Wheat Bran | Acacia farnesiana Leaves | Sugar Cane Molasses | Soybean Meal | Dried Corn Distillers’ Grains | Cottonseed Meal |
|---|---|---|---|---|---|---|---|
| DM * | 942 ± 0.89 | 931.7 ± 1.45 | 921 ± 0.88 | 566 ± 0.58 | 915 ± 0.58 | 915 ± 8.82 | 927 ± 0.33 |
| ASH | 22 ± 1.1 | 66.8 ± 2.38 | 99 ± 4.58 | 100.3 ± 1.15 | 82 ± 1.35 | 64.7 ± 2.40 | 74.1 ± 0.46 |
| CP | 73.7 ± 0.17 | 154.7 ± 0.14 | 159.7 ± 0.14 | 37.7 ± 0.16 | 463.2 ± 0.09 | 266 ± 0.06 | 399.7 ± 0.15 |
| EE | 34.9 ± 2.32 | 27.1 ± 0.68 | 17.3 ± 0.87 | 1 ± 0.22 | 14.3 ± 11.82 | 63.1 ± 5.17 | 36 ± 0.15 |
| NDF | 194 ± 0.87 | 481.1 ± 1.97 | 553.2 ± 8.11 | N/D | 134.5 ± 9.49 | 490.1 ± 2.00 | 417.8 ± 0.42 |
| ADF | 47 ± 1.17 | 167.4 ± 2.39 | 418.5 ± 4.07 | N/D | 66.6 ± 3.37 | 182.5 ± 0.49 | 184.44 ± 8.36 |
| HEM | 147 ± 2.05 | 313.7 ± 0.41 | 134.7 ± 4.05 | N/D | 134.5 ± 3.37 | 307.6 ± 2.49 | 233.41 ± 7.94 |
| CEL | 47.2 ± 0.65 | 151.6 ± 3.17 | 295.4 ± 4.05 | N/D | 66.6 ± 8.27 | 157.4 ± 0.37 | 158.09 ± 5.56 |
| LIG | N/D | 11.8 ± 1.68 | 117.8 ± 2.62 | N/D | 3.4 ± 0.07 | 15.5 ± 1.49 | 15.66 ± 1.46 |
| TC | 869.6 ± 3.38 | 751.5 ± 1.67 | 724 ± 3.75 | 862 ± 1.11 | 440.39 ± 2.18 | 606.3 ± 7.53 | 602.2 ± 21.56 |
| NSC | 675.7 ± 4.26 | 270.4 ± 0.31 | 170.7 ± 11.86 | 862 ± 1.11 | 241.1 ± 9.63 | 116.2 ± 5.53 | 72.6 ± 1.93 |
| Treatment (T) | ||||||
|---|---|---|---|---|---|---|
| T0 | T1 | T2 | T3 | |||
| Variable | 100:0 | 75:25 | 50:50 | 25:75 | p-Value | SEM |
| DM | 944.5 ± 0.42 b | 949.6 ± 0.13 a | 942.5 ± 0.54 b | 949.2 ± 1.66 a | 0.0009 | 0.1524 |
| ASH | 40.2 ± 1.21 b | 48.1 ± 0.05 a | 42 ± 0.18 ab | 44.3 ± 2.83 ab | 0.0227 | 0.2495 |
| CP | 102.5 ± 6.01 bc | 101.6 ± 2.74 c | 112.9 ± 0.68 ab | 115.7 ± 3.19 a | 0.0071 | 0.4260 |
| EE | 38.5 ± 1.25 a | 31.1 ± 1.58 b | 30.3 ± 0.99 b | 29 ± 0.38 b | 0.0006 | 0.1713 |
| NDF | 405.7 ± 7.43 b | 381.6 ± 6.49 b | 466.9 ± 1.15 a | 452.1 ± 10.31 a | <0.0001 | 1.2403 |
| ADF | 120.8 ± 13.73 a | 112.4 ± 5.59 a | 90.2 ± 16.70 a | 81.8 ± 9.16 a | 0.0860 | 1.7857 |
| HEM | 374.8 ± 53.72 a | 322.8 ± 30.04 a | 376.7 ± 17.84 a | 370.3 ± 1.16 a | 0.6079 | 5.5506 |
| CEL | 98.5 ± 2.16 ab | 110.3 ± 6.80 a | 72.4 ± 9.56 ab | 66.8 ± 12.28 b | 0.0200 | 1.4827 |
| LIG | 15.6 ± 1.46 a | 15.5 ± 1.49 a | 13.5 ± 1.16 a | 13.9 ± 1.21 a | 0.6700 | 0.2319 |
| TC | 763.3 ± 2.30 a | 768.7 ± 4.15 a | 757.1 ± 0.05 a | 760.1 ± 8.06 a | 0.3923 | 0.8099 |
| NSC | 357.6 ± 5.13 a | 387.1 ± 2.34 a | 290.2 ± 1.20 b | 307.9 ± 40.92 b | 0.0004 | 1.6675 |
| ME (MJ/kg DM) | 114.9 ± 0.9 a | 112.5 ± 0.55 a | 120.28 ± 8.06 a | 110.2 ± 1.00 a | 0.3963 | 0.7092 |
| TPC (µg/g) | 10,380 ± 534.35 b | 14,250 ± 370.05 b | 18,510 ± 250.04 ab | 24,190 ± 270.02 a | 0.0170 | 130.221 |
| CT (µg/g) | 2107.5 ± 53.05 d | 5895 ± 106.18 c | 6757.5 ± 53.07 b | 7732.5 ± 53.02 a | 0.0001 | 7.0150 |
| IVDMD (%) | 75.20 ± 0.401 a | 73.84 ± 0.208 ab | 73.70 ± 1.440 ab | 71.12 ± 0.104 b | 0.0296 | 1.3105 |
| Treatment (T) | ||||||
|---|---|---|---|---|---|---|
| T0 | T1 | T2 | T3 | |||
| Variable | 100:0 | 75:25 | 50:50 | 25:75 | p-Value | SEM |
| A, mL/g | 364.43 ± 4.595 a | 357.57 ± 3.493 a | 352.77 ± 3.97 a | 351.20 ± 4.107 a | 0.1728 | 7.0342 |
| kd, mL/h | 0.17± 0.003 a | 0.17 ± 0.005 a | 0.16 ± 0.003 a | 0.15 ± 0.002 a | 0.0752 | 0.0063 |
| L, h | 2.94 ± 0.051 a | 2.99 ± 0.068 a | 2.88 ± 0.012 b | 2.71 ± 0.013 b | 0.0091 | 0.7595 |
| CH4, mL/g DM | 11.50 ± 1.365 a | 11.60 ± 0.351 a | 11.07 ± 1.041 a | 9.95 ± 0.491 a | 0.5833 | 1.5761 |
| CO2, mL/g DM | 69.23 ± 1.780 a | 69.00 ± 4.5184 a | 64.07 ± 2.859 a | 65.25 ±3.751 a | 0.5251 | 5.057 |
| Ratio CH4:CO2 | 0.17 ± 0.0162 a | 0.17 ± 0.010 a | 0.17 ± 0.010 a | 0.15 ± 0.020 a | 0.4449 | 2.8158 |
| N-NH3, mg/dL | 3.48 ± 0.056 a | 3.18 ± 0.034 b | 2.98 ± 0.006 c | 2.64 ± 0.005 d | <0.0001 | 0.0570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimas Villalobos, E.P.; Torres Velázquez, D.S.; Delgado, E.; Araiza Rosales, E.E.; Medrano Roldán, H.; Gamero Barraza, J.I.; Pámanes Carrasco, G.A.; Páez Lerma, J.B.; Guerra Rosas, M.I.; Reyes Jáquez, D. In Vitro Evaluation of Cattle Diets with the Inclusion of a Pelletized Concentrate Containing Acacia farnesiana. Ruminants 2025, 5, 47. https://doi.org/10.3390/ruminants5040047
Dimas Villalobos EP, Torres Velázquez DS, Delgado E, Araiza Rosales EE, Medrano Roldán H, Gamero Barraza JI, Pámanes Carrasco GA, Páez Lerma JB, Guerra Rosas MI, Reyes Jáquez D. In Vitro Evaluation of Cattle Diets with the Inclusion of a Pelletized Concentrate Containing Acacia farnesiana. Ruminants. 2025; 5(4):47. https://doi.org/10.3390/ruminants5040047
Chicago/Turabian StyleDimas Villalobos, Emmely Pamela, Diana Sofía Torres Velázquez, Efren Delgado, Elia Esther Araiza Rosales, Hiram Medrano Roldán, Jorge Iñaki Gamero Barraza, Gerardo Antonio Pámanes Carrasco, Jesús Bernardo Páez Lerma, María Inés Guerra Rosas, and Damián Reyes Jáquez. 2025. "In Vitro Evaluation of Cattle Diets with the Inclusion of a Pelletized Concentrate Containing Acacia farnesiana" Ruminants 5, no. 4: 47. https://doi.org/10.3390/ruminants5040047
APA StyleDimas Villalobos, E. P., Torres Velázquez, D. S., Delgado, E., Araiza Rosales, E. E., Medrano Roldán, H., Gamero Barraza, J. I., Pámanes Carrasco, G. A., Páez Lerma, J. B., Guerra Rosas, M. I., & Reyes Jáquez, D. (2025). In Vitro Evaluation of Cattle Diets with the Inclusion of a Pelletized Concentrate Containing Acacia farnesiana. Ruminants, 5(4), 47. https://doi.org/10.3390/ruminants5040047

