Knowledge Gaps in the Nutrient Requirements of Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Knowledge Gaps
2.1. General
2.2. Energy, Carbohydrates, and Lipids
2.2.1. Calculation of Energy Units
2.2.2. Indigestible Neutral Detergent Fiber and Calculation of Total Digestible Nutrients
2.2.3. Effective Fiber and Ruminal pH
2.3. Protein
2.3.1. Microbial Protein Synthesis
2.3.2. Metabolizable Protein Requirements
2.3.3. Nitrogen Recycling
2.3.4. Ruminally Degraded and Undegraded Protein Values of Feedstuffs
2.4. Minerals and Vitamins
2.4.1. Zinc and Growth-Enhancement Technologies
2.4.2. Chromium
2.4.3. Vitamins
2.4.4. Effects of Stress
2.5. Feed Intake
2.6. Maintenance, Reproduction, Growth, Stress, and Disease
2.6.1. Environmental Temperature and Grazing Activity
2.6.2. Beef × Dairy Crossbreds
2.6.3. Developmental Programming
2.6.4. Retained Nutrients and Body Composition Endpoints
2.6.5. Effects of Stress and Disease on Energetics and Nutrient Requirements
2.7. Environmental Issues
2.7.1. Greenhouse Gas Emissions
2.7.2. Manure Fertilizer Value and Nitrogen and Phosphorus Losses
2.8. Feed Composition
2.9. Models for Nutrient Requirements
2.9.1. Integrating Mechanistic and AI-Driven Models for Precision Predictions: Enhancing Individual Precision and Precision Livestock Farming Readiness
2.9.2. Dynamic Energy and Methane Partitioning Models: Unifying Energy Loss Frameworks
2.9.3. Mechanistic Models for Dynamic Nutrient Partitioning: Addressing Environmental and Biological Variability
2.9.4. Leveraging Genomics and Omics Technologies: Improving Model Predictability with Advanced Data
2.9.5. Enhancing Fiber and Nutrient Digestibility: Advanced Mechanisms and Methods
2.9.6. Unified Model Components for Consistency: Harmonizing Predictive Frameworks
2.9.7. Implications for the Future of Beef Cattle Nutrition Models
3. Summary and Recommendations for Moving Forward
Author Contributions
Funding
Conflicts of Interest
References
- Schrobback, P.; Dennis, G.; Li, Y.; Mayberry, D.; Shaw, A.; Knight-Jones, T.; Lloyd Marsh, T.L.; Pendell, D.L.; Torgerson, P.R.; Gilbert, W.; et al. Approximating the global economic (market) value of farmed animals. Glob. Food Secur. 2023, 39, 100722. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.S.; Mujibi, F.D.; Sherman, E.L. Molecular basis for residual feed intake in beef cattle. J. Anim. Sci. 2009, 87 (Suppl. 14), E41–E47. [Google Scholar] [CrossRef]
- NASEM (The National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Galyean, M.L.; Cole, N.A.; Tedeschi, L.O.; Branine, M.E. BOARD-INVITED REVIEW: Efficiency of converting digestible energy to metabolizable energy and reevaluation of the California Net Energy System maintenance requirements and equations for predicting dietary net energy values for beef cattle. J. Anim. Sci. 2016, 94, 1329–1341. [Google Scholar] [CrossRef]
- Hales, K.E.; Coppin, C.A.; Smith, Z.K.; McDaniel, Z.S.; Tedeschi, L.O.; Cole, N.A.; Galyean, M.L. Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. J. Anim. Sci. 2022, 100, skac013. [Google Scholar] [CrossRef] [PubMed]
- Raffrenato, E.; Lombard, R.; Erasmus, L.J.; McNeill, D.M.; Barber, D.; Callow, M.; Poppi, D.P. Prediction of indigestible NDF in South African and Australian forages from cell wall characteristics. Anim. Feed Sci. Technol. 2018, 246, 104–113. [Google Scholar] [CrossRef]
- Watson, A.K.; Klopfenstein, T.J.; Erickson, G.E.; MacDonald, J.C.; Wilkerson, V.A. Impact of microbial efficiency to predict MP supply when estimating protein requirements of growing beef cattle from performance. J. Anim. Sci. 2017, 95, 3184–3191. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Tedeschi, L.O. Predicting microbial protein synthesis in beef cattle: Relationship to intakes of total digestible nutrients and crude protein. J. Anim. Sci. 2014, 92, 5099–5111. [Google Scholar] [CrossRef]
- Galyean, M.L.; Tedeschi, L.O. Predicting microbial crude protein synthesis in cattle from intakes of dietary energy and crude protein. J. Anim. Sci. 2023, 101, skad359. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Tedeschi, L.O. Predicting microbial protein synthesis in cattle: Evaluation of extant equations and steps needed to improve accuracy and precision of future equations. Animals 2024, 14, 2903. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Costa e Silva, L.F.; Gionbelli, M.P.; Rotta, P.P.; Marcondes, M.I.; Chizzotti, M.L.; Prados, L.F. BR-CORTE—Nutrient Requirements of Zebu and Nellore Cattle, 3rd ed.; Suprema Gráfica Ltd.a: Vicosa, Brazil, 2016. [Google Scholar]
- Lima, J.; Ingabire, W.; Roehe, R.; Dewhurst, R.J. Estimating microbial protein synthesis in the rumen—Can ‘omics’ methods provide new insights into a long-standing question? Vet. Sci. 2023, 10, 679. [Google Scholar] [CrossRef]
- Oss, D.B.; Machado, F.S.; Tomich, T.R.; Pereira, L.G.R.; Campos, M.M.; Castro, M.M.D.; da Silva, T.E.; Marcondes, M.I. Energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. J. Dairy Sci. 2017, 100, 2603–2613. [Google Scholar] [CrossRef]
- Wang, J.; Shen, C.; Zhao, G.; Li, M.M. Estimation of metabolizable amino acids and energy requirements and development of mathematical models to predict average daily gain for beef cattle. J. Anim. Physiol. Anim. Nutr. 2024, 109, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Eisemann, J.H.; Tedeschi, L.O. Predicting the amount of urea nitrogen recycled and used for anabolism in growing cattle. J. Agric. Sci. 2016, 154, 1118–1129. [Google Scholar] [CrossRef]
- Nichols, K.; de Carvalho, I.P.C.; Rauch, R.; Martín-Tereso, J. Review: Unlocking the limitations of urea supply in ruminant diets by considering the natural mechanism of endogenous urea secretion. Animal 2022, 16, 100537. [Google Scholar] [CrossRef]
- Batista, E.D.; Detmann, E.; Valadares Filho, S.C.; Titgemeyer, E.C.; Valadares, R.F.D. The effect of CP concentration in the diet on urea kinetics and microbial usage of recycled urea in cattle: A meta-analysis. Animal 2017, 11, 1303–1311. [Google Scholar] [CrossRef]
- Li, M.M.; Titgemeyer, E.C.; Hanigan, M.D. A revised representation of urea and ammonia nitrogen recycling and use in the Molly cow model. J. Dairy Sci. 2019, 102, 5109–5129. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.F.; Dixon, R.M.; Costa, D.F.A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim. Prod. Sci. 2019, 59, 2093–2107. [Google Scholar] [CrossRef]
- Hanigan, M.D.; Souza, V.C.; Martineau, R.; Daley, V.L.; Kononoff, P. Predicting ruminally undegraded and microbial protein flows from the rumen. J. Dairy Sci. 2021, 104, 8685–8707. [Google Scholar] [CrossRef] [PubMed]
- Proctor, J.A.; Beck, M.R.; Kasuske, Z.A.; Foster, R.C.; Long, N.S.; Wickersham, T.A.; Gouvea, V.N.; Smith, J.K. Evaluation and prediction of site and extent of protein digestion of feedstuffs commonly fed in beef cattle finishing diets. J. Anim. Sci. 2023, 101 (Suppl. S3), 284. [Google Scholar] [CrossRef]
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Loest, C.A. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef]
- Berrett, C.J.; Wagner, J.J.; Neuhold, K.L.; Caldera, E.; Sellins, K.S.; Engle, T.E. Comparison of National Research Council standards and industry dietary trace mineral supplementation strategies for yearling feedlot steers. Prof. Anim. Sci. 2015, 31, 237–247. [Google Scholar] [CrossRef]
- Lippy, B.A.; Robinson, C.A.; Wilson, B.K. The effects of varying levels of trace mineral supplementation on performance, carcass characteristics, mineral balance, and antibody concentrations in feedlot cattle. Transl. Anim. Sci. 2022, 6, txac093. [Google Scholar] [CrossRef] [PubMed]
- Niedermayer, E.K.; Genther-Schroeder, O.N.; Lowy, D.D.; Hansen, S.L. Effect of varying trace mineral supplementation of steers with or without hormone implants on growth and carcass characteristics. J. Anim. Sci. 2018, 96, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, D.; Menezes, A.C.B.; Silva, F.A.S.; Costa e Silva, L.F.; Rotta, P.P.; Detmann, E.; Engle, T.E.; Valadares Filho, S.C. In situ and in vitro estimation of mineral release from common feedstuffs fed to cattle. J. Agric. Sci. 2017, 155, 1160–1173. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Beef Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- e Silva, L.F.C.; Filho, S.d.C.V.; Engle, T.E.; Rotta, P.P.; Marcondes, M.I.; Silva, F.A.S.; Martins, E.C.; Tokunaga, A.T.; Breviario, D. Macrominerals and trace element requirements for beef cattle. PLoS ONE 2015, 10, e0144464. [Google Scholar] [CrossRef]
- Weiss, W.P.; Hansen, S.L. Invited review: Limitations to current mineral requirement systems for cattle and potential improvements. J. Dairy Sci. 2024, 107, 10099–10114. [Google Scholar] [CrossRef]
- Edenburn, B.M.; Kneeskern, S.G.; Bohrer, B.M.; Rounds, W.; Boler, D.D.; Dilger, A.C.; Felix, T.L. Effects of supplementing zinc or chromium to finishing steers fed ractopamine hydrochloride on growth performance, carcass characteristics, and meat quality. J. Anim. Sci. 2016, 94, 771–779. [Google Scholar] [CrossRef]
- Carmichael, R.N.; Genther-Schroeder, O.N.; Blank, C.P.; Deters, E.L.; Hartman, S.J.; Niedermayer, E.K.; Hansen, S.L. The influence of supplemental zinc and ractopamine hydrochloride on trace mineral and nitrogen retention of beef steers. J. Anim. Sci. 2018, 96, 2939–2948. [Google Scholar] [CrossRef]
- Messersmith, E.M.; Niedermayer, E.K.; Thornton, K.J.; Crawford, G.I.; Hansen, S.L. Zinc supplementation strategies in feedlot heifers receiving an extended-release implant or an aggressive re-implant program. J. Anim. Sci. 2021, 99, skab212. [Google Scholar] [CrossRef]
- Messersmith, E.M.; Smerchek, D.T.; Hansen, S.L. Effects of increasing supplemental zinc in beef feedlot steers administered a steroidal implant and beta agonist. Transl. Anim. Sci. 2022, 6, txac029. [Google Scholar] [CrossRef]
- Smerchek, D.T.; Rients, E.L.; McLaughlin, A.M.; Thornton, K.J.; Hansen, S.L. Influence of steroidal implants and zinc sulfate supplementation on growth performance, trace mineral status, circulating metabolites, and transcriptional changes in skeletal muscle of feedlot steers. J. Anim. Sci. 2024, 102, skae154. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Review: History of chromium in animal nutrition in the United States. Appl. Anim. Sci. 2025, 41, 65–75. [Google Scholar] [CrossRef]
- Kneeskern, S.G.; Dilger, A.C.; Loerch, S.C.; Shike, D.W.; Felix, T.L. Effects of chromium supplementation to feedlot steers on growth performance, insulin sensitivity, and carcass characteristics. J. Anim. Sci. 2016, 94, 217–226. [Google Scholar] [CrossRef]
- Van Bibber-Krueger, C.L.; Axman, J.E.; Gonzalez, J.M.; Vahl, C.I.; Drouillard, J.S. Effects of yeast combined with chromium propionate on growth performance and carcass quality of finishing steers. J. Anim. Sci. 2016, 94, 3003–3011. [Google Scholar] [CrossRef]
- Budde, A.M.; Sellins, K.; Lloyd, K.E.; Wagner, J.J.; Heldt, J.S.; Spears, J.W.; Engle, T.E. Effect of zinc source and concentration and chromium supplementation on performance and carcass characteristics in feedlot steers. J. Anim. Sci. 2019, 97, 1286–1295. [Google Scholar] [CrossRef]
- Trojan, S.J.; Hergenreder, J.E.; Canterbury, L.G.; Leonhard, J.T.; Clark, W.D.; Beckett, J.L.; Long, J.M. The effects of chromium propionate supplementation to yearling steers in a commercial feedyard on growth performance, carcass characteristics, and health. Transl. Anim. Sci. 2023, 7, xad078. [Google Scholar] [CrossRef] [PubMed]
- Baggerman, J.O.; Smith, Z.K.; Thompson, A.J.; Kim, J.; Hergenreder, J.E.; Rounds, W.; Johnson, B.J. Chromium propionate supplementation alters animal growth performance, carcass characteristics, and skeletal muscle properties in feedlot steers. Transl. Anim. Sci. 2020, 4, txaa146. [Google Scholar] [CrossRef]
- Spears, J.W.; Loh, H.Y.; Lloyd, K.E.; Heldt, J.S.; Engle, T.E. Trace mineral source and chromium propionate supplementation affect performance and carcass characteristics in feedlot steers. J. Anim. Sci. 2024, 102, skae106. [Google Scholar] [CrossRef] [PubMed]
- Poolthajit, S.; Srakaew, W.; Haitook, T.; Wachirapakorn, C. Effects of betaine-biotin-chromium supplementation and concentrate to roughage ratio on nutrient utilization efficiency in Thai native cattle. Animals 2021, 11, 2747. [Google Scholar] [CrossRef]
- Kruk, Z.A.; Bottema, M.J.; Reyes-Velliz, L.; Forder, R.E.A.; Pitchford, W.S.; Bottema, C.D.K. Vitamin A and marbling attributes: Intramuscular fat hyperplasia effects in cattle. Meat Sci. 2018, 137, 139–146. [Google Scholar] [CrossRef]
- Campos, C.F.; Costa, T.C.; Rodrigues, R.T.S.; Guimarães, S.E.F.; Moura, F.H.; Silva, W.; Chizzotti, M.L.; Paulino, P.V.R.; Benedeti, P.D.B.; Silva, F.F.; et al. Proteomic analysis reveals changes in energy metabolism of skeletal muscle in beef cattle supplemented with vitamin A. J. Sci. Food Agric. 2020, 100, 3536–3543. [Google Scholar] [CrossRef] [PubMed]
- Wellman, K.B.; Kim, J.; Urso, P.M.; Smith, Z.K.; Johnson, B.J. Evaluation of the dietary vitamin A requirement of finishing steers via systematic depletion and repletion, and its effects on performance and carcass characteristics. J. Anim. Sci. 2020, 98, skaa266. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, F.; Sun, F.; Qu, Y.; Liu, C.; Han, Y.; Wang, H.; Jiang, B.; Zhong, P.; Wang, J.; et al. Effects of vitamin A on intramuscular fat development in beef cattle: A meta-analysis. Front. Vet. Sci. 2023, 10, 1105754. [Google Scholar] [CrossRef]
- Harris, C.L.; Wang, B.; Deavila, J.M.; Busboom, J.R.; Maquivar, M.; Parish, S.M.; McCann, B.; Nelson, M.L.; Du, M. Vitamin A administration at birth promotes calf growth and intramuscular fat development in Angus beef cattle. J. Anim. Sci. Biotechnol. 2018, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Nie, W.; Fu, X.; de Avila, J.M.; Ma, Y.; Zhu, M.-J.; Maquivar, M.; Parish, S.M.; Busboom, J.R.; Nelson, M.L.; et al. Neonatal vitamin A injection promotes cattle muscle growth and increases oxidative muscle fibers. J. Anim. Sci. Biotechnol. 2018, 9, 82. [Google Scholar] [CrossRef]
- Maciel, F.C.; Neto, O.R.M.; Duarte, M.S.; Du, M.; Lage, J.F.; Teixeira, P.D.; Martins, C.L.; Domingues, E.H.R.; Fogaca, L.A.; Ladeira, M.M. Effect of vitamin A injection at birth on intramuscular fat development and meat quality in beef cattle. Meat Sci. 2022, 184, 108676. [Google Scholar] [CrossRef]
- Waldner, C.L.; Uehlinger, F.D. Factors associated with serum vitamin A and vitamin E concentrations in beef calves from Alberta and Saskatchewan and the relationship between vitamin concentrations and calf health outcomes. Can. J. Anim. Sci. 2017, 97, 65–82. [Google Scholar] [CrossRef]
- Kegley, E.B.; Ball, J.J.; Beck, P.A. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 5401–5413. [Google Scholar] [CrossRef]
- Galyean, M.L.; Duff, G.C.; Rivera, J.D. Galyean Appreciation Club Review: Revisiting nutrition and health of newly received cattle—What have we learned in the last 15 years? J. Anim. Sci. 2022, 100, skac067. [Google Scholar] [CrossRef]
- Anele, U.Y.; Domby, E.M.; Galyean, M.L. Predicting dry matter intake by growing and finishing beef cattle: Evaluation of current methods and equation development. J. Anim. Sci. 2014, 92, 2660–2667. [Google Scholar] [CrossRef]
- McMeniman, J.P.; Tedeschi, L.O.; Defoor, P.J.; Galyean, M.L. Development and evaluation of feeding-period average dry matter intake prediction equations from a commercial feedlot database. J. Anim. Sci. 2010, 88, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Menezes, G.L.; Azevêdo, J.A.G.; Valadares Filho, S.C.; Oliveira, A.F.; Silva, F.F.; Pires, F.P.A.A.; Pereira, M.I.B.; Gonçalves, L.C.; Borges, A.L.C.C.; Jayme, D.G. A new equation to predict dry matter intake by Nellore beef cattle in commercial feedlots in Brazil. Livest. Sci. 2022, 260, 10490. [Google Scholar] [CrossRef]
- Davison, C.; Bowen, J.M.; Michie, C.; Rooke, J.A.; Jonsson, N.; Andonovic, I.; Tachtatzis, C.; Gilroy, M.; Duthie, C.-A. Predicting feed intake using modelling based on feeding behaviour in finishing beef steers. Animal 2021, 15, 100231. [Google Scholar] [CrossRef] [PubMed]
- Blake, N.E.; Walker, M.; Plum, S.; Hubbart, J.A.; Hatton, J.; Mata-Padrino, D.; Holásková, I.; Wilson, M.E. Predicting dry matter intake in beef cattle. J. Anim. Sci. 2023, 101, skad269. [Google Scholar] [CrossRef]
- Coleman, S.A.; Gunter, S.A.; Sprinkle, J.E.; Neel, J.P.S. Beef Species Symposium: Difficulties associated with predicting forage intake by grazing beef cows. J. Anim. Sci. 2014, 92, 2775–2784. [Google Scholar] [CrossRef]
- Gross, M.A.; Holder, A.L.; Moehlenpah, A.N.; Freetly, H.C.; Goad, C.L.; Beck, P.A.; DeVuyst, E.A.; Lalman, D.L. Predicting feed intake in confined beef cows. Transl. Anim. Sci. 2024, 8, txae001. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Gunter, S.A. Predicting forage intake in extensive grazing systems. J. Anim. Sci. 2016, 94 (Suppl. 6), 26–43. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef]
- Bateki, C.A.; Dickhoefer, U. Predicting dry matter intake using conceptual models for cattle kept under tropical and subtropical conditions. J. Anim. Sci. 2019, 97, 3727–3740. [Google Scholar] [CrossRef]
- Huuskonen, A.; Huhtanen, P.; Joki-Tokola, E. The development of a model to predict feed intake by growing cattle. Livest. Sci. 2013, 158, 74–83. [Google Scholar] [CrossRef]
- Smith, W.B.; Galyean, M.L.; Kallenbach, R.L.; Greenwood, P.L.; Scholljegerdes, E.J. Understanding intake on pastures: How, why, and a way forward. J. Anim. Sci. 2021, 99, skab062. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.P.; Amitha, J.P.; Rashamol, V.P.; Vandana, G.D.; Savitha, S.T.; Afsa, A.; Gagath, M.; Krishnan, G.; Sejian, V. Climate change and cattle production: Impact and adaptation. J. Vet. Med. Res. 2018, 5, 1134. [Google Scholar]
- Brown-Brandl, T.M. Understanding heat stress in beef cattle. R. Bras. Zootec. 2018, 47, e220160414. [Google Scholar] [CrossRef]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Peng, J.; Niu, H. Effects of long-term cold stress on growth performance, behavior, physiological parameters, and energy metabolism in growing beef cattle. Animals 2023, 13, 1619. [Google Scholar] [CrossRef]
- Kim, W.; Nejad, J.G.; Lee, H.-G. Impact of cold stress on physiological, endocrinological, immunological, metabolic, and behavioral changes of beef cattle at different stages of growth. Animals 2023, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Debnath, A.; Elangbam, S.; Pandey, A.; Madhuri, P.; Michui, D. The hidden dangers of winter: A brief review how cold stress affects cattle production. Int. J. Vet. Sci. Anim. Husb. 2024, 9, 152–153. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision livestock farming technologies in pasture-based livestock systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision livestock farming applications (PLF) for grazing animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Bernabucci, G.; Evangelista, C.; Girotti, P.; Viola, P.; Spina, R.; Ronchi, B.; Bernabucci, U.; Basiricò, L.; Turini, L.; Mantino, A.; et al. Precision livestock farming: An overview on the application in extensive systems. Ital. J. Anim. Sci. 2025, 24, 859–884. [Google Scholar] [CrossRef]
- Foraker, B.A.; Ballou, M.A.; Woerner, D.R. Crossbreeding beef sires to dairy cows: Cow, feedlot, and carcass performance. Transl. Anim. Sci. 2022, 6, txac059. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.H.V.; Latack, B.C.; Ferraz, M.V.C.; Nolasco, L.J.R.P.; Meireles, W.R.; Oliveira, H.O.M.; Zinn, R.A. Influence of low-level tannin supplementation on comparative growth performance of Holstein and Angus × Holstein cross calf-fed concentrate-based finishing diets for 328 d. J. Anim. Sci. 2024, 102, skae087. [Google Scholar] [CrossRef]
- Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K.; Diniz, W.J.S.; Hammer, C.J.; Swanson, R.M.; Hauxwell, K.M.; Syring, J.G.; Safain, K.S.; et al. International Symposium on Ruminant Physiology: Maternal nutrient supply: Impacts on physiological and whole animal outcomes in offspring. J. Dairy Sci. 2025, 108, TBD. [Google Scholar] [CrossRef] [PubMed]
- Crouse, M.S.; Cushman, R.A.; Redifer, C.A.; Neville, B.W.; Dahlen, C.R.; Caton, J.S.; Diniz, W.J.S.; Ward, A.K. International Symposium on Ruminant Physiology: One-carbon metabolism in beef cattle throughout the production cycle. J. Dairy Sci. 2025, 108, TBD. [Google Scholar] [CrossRef]
- Tedeschi, L.O. Relationships of retained energy and retained protein that influence the determination of cattle requirements of energy and protein using the California Net Energy System. Transl. Anim. Sci. 2019, 3, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Galyean, M.L.; Hales, K.E. Recent advances in estimating protein and energy requirements of ruminants. Anim. Prod. Sci. 2017, 57, 2237–2249. [Google Scholar] [CrossRef]
- Guiroy, P.J.; Fox, D.G.; Tedeschi, L.O.; Baker, M.J.; Cravey, M.D. Predicting individual feed requirements of cattle fed in groups. J. Anim. Sci. 2001, 79, 1983–1995. [Google Scholar] [CrossRef]
- Krehbiel, C.R. Bovine respiratory disease influences on nutrition and nutrient metabolism. Vet. Clin. Food Anim. 2020, 36, 361–373. [Google Scholar] [CrossRef]
- Gouvêa, V.N.; Cooke, R.F.; Marques, R.S. Impacts of stress-induced inflammation on feed intake of beef cattle. Front. Anim. Sci. 2022, 3, 962748. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2022. Available online: https://epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022 (accessed on 28 March 2025).
- IPCC (Intergovernmental Panel on Climate Change). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 28 March 2025).
- Leytem, A.; Archibeque, S.; Cole, N.A.; Gunter, S.A.; Hristov, A.; Johnson, K.; Kebreab, E.; Kohn, R.; Liao, W.; Toureene, C.; et al. Quantifying greenhouse gas sources and sinks in animal production systems. In Chapter 5 in Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory; Office of the Chief Economist, USDA: Washington, DC, USA, 2023. Available online: https://www.usda.gov/sites/default/files/documents/USDA-Methods-Report-Chapter-4.pdf (accessed on 28 March 2025).
- van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares Filho, S.C.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Hristov, A.N. Invited review: Advances in nutrition and feed additives to mitigate enteric methane emissions. J. Dairy Sci. 2024, 107, 4129–4146. [Google Scholar] [CrossRef]
- Warner, J.M.; Fike, G.E.; Schwartz, A.G.; Waggoner, J.W.; Johnson, S.K. Review: Sustainable phosphorus use in the United States beef cow-calf industry—Requirements, forage, soil, and water content, supplementation, and nutritional recommendations for producers. Appl. Anim. Sci. 2025, 41, 129–145. [Google Scholar] [CrossRef]
- Ponce, C.H.; Cole, N.A.; Meyer, B.E.; Jennings, J.J.; Brown, M.S. Effects of the degree of steam flaking of corn and concentration of dietary wet distillers grains on energy metabolism of feedlot cattle. Appl. Anim. Sci. 2024, 40, 511–525. [Google Scholar] [CrossRef]
- Ponce, C.H.; Jennings, J.J.; Brown, M.S.; Meyer, B.E.; Cole, N.A. Effects of steam-flaked corn and wet distillers grains with solubles on energy metabolism of finishing beef steers. Appl. Anim. Sci. 2024, 40, 14–28. [Google Scholar] [CrossRef]
- Tedeschi, L.O. ASN-ASAS SYMPOSIUM: FUTURE OF DATA ANALYTICS IN NUTRITION: Mathematical modeling in ruminant nutrition: Approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. J. Anim. Sci. 2019, 97, 1321–1944. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O. ASAS-NANP SYMPOSIUM: MATHEMATICAL MODELING IN ANIMAL NUTRITION: The progression of data analytics and artificial intelligence in support of sustainable development in animal science. J. Anim. Sci. 2022, 100, skac111. [Google Scholar] [CrossRef]
- Michelena, Á.; Fontenla-Romero, Ó.; Luis Calvo-Rolle, J. A review and future trends of precision livestock over dairy and beef cow cattle with artificial intelligence. Log. J. IGPL 2024, 00, jzae111. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Phillips, C.J.C.; Wang, C.; Li, B. A machine learning framework to predict the next month’s daily milk yield, milk composition and milking frequency for cows in a robotic dairy farm. Biosyst. Eng. 2022, 216, 186–197. [Google Scholar] [CrossRef]
- Tedeschi, L.O. Review: The prevailing mathematical modelling classifications and paradigms to support the advancement of sustainable animal production. Animal 2023, 17, 100813. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G. The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants, 3rd ed.; Kendall Hunt: Dubuque, IA, USA, 2020; Volume 1, Available online: https://he.kendallhunt.com/product/ruminant-nutrition-system-volume-1-hard-cover (accessed on 7 February 2025).
- Tedeschi, L.O.; Galyean, M.L.; Beauchemin, K.A.; Caton, J.S.; Cole, N.A.; Eisemann, J.H.; Engle, T.E.; Erickson, G.E.; Krehbiel, C.R.; Lemenager, R.P. The eighth revised edition of the Nutrient Requirements of Beef Cattle: Development and evaluation of the mathematical model. J. Anim. Sci. 2016, 94, 492–493. [Google Scholar] [CrossRef]
- Xue, M.-Y.; Xie, Y.-Y.; Zhong, Y.; Ma, X.-J.; Sun, H.-Z.; Liu, J.-X. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. Microbiome 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yan, M.; Wang, J. Rumen microbiome nutriomics: Harnessing omics technologies for enhanced understanding of rumen microbiome functions and ruminant nutrition. Anim. Nutr. 2024, 1, e10. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Adams, J.M.; Vieira, R.A.M. Forages and Pastures Symposium: Revisiting mechanisms, methods, and models for altering forage cell wall utilization for ruminants. J. Anim. Sci. 2023, 101, skad009. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Molle, G.; Menendez, H.M.; Cannas, A.; Fonseca, M.A. The assessment of supplementation requirements of grazing ruminants using nutrition models. Transl. Anim. Sci. 2019, 3, 811–828. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G. The Ruminant Nutrition System: Tables of Equations and Coding; Kendall Hunt: Dubuque, IA, USA, 2020; Volume 2, Available online: https://he.kendallhunt.com/product/ruminant-nutrition-system-volume-2-hard-cover (accessed on 7 February 2025).
Category | Knowledge Gaps and Research Needs 1 |
---|---|
Energy, carbohydrates, and lipids |
|
Protein |
|
Minerals and vitamins |
|
Feed intake |
|
Maintenance, growth, reproduction, stress, and disease |
|
Environmental issues |
|
Feed composition |
|
Models for nutrient requirements |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galyean, M.L.; Beauchemin, K.A.; Caton, J.S.; Cole, N.A.; Eisemann, J.H.; Engle, T.E.; Erickson, G.E.; Krehbiel, C.R.; Lemenager, R.P.; Tedeschi, L.O. Knowledge Gaps in the Nutrient Requirements of Beef Cattle. Ruminants 2025, 5, 29. https://doi.org/10.3390/ruminants5030029
Galyean ML, Beauchemin KA, Caton JS, Cole NA, Eisemann JH, Engle TE, Erickson GE, Krehbiel CR, Lemenager RP, Tedeschi LO. Knowledge Gaps in the Nutrient Requirements of Beef Cattle. Ruminants. 2025; 5(3):29. https://doi.org/10.3390/ruminants5030029
Chicago/Turabian StyleGalyean, Michael L., Karen A. Beauchemin, Joel S. Caton, N. Andy Cole, Joan H. Eisemann, Terry E. Engle, Galen E. Erickson, Clint R. Krehbiel, Ronald P. Lemenager, and Luis O. Tedeschi. 2025. "Knowledge Gaps in the Nutrient Requirements of Beef Cattle" Ruminants 5, no. 3: 29. https://doi.org/10.3390/ruminants5030029
APA StyleGalyean, M. L., Beauchemin, K. A., Caton, J. S., Cole, N. A., Eisemann, J. H., Engle, T. E., Erickson, G. E., Krehbiel, C. R., Lemenager, R. P., & Tedeschi, L. O. (2025). Knowledge Gaps in the Nutrient Requirements of Beef Cattle. Ruminants, 5(3), 29. https://doi.org/10.3390/ruminants5030029