Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages
Abstract
:1. Introduction
Research Questions
2. Materials and Methods
Review of Previous Studies on Smart Animal Production
3. Results and Discussion
3.1. Smart Agriculture in Animal Production
3.2. Practical Examples of Smart Animal Production
3.3. Developments in Smart Animal Agriculture
3.4. Technological Devices in Animal Production
3.5. Revolutionizing Animal Farming
3.6. Advantages and Disadvantages of Smart Animal Production
3.7. Technology Alternatives in Smart Animal Production
3.8. Livestock Accuracy Enhancing Applications
3.9. Blockchain in Animal Production Farms
3.10. Opportunities, Challenges, Solutions, and Benefits for Smart Animal Production Farms
3.10.1. Opportunities
3.10.2. Challenges
3.10.3. Solutions and Benefits
3.11. Holistic Economic Approaches to Smart Livestock Farms
3.12. Future Research and Development Trends in Smart Livestock Farms
4. Conclusions
5. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perakis, K.; Lampathaki, F.; Nikas, K.; Georgiou, Y.; Marko, O.; Maselyne, J. CYBELE–Fostering precision agriculture & livestock farming through secure access to large-scale HPC enabled virtual industrial experimentation environments fostering scalable big data analytics. Comput. Netw. 2020, 168, 107035. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Lu, W.; Gao, Y.; Gong, Y.; Cao, J. 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics 2022, 11, 2845. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef]
- Alabdali, S.A.; Pileggi, S.F.; Cetindamar, D. Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review. Sustainability 2023, 15, 7908. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Udelhoven, T. A Review of Hybrid Approaches for Quantitative Assessment of Crop Traits Using Optical Remote Sensing: Research Trends and Future Directions. Remote Sens. 2022, 14, 3515. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, H.H.; Zhang, R.R. The Impact of Intellectual Capital Efficiency on Corporate Sustainable Growth-Evidence from Smart Agriculture in China. Agriculture 2020, 10, 199. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Al-Turjman, F.; Treiblmaier, H. The Interplay between the Internet of Things and agriculture: A bibliometric analysis and research agenda. Internet Things 2022, 19, 100580. [Google Scholar] [CrossRef]
- De Alwis, S.; Hou, Z.; Zhang, Y.; Na, M.H.; Ofoghi, B.; Sajjanhar, A. A survey on smart farming data, applications and techniques. Comput. Ind. 2022, 138, 103624. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. Rethinking resilient agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Dawkins, M.S. Does Smart Farming Improve or Damage Animal Welfare? Technology and What Animals Want. Front. Anim. Sci. 2021, 21, 736536. [Google Scholar] [CrossRef]
- Held, S.D.E.; Špinka, M. Animal play and animal welfare. Anim. Behav. 2011, 81, 891–899. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020, 10, 1779. [Google Scholar] [CrossRef]
- Alipio, M.; Villena, M.L. Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health 2023, 27, 100369. [Google Scholar] [CrossRef]
- Punj, R.; Kumar, R. Technological aspects of WBANs for health monitoring: A comprehensive review. Wireless Netw. 2019, 25, 1125–1157. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Gehlot, A.; Malik, P.K.; Singh, R.; Akram, S.V.; Alsuwian, T. Dairy 4.0: Intelligent Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT Enabled Technologies. Appl. Sci. 2022, 12, 7316. [Google Scholar] [CrossRef]
- Stampa, E.; Zander, K.; Hamm, U. Insights into German Consumers’ Perceptions of Virtual Fencing in Grassland-Based Beef and Dairy Systems: Recommendations for Communication. Animals 2020, 10, 2267. [Google Scholar] [CrossRef]
- Lomax, S.; Colusso, P.; Clark, C.E. Does Virtual Fencing Work for Grazing Dairy Cattle? Animals 2019, 9, 429. [Google Scholar] [CrossRef]
- Curtis, S.E. Animal Well-Being and Animal Care. Vet. Clin. N. Am. Food Anim. Pract. 1987, 3, 369–382. [Google Scholar] [CrossRef]
- Wilkie, B.; Mallard, B. Selection for high immune response: An alternative approach to animal health maintenance? Vet. Immunol. Immunopathol. 1999, 72, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Yongqiang, C.; Shaofang, L.; Hongmei, L.; Pin, T.; Yilin, C. Application of Intelligent Technology in Animal Husbandry and Aquaculture Industry. In Proceedings of the 14th International Conference on Computer Science & Education (ICCSE), Toronto, ON, Canada, 19–21 August 2019; pp. 335–339. [Google Scholar] [CrossRef]
- Place, F.; Niederle, P.; Sinclair, F.; Carmona, N.E.; Guéneau, S.; Gitz, V.; Alpha, A.; Sabourin, E.; Hainzelin, E. Agro Ecologically Conducive Policies: A Review of Recent Advances and Remaining Challenges, 2022; Working Paper 1. Bogor, Indonesia: The Transformative Partnership Platform on Agroecology. Available online: https://www.cifor.org/publications/pdffiles/WPapers/TPP-WP-1.pdf (accessed on 11 March 2023).
- Zougmoré, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M.; Jalloh, A. Toward climate-smart agriculture in West Africa: A review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agric. Food Secur. 2016, 5, 26. [Google Scholar] [CrossRef]
- Ruuska, S.; Kajava, S.; Mughal, M.; Zehner, N.; Mononen, J. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Appl. Anim. Behav. Sci. 2016, 174, 19–23. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart Investments in Sustainable Food Production: Revisiting Mixed Crop-Livestock Systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Patlan, D.; Tellez-Isaias, G.; Hernandez-Velasco, X.; Solis-Cruz, B. Editorial: Technological strategies to improve animal health and production. Front. Vet. Sci. 2023, 10, 1206170. [Google Scholar] [CrossRef]
- Mugunieri, G.; Irungu, P.; Omiti, J. Performance of community-based animal health workers in the delivery of livestock health services. Trop. Anim. Health Prod. 2004, 36, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Iwasaki, W.; Morita, N.; Nagata, M.P.B. IoT Sensors for Smart Livestock Management. In Chemical, Gas, and Biosensors for Internet of Things and Related Applications; Mitsubayashi, K., Niwa, O., Ueno, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Melnikov, P.; Bobrov, A.; Marfin, Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers 2022, 14, 4448. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. An Imperative Role of Digitalization in Monitoring Cattle Health for Sustainability. Electronics 2022, 11, 2702. [Google Scholar] [CrossRef]
- Dayoub, M.; Nakiyemba, A.; Plosila, J. Applications of Internet of Things (IoT) in Agriculture–The Potential and Challenges in Smart Farm in Uganda. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021), Settat, Morocco, 28–30 June 2021; Hassanien, A.E., Ed.; Springer: Cham, Switzerland, 2021; Volume 1377. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Jukan, A.; Masip-Bruin, X.; Amla, N. Smart Computing and Sensing Technologies for Animal Welfare: A systematic review. ACM Comput. Surv. 2017, 50, 1–27. [Google Scholar] [CrossRef]
- Yépez-Ponce, D.F.; Salcedo, J.V.; Rosero-Montalvo, P.D.; Sanchis, J. Mobile robotics in smart farming: Current trends and applications. Front. Artif. Intell. 2023, 6, 1213330. [Google Scholar] [CrossRef]
- Hardiki, P.; Namrata, A. Smart Surveillance and Animal Care system using IOT and Deep Learning (8 April 2020). In Proceedings of the 3rd International Conference on Advances in Science & Technology (ICAST), Bahir Dar, Ethiopia, 2–4 October 2020. [Google Scholar] [CrossRef]
- Si, L.F.; Li, M.; He, L. Farmland monitoring and livestock management based on internet of things. Internet Things 2022, 19, 100581. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- Stankovski, S.; Ostojic, G.; Senk, I.; Rakic-Skokovic, M.; Trivunovic, S.; Kucevic, D. Dairy cow monitoring by RFID. Sci. Agric. Internet 2012, 69, 75–80. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’connor, C.E.; Petherick, J. Guidelines for the ethical use of animals in applied ethology studies. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Dineva, K.; Atanasova, T. Cloud Data-Driven Intelligent Monitoring System for Interactive Smart Farming. Sensors 2022, 22, 6566. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.S.; Belal, A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Doshi, J.; Patel, T.; Bharti, S.K. Smart Farming using IoT, a solution for optimally monitoring farming conditions. Procedia Comput. Sci. 2018, 160, 746–751. [Google Scholar] [CrossRef]
- Bocken, N.; Morales, L.S.; Lehner, M. Sufficiency Business Strategies in the Food Industry—The Case of Oatly. Sustainability 2020, 12, 824. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Soares, J.A.; Galvão, A.L.B.; de Matos, L.V.S.; Pierucci, J.C.; Bresciani, K.D.S.; Pizzinatto, N.K. Marketing strategies in small animal clinical practice. Int. J. Pharm. Health Mark. 2017, 11, 235–247. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Rue, B.D. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS Wagening. J. Life Sci. 2019, 90–91, 100298. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Dijmărescu, I. Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review. Sustainability 2021, 13, 751. [Google Scholar] [CrossRef]
- Alqahtani, E.; Janbi, N.; Sharaf, S.; Mehmood, R. Smart Homes and Families to Enable Sustainable Societies: A Data-Driven Approach for Multi-Perspective Parameter Discovery Using BERT Modelling. Sustainability 2022, 14, 13534. [Google Scholar] [CrossRef]
- Mahfuz, S.; Mun, H.-S.; Dilawar, M.A.; Yang, C.-J. Applications of Smart Technology as a Sustainable Strategy in Modern Swine Farming. Sustainability 2021, 14, 2607. [Google Scholar] [CrossRef]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Zuidhof, M.J. Precision livestock feeding: Matching nutrient supply with nutrient requirements of individual animals. J. Appl. Poult. Res. 2020, 29, 11–14. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Park, J.-H.; Han, M.-H. Enhancing Livestock Management with IoT-based Wireless Sensor Networks: A Comprehensive Approach for Health Monitoring, Location Tracking, Behavior Analysis, and Environmental Optimization . J. Sustain. Urban Futures 2023, 13, 34–46. Available online: https://neuralslate.com/index.php/Journal-of-Sustainable-Urban-Fut/article/view/18 (accessed on 30 September 2023).
- Moerkerken, A.; Duijndam, S.; Blasch, J.; van Beukering, P.; Smit, A. Determinants of energy efficiency in the Dutch dairy sector: Dilemmas for sustainability. J. Clean. Prod. 2021, 293, 126095. [Google Scholar] [CrossRef]
- Sadeghi, E.; Kappers, C.; Chiumento, A.; Derks, M.; Havinga, P. Improving piglets health and well-being: A review of piglets health indicators and related sensing technologies. Smart Agric. Technol. 2023, 5, 100246. [Google Scholar] [CrossRef]
- Neethirajan, S. SOLARIA-SensOr-driven resiLient and adaptive monitoRIng of farm Animals. Agriculture 2023, 13, 436. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Högberg, N.; Rydberg, A.; Skarin, A. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef] [PubMed]
- Klaas, E.; Roopaei, M. Immersive Analytics Application in Smart Agriculture and Animal Behavior. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 290–296. [Google Scholar] [CrossRef]
- Muthu, B.; Sivaparthipan, C.B.; Manogaran, G.; Sundarasekar, R.; Kadry, S.; Shanthini, A.; Dasel, A. IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer-to-Peer Netw. Appl. 2020, 13, 2123–2134. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Ramsey, E.; Leavey, G.; Chico, T.J.; Condell, J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. Sensors 2021, 22, 8002. [Google Scholar] [CrossRef]
- Alshehri, D.M. Blockchain-assisted internet of things framework in smart livestock farming. Internet Things 2023, 22, 100739. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.-C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Bhat, S.A.; Huang, N.-F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Pérez-Enciso, M.; Steibel, J.P. Phenomes: The current frontier in animal breeding. Genet. Sel. Evol. 2021, 53, 22. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2020, 59, 102168. [Google Scholar] [CrossRef]
- Grewal, D.; Hulland, J.; Kopalle, P.K.; Karahanna, E. The future of technology and marketing: A multidisciplinary perspective. J. Acad. Mark. Sci. 2020, 48, 1–8. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B 2008, 363, 447–465. [Google Scholar] [CrossRef]
- Kremsa, V.Š. Sustainable management of agricultural resources (agricultural crops and animals). Sustain. Resour. Manag. 2021, 25, 99–145. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef]
- Karthick, G.S.; Sridhar, M.; Pankajavalli, P.B. Internet of Things in Animal Healthcare (IoTAH): Review of Recent Advancements in Architecture, Sensing Technologies and Real-Time Monitoring. SN Comput. Sci. 2020, 1, 301. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Brambilla, M.; Cutini, M.; Giovinazzo, S.; Lazzari, A.; Calcante, A.; Tangorra, F.M.; Rossi, P.; Motta, A.; Bisaglia, C.; et al. Increased Cattle Feeding Precision from Automatic Feeding Systems: Considerations on Technology Spread and Farm Level Perceived Advantages in Italy. Animals 2023, 13, 3382. [Google Scholar] [CrossRef]
- Abdullah, N.D.; Kamarudin, N.; Masuri, N.A.N.; Ibrahim, N.N. Smart Feeder Monitoring Devices with Mobile Application. J. Des. Sustain. Environ. 2019. Available online: https://www.jdse.fazpublishing.com/index.php/jdse/article/view/2 (accessed on 29 April 2023).
- Kiani, F. Animal behavior management by energy-efficient wireless sensor networks. Comput. Electron. Agric. 2018, 151, 478–484. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Savkin, A.V.; Zhang, J. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones 2022, 6, 29. [Google Scholar] [CrossRef]
- Cheng, Y.-H. A Development Architecture for the Intelligent Animal Care and Management System Based on the Internet of Things and Artificial Intelligence. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 78–81. [Google Scholar] [CrossRef]
- Brijs, J.; Føre, M.; Gräns, A.; Clark, T.D.; Axelsson, M.; Johansen, J.L. Bio-sensing technologies in aquaculture: How remote monitoring can bring us closer to our farm animals. Philos. Trans. R. Soc. 2021, 376, 20200218. [Google Scholar] [CrossRef]
- Moeller, A.K.; Lukacs, P.M.; Horne, J.S. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 2018, 9, e02331. [Google Scholar] [CrossRef]
- Ting, J.S.L.; Kwok, S.K.; Lee, W.B.; Tsang, A.H.C.; Cheung, B.C.F. A Dynamic RFID-Based Mobile Monitoring System in Animal Care Management Over a Wireless Network. In Proceedings of the 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 21–25 September 2007; pp. 2085–2088. [Google Scholar]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, s187–s195. [Google Scholar] [CrossRef] [PubMed]
- Acácio, M.; Atkinson, P.W.; Silva, J.P.; Franco, A.M.A. Performance of GPS/GPRS tracking devices improves with increased fix interval and is not affected by animal deployment. PLoS ONE 2022, 17, e0265541. [Google Scholar] [CrossRef]
- Rutter, S.M. Advanced Livestock Management Solutions. In Advances in Sheep Welfare; Elsevier: Amsterdam, The Netherlands, 2016; pp. 245–261. [Google Scholar] [CrossRef]
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331–337. [Google Scholar] [CrossRef]
- Schukat, S.; Heise, H. Smart Products in Livestock Farming—An Empirical Study on the Attitudes of German Farmers. Animals 2021, 11, 1055. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef]
- Nimbalkar, V.; Kumar Verma, H.; Singh, J. Dairy Farming Innovations for Productivity Enhancement; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Nakamura, K.; Kaihatsu, S.; Yagi, T. Productivity improvement and economic growth: Lessons from Japan. Econ. Anal. Policy 2018, 62, 57–79. [Google Scholar] [CrossRef]
- Shuvo, A.A.S.; Rahman, S.; Al-Mamum, M.; Islam, K.M.S. Cholesterol reduction and feed efficiency enhancement in broiler through the inclusion of nutritionally improved fermented rice bran. J. Appl. Poult. Res. 2022, 31, 100226. [Google Scholar] [CrossRef]
- Flint, J.F.; Garner, M.R. Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. J. Appl. Poult. Res. 2009, 18, 367–378. [Google Scholar] [CrossRef]
- Zio, E. Reliability engineering: Old problems and new challenges. Reliab. Eng. Syst. Saf. 2009, 94, 125–141. [Google Scholar] [CrossRef]
- Eriksen, S.; Utne, I.B.; Lützen, M. An RCM approach for assessing reliability challenges and maintenance needs of unmanned cargo ships. Reliab. Eng. Syst. Saf. 2021, 210, 107550. [Google Scholar] [CrossRef]
- Mikdashi, J.; Nived, O. Measuring disease activity in adults with systemic lupus erythematosus: The challenges of administrative burden and responsiveness to patient concerns in clinical research. Arthritis Res. Ther. 2015, 17, 183. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.C.; Peters, D.J.; Yoon, K. Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Benis, A.; Haghi, M.; Deserno, T.M.; Tamburis, O. One Digital Health Intervention for Monitoring Human and Animal Welfare in Smart Cities: Viewpoint and Use Case. JMIR Med. Inform. 2023, 11, e43871. [Google Scholar] [CrossRef] [PubMed]
- González, L.A.; Kyriazakis, I.; Tedeschi, L.O. Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal 2018, 12 (Suppl. S2), S246–S261. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, C.; Brossard, L.; Dourmad, J.-Y. Improvement of feed and nutrient efficiency in pig production through precision feeding. Anim. Feed. Sci. Technol. 2020, 268, 114611. [Google Scholar] [CrossRef]
- Whitham, J.C.; Miller, L.J. Using technology to monitor and improve zoo animal welfare. Anim. Welf. 2016, 25, 395–409. [Google Scholar] [CrossRef]
- Ali, W.; Ali, M.; Ahmad, M.; Dilawar, S.; Firdous, A.; Afzal, A. Application of Modern Techniques in Animal Production Sector for Human and Animal Welfare. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 457–463. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; McConn, B.R.; Schinckel, A.P.; Arrazola, A.; Marchant-Forde, J.N.; Johnson, J.S. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front. Genet. 2020, 11, 793. [Google Scholar] [CrossRef]
- Flint, A.P.F.; Woolliams, J.A. Precision animal breeding. Phil. Trans. R. Soc. 2008, 363, 573–590. [Google Scholar] [CrossRef]
- Suravajhala, P.; Kogelman, L.J.A.; Kadarmideen, H.N. Multi-omic data integration and analysis using systems genomics approaches: Methods and applications in animal production, health and welfare. Genet. Sel. Evol. 2016, 48, 38. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Mohamed, M. Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Gener. Comput. Syst. 2018, 86, 614–628. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Zhang, Y.; Chen, J. Smart Contract-Based Product Traceability System in the Supply Chain Scenario. IEEE Access 2019, 7, 115122–115133. [Google Scholar] [CrossRef]
- Cerullo, G.; Guizzi, G.; Massei, C.; Sgaglione, L. Efficient Supply Chain Management: Traceability and Transparency. In Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 750–757. [Google Scholar]
- Song, B.; Robinson, G.M.; Bardsley, D.K.; Xue, Y.; Wang, B. Multifunctional agriculture in a peri-urban fringe: Chinese farmers’ responses to shifts in policy and changing socio-economic conditions. Land Use Policy 2023, 133, 106869. [Google Scholar] [CrossRef]
- Swain, S.; Patoju, S.K.S.; Manjushree, P. Entrepreneurial Value Creation: Study on Small Agri-Tech Enterprise. South Asian J. Bus. Manag. Cases 2022, 11, 167–177. [Google Scholar] [CrossRef]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the Potential of Precision Livestock Farming Technologies to Help Address Farm Animal Welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Benjamin, M.; Yik, S. Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Tuyttens, F.A.M.; Molento, C.F.M.; Benaissa, S. Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total. Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Menendez, H.M.; Brennan, J.R.; Gaillard, C.; Ehlert, K.; Quintana, J.; Neethirajan, S.; Remus, A.; Jacobs, M.; Teixeira, I.A.; Turner, B.L.; et al. ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production. J. Anim. Sci. 2022, 100, skac160. [Google Scholar] [CrossRef] [PubMed]
- Racewicz, P.; Ludwiczak, A.; Skrzypczak, E.; Biesiada, H.; Nowak, T.; Nowaczewski, S.; Zaborowicz, M.; Stanisz, M.; Ślósarz, P. Welfare Health and Productivity in Commercial Pig Herds. Animals 2021, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 2015, 95, 12–19. [Google Scholar] [CrossRef]
- Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A Review on Agri-Food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Eastwood, C.; Edwards, J.; Turner, J. Review: Anticipating alternative trajectories for responsible Agriculture 4.0 innovation in livestock systems. Animal 2021, 15, 100296. [Google Scholar] [CrossRef]
- Molnár, M. Transforming Intensive Animal Production: Challenges and Opportunities for Farm Animal Welfare in the European Union. Animals 2021, 12, 2086. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Gabriel, A.; Gandorfer, M. Understanding the public attitudinal acceptance of digital farming technologies: A nationwide survey in Germany. Agric. Hum. Values 2021, 38, 107–128. [Google Scholar] [CrossRef]
- Mu, R.; Mu, R.; Wang, H.; Wang, H. A systematic literature review of open innovation in the public sector: Comparing barriers and governance strategies of digital and non-digital open innovation. Public Manag. Rev. 2022, 24, 489–511. [Google Scholar] [CrossRef]
- Olesen, I.; Groen, A.F.; Gjerde, B. Definition of animal breeding goals for sustainable production systems. J. Anim. Sci. 2000, 78, 570–582. [Google Scholar] [CrossRef] [PubMed]
- McEachern, M.G.; McClean, P. Organic purchasing motivations and attitudes: Are they ethical? Int. J. Consum. Stud. 2002, 26, 85–92. [Google Scholar] [CrossRef]
- Buller, H.; Morris, C. Farm Animal Welfare: A New Repertoire of Nature-Society Relations or Modernism Re-Embedded ? Sociol. Rural. 2003, 43, 216–237. [Google Scholar] [CrossRef]
- Paunova-Hubenova, E.; Trichkova-Kashamova, E. Smart Solutions for Control and Management in Livestock Farms. In Proceedings of the 2021 Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 28–29 October 2021; pp. 1–7. [Google Scholar]
- Matthews, S.G.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Wang, W.; Guo, L.; Bindelle, J. Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review. Animals 2021, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2020, 15, 100143. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2021, 22, 4319. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2022, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, E.M.; Goering, M.J.; Ochoa, S.J.; Holliday, A.J.; Mumm, J.M.; Nelson, C.E.; Wu, H.; Mote, B.E.; Psota, E.T.; Schmidt, T.B.; et al. Evaluation of Precision Livestock Technology and Human Scoring of Nursery Pigs in a Controlled Immune Challenge Experiment. Animals 2022, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Egon, K.; Oloyede, J.O. Advancements in Sensor Technologies for Precision Livestock Farming. 31 October 2023. Available online: https://osf.io/preprints/osf/av68m (accessed on 10 November 2023).
- Ahmad, M.; Abbas, S.; Fatima, A.; Ghazal, T.M.; Alharbi, M.; Khan, M.A.; Elmitwally, N.S. AI-Driven livestock identification and insurance management system. Egypt. Inform. J. 2023, 24, 100390. [Google Scholar] [CrossRef]
- Wathes, C.; Kristensen, H.; Aerts, J.-M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- Davies, F.T.; Garrett, B. Technology for Sustainable Urban Food Ecosystems in the Developing World: Strengthening the Nexus of Food–Water–Energy–Nutrition. Front. Sustain. Food Syst. 2018, 2, 420758. [Google Scholar] [CrossRef]
- Yahya, N. Agricultural 4.0: It’s Implementation Toward Future Sustainability. In Green Urea: Green Energy and Technology; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- De Rosa, M.; Di Pasquale, J.; Adinolfi, F. The Root towards More Circularized Animal Production Systems: From Animal to Territorial Metabolism. Animals 2021, 11, 1540. [Google Scholar] [CrossRef]
- Sassenrath, G.; Heilman, P.; Luschei, E.; Bennett, G.; Fitzgerald, G.; Klesius, P.; Tracy, W.; Williford, J.; Zimba, P. Technology, complexity and change in agricultural production systems. Renew. Agric. Food Syst. 2008, 23, 285–295. [Google Scholar] [CrossRef]
- Sendros, A.; Drosatos, G.; Efraimidis, P.S.; Tsirliganis, N.C. Blockchain Applications in Agriculture: A Scoping Review. Appl. Sci. 2022, 12, 8061. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Z.; Zhou, Y.; Xu, Y. Applying Blockchain Technology and the Internet of Things to Improve the Data Reliability for Livestock Insurance. Sensors 2023, 23, 6290. [Google Scholar] [CrossRef] [PubMed]
- Kampan, K.; Tsusaka, T.W.; Anal, A.K. Adoption of Blockchain Technology for Enhanced Traceability of Livestock-Based Products. Sustainability 2021, 14, 13148. [Google Scholar] [CrossRef]
- Micle, D.E.; Deiac, F.; Olar, A.; Drența, R.F.; Florean, C.; Coman, I.G.; Arion, F.H. Research on Innovative Business Plan. Smart Cattle Farming Using Artificial Intelligent Robotic Process Automation. Agriculture 2021, 11, 430. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision Livestock Farming: An International Review of Scientific and Commercial Aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1. Available online: https://ijabe.org/index.php/ijabe/article/view/599/0 (accessed on 25 March 2022).
- Gebska, M.; Grontkowska, A.; Swiderek, W.; Golebiewska, B. Farmer Awareness and Implementation of Sustainable Agriculture Practices in Different Types of Farms in Poland. Sustainability 2019, 12, 8022. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Jensen, P.; Keeling, L. Towards Farm Animal Welfare and Sustainability. Animals 2018, 8, 81. [Google Scholar] [CrossRef]
- Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends. Big Data Cogn. Comput. 2021, 5, 10. [Google Scholar] [CrossRef]
- Koltes, J.E.; Cole, J.B.; Clemmens, R.; Dilger, R.N.; Kramer, L.M.; Lunney, J.K.; McCue, M.E.; McKay, S.D.; Mateescu, R.G.; Murdoch, B.M.; et al. A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock. Front. Genet. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed]
- Cagnacci, F.; Boitani, L.; Powell, R.A.; Boyce, M.S. Animal ecology meets GPS-based radiotelemetry: A perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B 2010, 365, 2157–2162. [Google Scholar] [CrossRef]
- Singh, A.; Gutub, A.; Nayyar, A.; Khan, M.K. Redefining food safety traceability system through blockchain: Findings, challenges and open issues. Multimed. Tools Appl. 2023, 82, 21243–21277. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X. Blockchain-Based Traceability System That Ensures Food Safety Measures to Protect Consumer Safety and COVID-19 Free Supply Chains. Foods 2021, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Xu, L.; Liu, T.; Liu, S.; Sun, C. Integration of Privacy Protection and Blockchain-Based Food Safety Traceability: Potential and Challenges. Foods 2021, 11, 2262. [Google Scholar] [CrossRef] [PubMed]
- Finger, R.; Swinton, S.M.; El Benni, N.; Walter, A. Precision Farming at the Nexus of Agricultural Production and the Environment. Annu. Rev. Resour. Econ. 2019, 11, 313–335. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Zahmatkesh, H.; Shahroze, R. An overview of security and privacy in smart cities’ IoT communications. Trans. Emerg. Telecommun. Technol. 2022, 33, e3677. [Google Scholar] [CrossRef]
- Debauche, O.; Trani, J.-P.; Mahmoudi, S.; Manneback, P.; Bindelle, J.; Mahmoudi, S.A.; Guttadauria, A.; Lebeau, F. Data management and internet of things: A methodological review in smart farming. Internet Things 2021, 14, 100378. [Google Scholar] [CrossRef]
- Faid, A.; Sadik, M.; Sabir, E. An Agile AI and IoT-Augmented Smart Farming: A Cost-Effective Cognitive Weather Station. Agriculture 2021, 12, 35. [Google Scholar] [CrossRef]
- Kumar, S.K.A.; Ihita, G.V.; Chaudhari, S.; Arumugam, P. A Survey on Rural Internet Connectivity in India. arXiv 2021, arXiv:2111.10219. [Google Scholar] [CrossRef]
- Sims, K. Infrastructure violence and retroliberal development: Connectivity and dispossession in Laos. Third World Q. 2021, 42, 1788–1808. [Google Scholar] [CrossRef]
- Roussaki, I.; Doolin, K.; Skarmeta, A.; Routis, G.; Lopez-Morales, J.A.; Claffey, E.; Mora, M.; Martinez, J.A. Building an interoperable space for smart agriculture. Digit. Commun. Netw. 2023, 9, 183–193. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Reichelt, N.; Nettle, R. Practice insights for the responsible adoption of smart farming technologies using a participatory technology assessment approach: The case of virtual herding technology in Australia. Agric. Syst. 2023, 206, 103592. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100301. [Google Scholar] [CrossRef]
- Raheem, D.; Dayoub, M.; Birech, R.; Nakiyemba, A. The Contribution of Cereal Grains to Food Security and Sustainability in Africa: Potential Application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Sci. 2021, 5, 8. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2016, 16, 145–163. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Rahman, M.F.F.; Fan, S.; Zhang, Y.; Chen, L. A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture. Agriculture 2021, 11, 22. [Google Scholar] [CrossRef]
- Späti, K.; Huber, R.; Finger, R. Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecol. Econ. 2021, 185, 107047. [Google Scholar] [CrossRef]
- Vrchota, J.; Pech, M.; Švepešová, I. Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic. Agriculture 2022, 12, 1080. [Google Scholar] [CrossRef]
- Behjati, M.; Noh, A.B.M.; Alobaidy, H.A.H.; Zulkifley, M.A.; Nordin, R.; Abdullah, N.F. LoRa Communications as an Enabler for Internet of Drones towards Large-Scale Livestock Monitoring in Rural Farms. Sensors 2021, 21, 5044. [Google Scholar] [CrossRef]
- Khan, M.A.; Mittal, S.; West, S.; Wuest, T. Review on upgradability–A product lifetime extension strategy in the context of product service systems. J. Clean. Prod. 2018, 204, 1154–1168. [Google Scholar] [CrossRef]
- Khan, M.A.; West, S.; Wuest, T. Midlife upgrade of capital equipment: A servitization-enabled, value-adding alternative to traditional equipment replacement strategies. CIRP J. Manuf. Sci. Technol. 2020, 29, 232–244. [Google Scholar] [CrossRef]
- Gil, J.; Garrett, R.; Berger, T. Determinants of crop-livestock integration in Brazil: Evidence from the household and regional levels. Land Use Policy 2016, 59, 557–568. [Google Scholar] [CrossRef]
- Symeonaki, E.; Arvanitis, K.G.; Piromalis, D.; Tseles, D.; Balafoutis, A.T. Ontology-Based IoT Middleware Approach for Smart Livestock Farming toward Agriculture 4.0: A Case Study for Controlling Thermal Environment in a Pig Facility. Agronomy 2022, 12, 750. [Google Scholar] [CrossRef]
- Kopler, I.; Marchaim, U.; Tikász, I.E.; Opaliński, S.; Kokin, E.; Mallinger, K.; Neubauer, T.; Gunnarsson, S.; Soerensen, C.; Phillips, C.J.C.; et al. Farmers’ Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors. Animals 2022, 13, 2868. [Google Scholar] [CrossRef] [PubMed]
- Gwaka, L.T. Digital Technologies and Sustainable Livestock Systems in Rural Communities. Electron. J. Inf. Syst. Dev. Ctries. 2017, 81, 1–24. [Google Scholar] [CrossRef]
- Mwirigi, J.W.; Makenzi, P.M.; Ochola, W.O. Socio-economic constraints to adoption and sustainability of biogas technology by farmers in Nakuru Districts, Kenya. Energy Sustain. Dev. 2009, 13, 106–115. [Google Scholar] [CrossRef]
- Balehegn, M.; Duncan, A.; Tolera, A.; Ayantunde, A.A.; Issa, S.; Karimou, M.; Zampaligré, N.; André, K.; Gnanda, I.; Varijakshapanicker, P.; et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob. Food Secur. 2020, 26, 100372. [Google Scholar] [CrossRef] [PubMed]
- Slayi, M.; Zhou, L.; Jaja, I.F. Constraints Inhibiting Farmers’ Adoption of Cattle Feedlots as a Climate-Smart Practice in Rural Communities of the Eastern Cape, South Africa: An In-Depth Examination. Sustainability 2022, 15, 14813. [Google Scholar] [CrossRef]
- Duff, H.; Hegedus, P.B.; Loewen, S.; Bass, T.; Maxwell, B.D. Precision Agroecology. Sustainability 2021, 14, 106. [Google Scholar] [CrossRef]
- Mura, M.; Longo, M.; Zanni, S. Circular economy in Italian SMEs: A multi-method study. J. Clean. Prod. 2020, 245, 118821. [Google Scholar] [CrossRef]
- Duho, K.C.T.; Duho, D.M.; Forson, J.A. Impact of income diversification strategy on credit risk and market risk among microfinance institutions. J. Econ. Adm. Sci. 2023, 39, 523–546. [Google Scholar] [CrossRef]
- Dharmayanti, N.; Ismail, T.; Hanifah, I.A.; Taqi, M. Exploring sustainability management control system and eco-innovation matter sustainable financial performance: The role of supply chain management and digital adaptability in indonesian context. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100119. [Google Scholar] [CrossRef]
- Terra dos Santos, L.C.T.; Giannetti, B.F.; Agostinho, F.; Liu, G.; Almeida, C.M. A multi-criteria approach to assess interconnections among the environmental, economic, and social dimensions of circular economy. J. Environ. Manag. 2023, 342, 118317. [Google Scholar] [CrossRef]
- Stevens, D.R.; Thompson, B.R.; Johnson, P.; Welten, B.; Meenken, E.; Bryant, J. Integrating Digital Technologies to Aid Grassland Productivity and Sustainability. Front. Sustain. Food Syst. 2021, 5, 602350. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Mir, W.A.; Rasool, T.; Sofi, S. Machine Learning for Smart Agriculture and Precision Farming: Towards Making the Fields Talk. Arch. Comput. Methods Eng. 2022, 29, 4557–4597. [Google Scholar] [CrossRef]
- Vannieuwenborg, F.; Verbrugge, S.; Colle, D. Designing and evaluating a smart cow monitoring system from a techno-economic perspective. In Proceedings of the 2017 Internet of Things-Business Models, Users, and Networks, Copenhagen, Denmark, 23–24 November 2017; pp. 1–8. [Google Scholar]
- Niloofar, P.; Lazarova-Molnar, S.; Thumba, D.A.; Shahin, K.I. A conceptual framework for holistic assessment of decision support systems for sustainable livestock farming. Ecol. Indic. 2023, 155, 111029. [Google Scholar] [CrossRef]
- Syamsu, J.A.; Ali, H.M.; Ridwan, M.; Asja, M.A. Analysis of Sustainability Status of Integration of Beef Cattle and Paddy with Technology Innovation of Rice Straw as Feed and Beef Cattle Manure as Fertilizer and Biogas. Environ. Nat. Resour. J. 2016, 11, 1–16. Available online: https://ph02.tci-thaijo.org/index.php/ennrj/article/view/71251 (accessed on 20 August 2022).
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.-A.; Moerman, M.; et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Ndjuluwa, L.N.P.; Adebisi, J.A.; Dayoub, M. Internet of Things for Crop Farming: A Review of Technologies and Applications. Commodities 2023, 2, 367–381. [Google Scholar] [CrossRef]
- Wiesner, S.; Duff, A.J.; Desai, A.R.; Panke-Buisse, K. Increasing Dairy Sustainability with Integrated Crop–Livestock Farming. Sustainability 2019, 12, 765. [Google Scholar] [CrossRef]
- Van der Burg, S.; Bogaardt, M.; Wolfert, S. Ethics of smart farming: Current questions and directions for responsible innovation towards the future. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100289. [Google Scholar] [CrossRef]
- Farooq, M.S.; Sohail, O.O.; Abid, A.; Rasheed, S. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Livestock Environment. IEEE Access 2022, 10, 9483–9505. [Google Scholar] [CrossRef]
Category | Technology | Description |
---|---|---|
Health Monitoring | Health Wearables | This device continuously monitors and improves animal well-being by gathering and interpreting a range of health-related data. These tools employ technology to provide valuable insights into an animal’s physical condition, behavior, and overall well-being. In addition, they are used to track animal health parameters such as heart rate and activity levels, enabling the early detection of potential health problems [75]. |
Real-time Monitoring Devices | State-of-the-art animal monitoring devices continuously observe and analyze animal welfare data, providing real-time insights into their health and well-being. It delivers instant data on animal health, enabling timely interventions and improved care [76]. | |
Livestock Sensors | Livestock sensor devices are used to monitor and manage the health of animals in agricultural settings. They collect data on animal health and behavior, which can be used to make informed decisions about animal care [77]. | |
Advantages | Key aspects include real-time data tracking, early detection of diseases, analysis of vital signs, and proactive health management for both livestock and companion animals. | |
Disadvantages | Challenges include limited accuracy in early disease detection, potential errors in data interpretation, issues with device accessibility, and difficulties in the continuous monitoring of free-ranging animals. | |
Feeding Management | Automated Feeding Systems | Automated feeding systems (AFS) are innovative devices that streamline and enhance animal feeding using automation technology. AFS provides precise and scheduled feedings, ensuring optimal nutrition and resource management. They play a crucial role in modern animal husbandry by promoting consistency and improving efficiency [78]. |
Smart Feeders | Smart feeders are cutting-edge devices that revolutionize animal feeding using advanced technology. These innovative feeders provide intelligent and automated feeding solutions, offering convenience, precision, and remote control. They enhance animal care and well-being while optimizing nutrition [79]. | |
Advantages | Key elements include precise feeding, strategic nutritional planning, quality-controlled feeds, and automated feeding systems to enhance the health and performance of animals. | |
Disadvantages | Challenges may include imprecise feeding, nutritional imbalances, feed quality variations, and automated system issues. | |
Welfare Monitoring | Behavior Sensors | Animal behavior sensor devices are sophisticated tools that use advanced sensor technology to observe and analyze animal behavior. These devices provide real-time insights into animal behavior, helping researchers, caretakers, and anyone involved in animal management better understand their well-being [80]. |
Robotic Herding | Robotic herding devices represent a technological leap in livestock management, autonomously guiding animals using sensors and intelligent algorithms. They streamline herding, minimize stress, and optimize overall herd management, combining the precision of robotics with practical herding for a modern approach to animal husbandry [81]. | |
Advantages | Continuous monitoring involves real-time data collection, behavior analysis, and tracking of health indicators. | |
Disadvantages | Necessitate constrained precision, risk of sensor-induced stress, and difficulties in interpreting behavioral data. | |
Decision Support | AI Equipment | AI-equipped animal devices integrate artificial intelligence into animal care, employing advanced algorithms to analyze health, behavior, and overall well-being data. These devices provide valuable insights and personalized solutions for individual animals or groups, contributing to enhanced decision-making and proactive health monitoring in animal care, improving overall efficiency in animal management [82]. |
Advantages | Provide data-driven insights, predictive analytics, personalized recommendations, and optimizes health. | |
Disadvantages | Necessitate restricted data precision, susceptibility to algorithmic biases, and reliance on accurate input data. | |
Remote Monitoring | Remote Monitoring Systems | Animal remote monitoring systems employ remote sensing technologies to comprehensively track and analyze various aspects of animal health, behavior, and environmental conditions. Equipped with sensors and communication capabilities, these devices enable real-time monitoring and data transmission from a distance. Whether used in wildlife conservation or animal care, they provide researchers and caretakers with valuable, timely information for proactive management and swift responses to changes in an animal’s conditions [83]. |
Advantages | Provide real-time tracking, environmental sensing, health parameter monitoring, and automated alerts. | |
Disadvantages | Require addressing connectivity issues, mitigating data security concerns, ensuring device reliability, and minimizing the potential for false alarms. | |
Security | Remote Cameras | Animal remote camera systems are advanced devices for observing animal activities. With high-quality cameras, motion detection, and night vision, these systems provide continuous monitoring in various environments. Transmitting live or recorded footage remotely, they offer insights into animal behavior, habitat use, and interactions. Whether in wildlife research, livestock management, or animal observation, these systems provide an efficient and non-intrusive way to study animals in their natural or domestic settings [84]. |
Advantages | Provide high-resolution imaging, infrared night vision, motion detection, and capabilities for remote viewing. | |
Disadvantages | Require addressing limited battery life, weather vulnerability, potential for signal interference, and upfront cost. | |
Inventory Management | RFID-tagged Systems | Animal RFID-tagged systems use specialized devices for animal identification and tracking through radio-frequency identification (RFID) technology. With RFID tags containing unique codes attached to animals, RFID readers wirelessly collect and process information for efficient and accurate identification. Widely used in livestock management, wildlife research, and animal tracking, these systems streamline data collection, enhance security, and contribute to the overall management and well-being of animals [85]. |
Livestock Trackers | Animal livestock trackers are specialized devices that utilize GPS or other tracking technologies to provide real-time location information for individual animals within a herd. With features like geofencing and activity monitoring, these trackers enhance overall herd management, prevent loss, and optimize grazing patterns, ensuring efficient livestock monitoring in various environments [86]. | |
GPS Management | Animal GPS management devices use GPS technology for monitoring and controlling animal movements. Equipped with GPS modules, they enable real-time tracking and location identification of individual animals. With applications in wildlife research, and animal management, these devices contribute to enhanced security, efficient herd management, and the overall well-being of animals by providing valuable insights into their locations and movements [87]. | |
Advantages | Provide automated record keeping, RFID tracking, real-time data updates, and analytics for inventory management. | |
Disadvantages | Require addressing the potential for RFID malfunctions, minimizing data entry errors, simplifying system complexity, and managing initial setup costs. | |
Farm Management | Livestock Management Software | Livestock management software devices generally simplify and improve livestock care through advanced applications for health monitoring, breeding records, and feeding schedules. Featuring user-friendly interfaces, these devices enable efficient data entry, analysis, and decision-making for ranchers. By centralizing information and automating tasks, they enhance productivity, resource utilization, and the overall well-being of the livestock. Whether on small-scale farms or large agricultural operations, these devices are crucial for modern livestock management [88]. |
Advantages | Provide livestock health tracking, feed optimization, breeding management, and analytics for production. | |
Disadvantages | Require addressing data security risks, reducing equipment dependency, and mitigating the potential for inaccurate data entry. | |
Environmental Control | Environmental Controls | Animal environmental controls devices optimize environmental conditions for animals, regulating factors like temperature, humidity, ventilation, and lighting within enclosures. By ensuring a comfortable environment, these devices contribute to the well-being, health, and productivity of animals, playing a crucial role in creating optimal living conditions in places such as livestock barns, poultry houses, or animal habitats [89]. |
Advantages | Ensure animals’ well-being through temperature control, humidity management, ventilation, and optimal lighting for comfort. | |
Disadvantages | Limited precision in environmental settings, adaptability issues across various species, potential energy inefficiency, and difficulty accommodating individual animal preferences. | |
Reproductive Management | Hormone Monitors | Animal hormone monitor devices track and analyze hormonal levels in animals, utilizing advanced technology to measure concentrations of various hormones. They provide insights into reproductive cycles, stress levels, and overall health, aiding in fertility management, breeding programs, and overall well-being. Whether in wildlife research, or veterinary care, these devices play a pivotal role in optimizing hormonal balance for improved animal health and reproduction [90]. |
Advantages | Key aspects include synchronizing estrus, implementing artificial insemination, optimizing breeding programs, and monitoring reproductive health. | |
Disadvantages | Challenges encompass fluctuating success rates in artificial insemination, precision concerns in estrus synchronization, limited adaptability across species, and potential health risks linked to intensive reproductive interventions. | |
Supply Chain Management | Smart Distribution Systems | Animal smart distribution systems devices use smart technology to optimize resource distribution, automating dispensing based on schedules or conditions for efficient delivery. Whether in zoos or animal care, they provide a technologically advanced solution for animal resource management. They also optimize the flow of animal products from farm to consumer, reducing costs and improving efficiency [91]. |
Advantages | Encompassing inventory tracking, logistics optimization, quality control, and streamlined distribution for efficient sourcing of animal-related products. | |
Disadvantages | Challenges encompass supply chain disruptions, insufficient temperature control during transportation, quality assurance issues, and obstacles in real-time inventory tracking. | |
Packaging | Automated Packaging Systems | Animal automated packaging systems devices use advanced technology to automate packaging, incorporating features like automated weighing, sorting, and sealing for accuracy and speed. Whether used in animal food packaging or other animal-related goods, these devices enhance productivity, reduce labor costs, and improve overall efficiency in the packaging phase of animal product manufacturing. They streamline the process, saving time and improving efficiency [92]. |
Advantages | Key features of animal product packaging include secure, durable, and hygienic designs to uphold product integrity, preserve freshness, and comply with safety standards. | |
Disadvantages | Packaging limitations may involve environmental concerns, inadequate protection against contamination, limited recyclability, and challenges in balancing cost-effectiveness with sustainability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dayoub, M.; Shnaigat, S.; Tarawneh, R.A.; Al-Yacoub, A.N.; Al-Barakeh, F.; Al-Najjar, K. Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages. Ruminants 2024, 4, 22-46. https://doi.org/10.3390/ruminants4010003
Dayoub M, Shnaigat S, Tarawneh RA, Al-Yacoub AN, Al-Barakeh F, Al-Najjar K. Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages. Ruminants. 2024; 4(1):22-46. https://doi.org/10.3390/ruminants4010003
Chicago/Turabian StyleDayoub, Moammar, Saida Shnaigat, Radi A. Tarawneh, Azzam N. Al-Yacoub, Faisal Al-Barakeh, and Khaled Al-Najjar. 2024. "Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages" Ruminants 4, no. 1: 22-46. https://doi.org/10.3390/ruminants4010003
APA StyleDayoub, M., Shnaigat, S., Tarawneh, R. A., Al-Yacoub, A. N., Al-Barakeh, F., & Al-Najjar, K. (2024). Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages. Ruminants, 4(1), 22-46. https://doi.org/10.3390/ruminants4010003