Rumen Fluid Amine/Phenol-Metabolome of Beef Steers with Divergent Residual Feed Intake Phenotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Rumen Fluid Sample Collection
2.2. Metabolome Analysis and Data Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Hoque, M.; Katoh, K.; Suzuki, K. Genetic associations of residual feed intake with serum insulin-like growth factor-1 and leptin concentrations, meat quality, and carcass cross sectional fat area ratios in Duroc pigs. J. Anim. Sci. 2009, 10, 3069–3075. [Google Scholar] [CrossRef] [Green Version]
- Foroutan, A.; Fitzsimmons, C.; Mandal, R.; Berjanskii, M.V.; Wishart, D.S. Serum metabolite biomarkers for predicting residual feed intake of young angus bulls. Metabolites 2020, 10, 491. [Google Scholar] [CrossRef]
- Taiwo, G.; Idowu, M.; Collins, S.; Sidney, T.; Wilson, M.; Pech-Cervantes, A.A.; Ogunade, I.M. Chemical group-based metabolome analysis identifies candidate plasma biomarkers associated with residual feed intake in beef steers. Front. Anim. Sci. 2022, 91, 10–3389. [Google Scholar] [CrossRef]
- Goldansaz, S.; Markus, S.; Berjanskii, M.; Rout, N.; Guo, A.; Wang, Z.; Plastow, G.; Wishart, D. Candidate serum metabolite biomarkers of residual feed intake carcass merit in sheep. J. Anim. Sci. 2020, 98, 10. [Google Scholar] [CrossRef] [PubMed]
- Karisa, B.; Moore, S.; Plastow, G. Analysis of biological networks and biological pathways associated with residual feed intake in beef cattle. Anim. Sci. J. 2013, 85, 374–387. [Google Scholar] [CrossRef]
- Jorge-Smending, E.; Bonnet, M.; Renand, G.; Taussat, S.; Graulet, B.; Ortigues-Marty, I.; Cantalapeidra-Hijar, G. Common and diet-specific metabolic pathways underlying residual feed intake in fattening Charolais yearling bulls. Natl. Libr. Med. 2021, 11, 24346. [Google Scholar]
- Zhao, S.; Li, H.; Han, W.; Chan, W.; Li, L. Metabolomic coverage of chemical-group-submetabolome analysis: Group classification and four-channel chemical isotope labeling LC-MS. Anal. Chem. 2019, 91, 12108–12115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Huang, H.C.; Hsieh, Y.J.; Fu, S.H.; Li, L.; Chen, C.L.; Chu, L.J.; Yu, J.S. Targeting amine-and phenol-containing metabolites in urine by dansylation isotope labeling and liquid chromatography mass spectrometry for evaluation of bladder cancer biomarkers. J. Food Drug Anal. 2019, 27, 460–474. [Google Scholar] [CrossRef] [Green Version]
- Ogunade, I.; McCoun, M.; Idowu, M.; Peters, S. Comparative effects of two multispecies direct-fed microbial products on energy status, nutrient digestibility, and ruminal fermentation, bacterial community, and metabolome of beef steers. J. Anim. Sci. 2020, 98, 9. [Google Scholar] [CrossRef]
- Mung, D.; Li, L. Development of chemical isotope labeling LC-MS for milk metabolomics: Comprehensive and quantitative profiling of the amine/phenol submetabolome. Anal. Chem. 2017, 89, 4435–4443. [Google Scholar] [CrossRef]
- Li, L.; Li, R.; Zhou, J.; Zuniga, A.; Stanislaus, A.E.; Wu, Y.; Huan, T.; Zheng, J.; Shi, Y.; Wishart, D.S. MyCompoundID: Using an evidence-based metabolome library for metabolite identification. Anal. Chem. 2013, 85, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Schwab, C.; Broderick, G. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [Green Version]
- Genzebu, D.; Tesfay, G. The role of bacteria in nitrogen metabolism in the rumen with emphasis of cattle. Res. J. Agric. Environ. Manag. 2015, 4, 282–290. [Google Scholar]
- Li, F.; Guan, L. Metatranscriptomics profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 2017, 83, 9. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, Y.; Shin, J.; Bhatia, S.; Sathiyanarayanan, G.; Seo, H.; Choi, K.; Yang, Y.; Park, K. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration. J. Microbiol. Biotechnol. 2015, 25, 1108–1113. [Google Scholar] [CrossRef] [Green Version]
- McCormack, S.; Johnson, L. Polyamines. Encycl. Gastroenterol. 2004, 199–206. [Google Scholar]
- Bekebrede, A.F.; Keijer, J.; Gerrits, W.J.J.; Boer, V.C.J. The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine. Nutrients 2020, 12, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, A. Function of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makletsova, M.G.; Syatkin, S.P.; Poleschuk, V.V.; Urazgildeeva, G.R.; Chigaleychik, L.A.; Sungrapova, C.Y.; Illarioshkin, S.N. Polyamines in Parkinson’s Disease: Their Role in Oxidative Stress Induction and Protein Aggregation. J. Neurol. Res. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Engelking, L. Amino Acid Modifications. In Textbook of Veterinary Physiological Chemistry; Academic Press: Cambridge, MA, USA, 2015; pp. 12–17. [Google Scholar]
- Kuo, A.J.; Song, J.; Cheung, P.; Ishibe-Murakami, S.; Yamazoe, S.; Chen, J.K.; Patel, D.J.; Gozani, O. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012, 484, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, G.G.; Strahl, B.D. Hitting the ‘mark’: Interpreting lysine methylation in the context of active transcription. Biochim. Biophys. Acta BBA 2014, 1839, 1353–1361. [Google Scholar] [CrossRef]
- Jorge-Smeding, E.; Renand, G.; Centeno, D.; Pétéra, M.; Durand, S.; Polakof, S.; Cantalapiedra-Hijar, G. Metabolomics reveals changes in urea cycle associated to residual feed intake in growing heifers. Energy Protein Metab. Nutr. 2019, 138, 231–232. [Google Scholar]
- Klemesurd, M.J.; Klopfenstein, T.; Lewis, A. Evaluation of feather meal as a source of sulfur amino acids for growing steers. J. Anim. Sci. 2000, 78, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr.; Rode, L. Amino Acid Metabolism in Ruminants. Animal Feed Science and Technology. Sci. Direct. 1996, 59, 167–172. [Google Scholar]
- Leung, A.Y.; Paul, A.G. Baeocystin, a mono-methyl analog of psilocybin from Psilocybe baeocystis saprophytic culture. J. Pharm. Sci. 1967, 56, 146. [Google Scholar] [CrossRef]
- Leung, A.Y.; Paul, A.G. Baeocystin and norbaeocystin: New analogs of psilocybin from Psilocybe baeocystis. J. Pharm. Sci. 1968, 57, 1667–1671. [Google Scholar] [CrossRef]
- Patocka, J.; Wu, R.; Neprovima, E.; Valis, M.; Wu, W. Chemistry and Toxicology of Major Bioactive Substances in Incobyte Mushrooms. Natl. Libr. Med. 2021, 22, 2218. [Google Scholar]
- Binder, E.M.; Blodgett, D.J.; Currin, J.F.; Caudell, D.; Cherney, J.H.; LeRoith, T. Phalaris arundinacea (reed canarygrass) grass staggers in beef cattle. J. Vet. Diagn. Investig. 2010, 22, 802–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paley, E. Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA Aminoacylation-Protein Synthesis in Human Health and Disease. Int. J. Tryptophan Res. 2019, 12, 1178646919834550. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Blanco, M.; Greer, E.; He, C.; Shi, Y. DNA N6-methyladenine: A new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 2015, 16, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Grova, N.; Roth, S.; Duca, R.; Godderis, L.; Guebels, P.; Meriaux, S.; Lumley, A.; Bouillaud-Kremarik, P.; Ernens, I.; et al. N6-Methyladenine in Eukaryotic DNA: Tissue Distribution, Early Embryo Development, and Neuronal Toxicity. Front. Genet. 2021, 2, 657171. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%DM) | % of Dietary DM |
---|---|
Corn silage | 49.5 |
Mixed grass hay 1 | 47.5 |
Concentrate supplement 2 | 3.0 |
Nutrient analysis | |
Dry matter, % | 44.5 |
Crude protein, % | 13.2 |
Neutral detergent fiber (amylase treated), % | 45.9 |
Acid detergent fiber, % | 31.5 |
Ether extract, % | 3.14 |
Calcium, % | 0.66 |
Phosphorus, % | 0.37 |
Net energy of maintenance, Mcal/kg | 1.53 |
Net energy of gain, Mcal/kg | 0.93 |
Metabolite | FC | FDR |
---|---|---|
Adenine | 1.60 | 0.01 |
2-Aminomuconic acid | 1.50 | 0.01 |
6-Methyladenine | 1.31 | 0.01 |
Deoxyadenosine | 1.26 | 0.04 |
Homoarginine | 0.92 | 0.05 |
Beaocystin | 0.91 | 0.01 |
N(6)-methyllysine | 0.77 | 0.02 |
Isomer 1 of Cadaverine | 0.56 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidney, T.; Taiwo, G.; Idowu, M.; Amusan, I.; Pech Cervantes, A.; Ogunade, I. Rumen Fluid Amine/Phenol-Metabolome of Beef Steers with Divergent Residual Feed Intake Phenotype. Ruminants 2023, 3, 1-8. https://doi.org/10.3390/ruminants3010001
Sidney T, Taiwo G, Idowu M, Amusan I, Pech Cervantes A, Ogunade I. Rumen Fluid Amine/Phenol-Metabolome of Beef Steers with Divergent Residual Feed Intake Phenotype. Ruminants. 2023; 3(1):1-8. https://doi.org/10.3390/ruminants3010001
Chicago/Turabian StyleSidney, Taylor, Godstime Taiwo, Modoluwamu Idowu, Ibukun Amusan, Andres Pech Cervantes, and Ibukun Ogunade. 2023. "Rumen Fluid Amine/Phenol-Metabolome of Beef Steers with Divergent Residual Feed Intake Phenotype" Ruminants 3, no. 1: 1-8. https://doi.org/10.3390/ruminants3010001
APA StyleSidney, T., Taiwo, G., Idowu, M., Amusan, I., Pech Cervantes, A., & Ogunade, I. (2023). Rumen Fluid Amine/Phenol-Metabolome of Beef Steers with Divergent Residual Feed Intake Phenotype. Ruminants, 3(1), 1-8. https://doi.org/10.3390/ruminants3010001