Probabilistic Multiple-Integral Evaluation of Odd Dirichlet Beta and Even Zeta Functions and Proof of Digamma-Trigamma Reflections
Abstract
1. Introduction
2. Background
2.1. Double-Integral Techniques for
2.2. Double-Integral Technique [3] for
2.3. Double-Integral Technique [6] for
2.4. Random Variables
- denotes a standard normal distribution of mean and standard deviation
- Cauchy is a Cauchy distribution of location parameter 0 and scale parameter
- Lévy denotes a Lévy distribution of location parameter 0 and dispersion parameter
- Form whereThen with:
- As a generalisation of in (20), it is natural to take into account withLet us consider, for example:Then:
- Form where Lévy LévyThen with:Now, letting we get the PDF of a Cauchy distribution:This shows that we can recover the results using different probabilistic distributions.
3. Multiple-Integral Approach
3.1. Triple-Integral Evaluation of
3.2. Quadruple-Integral Evaluation of
4. Further Results on Quotients of Cauchy Distributions
4.1. Quotients of Four Cauchy Random Variables
4.2. Quotients of Three Cauchy Random Variables
5. Generalised Cauchy Distributions
5.1. Probabilistic Proof of the Digamma Reflection Formula
5.2. Probabilistic Proof of the Trigamma Reflection Formula
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mengoli, P. NovæQuadraturæ Arithmeticæ, seu de Additione Fractionum; Typographia I. Montij: Bologna, Italy, 1650. [Google Scholar]
- Euler, L. De summis serierum reciprocarum. Comment. Acad. Sci. Petropolitanae 1740, 7, 123–134. [Google Scholar]
- Ritelli, D. Another Proof of Using Double Integrals. Am. Math. Mon. 2013, 120, 642–645. [Google Scholar] [CrossRef]
- Euler, L. Variæ observationes circa series infinitas. Comment. Acad. Sci. Petropolitanae 1744, 9, 160–188. [Google Scholar]
- Nahin, P.J. In Pursuit of Zeta-3: The World’s Most Mysterious Unsolved Math Problem; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Pace, L. Probabilistically Proving that . Am. Math. Mon. 2011, 118, 641–643. [Google Scholar] [CrossRef]
- Kaushik, V.; Ritelli, D. Evaluation of Harmonic Sums with Integrals. Q. Appl. Math. 2018, LXXVI, 577–600. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: Berlin/Heidelberg, Germany, 1976; Chapter 12. [Google Scholar]
- Berndt, B.C. Character analogues of the Poisson and Euler–Maclaurin summation formulas with applications. J. Number Theory 1972, 4, 413–445. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Kumagai, M.; Yoshimoto, M. On the values of the Hurwitz zeta function at rational arguments. J. Math. Anal. Appl. 2003, 285, 680–699. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Ritelli, D.; Spaletta, G. Introductory Mathematical Analysis for Quantitative Finance; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Holst, L. Probabilistic proof of Euler identities. J. Appl. Probab. 2013, 50, 1206–1212. [Google Scholar] [CrossRef]
- Ayoub, R. Euler and the Zeta function. Am. Math. Mon. 1974, 81, 1067–1086. [Google Scholar] [CrossRef]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Riemann, B. Ueber die Anzahl der Primzahlen unter einer Gegebenen Grösse; Monatsberichte der Königlich Preuß ischen Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1859; pp. 136–144. [Google Scholar]
- Idowu, M.A. Fundamental Relations between the Dirichlet Beta Function, Euler Numbers, and Riemann Zeta Function for Positive Integers. arXiv 2012, arXiv:1210.5559v1. [Google Scholar] [CrossRef]
- Apostol, T.M. A proof that Euler missed: Evaluating ζ(2) the easy way. Math. Intell. 1983, 5, 59–60. [Google Scholar] [CrossRef]
- Beukers, F. A note on the irrationality of ζ(2) and ζ(3). Bull. Lond. Math. Soc. 1979, 11, 268–272. [Google Scholar] [CrossRef]
- Bourgade, P.; Fujita, T.; Yor, M. Euler’s formulae for ζ(2n) and products of Cauchy variables. Electron. Commun. Probab. 2007, 12, 73–80. [Google Scholar] [CrossRef]
- Harper, J.D. Another Simple Proof of . Am. Math. Mon. 2003, 110, 540–541. [Google Scholar]
- Lord, N. Yet Another Proof That . Math. Gaz. 2002, 86, 477–479. [Google Scholar] [CrossRef]
- Elkies, N.D. On the Sums . Am. Math. Mon. 2003, 110, 561–573. [Google Scholar] [CrossRef]
- Beukers, F.; Kolk, J.A.C.; Calabi, E. Sums of generalized harmonic series and volumes. Nieuw Arch. Voor Wiskd. 1993, 11, 561–573. [Google Scholar]
- Kontsevich, M.; Zagier, D. Periods. In Mathematics Unlimited—2001 and Beyond; Springer: Berlin/Heidelberg, Germany, 2001; pp. 771–808. [Google Scholar]
- Capiński, M.; Kopp, P.E. Measure, Integral and Probability, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Springer, M.D. The Algebra of Random V ariables; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- WRI. Mathematica Quick Revision History. 2025. Available online: https://www.wolfram.com/language/quick-revision-history (accessed on 1 January 2025).
- Bierens De Haan, D. Exposé de la Théorie, des Propriétés, des Formules de Transformation, et des Méthodes d’Évaluation des Intégrales Définies; C.G. van der Post: Amsterdam, The Netherlands, 1862; Volume 8. [Google Scholar]
- Brychkov, Y.; Marichev, O.; Savischenko, N. Handbook of Mellin Transforms; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bateman, H.; Erdélyi, A.; Magnus, W.; Oberhettinger, F. Tables of Integral Transforms. Vol. 1; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Ritelli, D. Introduction to Special Functions for Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargellini, A.E.; Ritelli, D.; Spaletta, G. Probabilistic Multiple-Integral Evaluation of Odd Dirichlet Beta and Even Zeta Functions and Proof of Digamma-Trigamma Reflections. Foundations 2025, 5, 27. https://doi.org/10.3390/foundations5030027
Bargellini AE, Ritelli D, Spaletta G. Probabilistic Multiple-Integral Evaluation of Odd Dirichlet Beta and Even Zeta Functions and Proof of Digamma-Trigamma Reflections. Foundations. 2025; 5(3):27. https://doi.org/10.3390/foundations5030027
Chicago/Turabian StyleBargellini, Antonio E., Daniele Ritelli, and Giulia Spaletta. 2025. "Probabilistic Multiple-Integral Evaluation of Odd Dirichlet Beta and Even Zeta Functions and Proof of Digamma-Trigamma Reflections" Foundations 5, no. 3: 27. https://doi.org/10.3390/foundations5030027
APA StyleBargellini, A. E., Ritelli, D., & Spaletta, G. (2025). Probabilistic Multiple-Integral Evaluation of Odd Dirichlet Beta and Even Zeta Functions and Proof of Digamma-Trigamma Reflections. Foundations, 5(3), 27. https://doi.org/10.3390/foundations5030027