Association of Euterpe oleracea, Bixa orellana, Myciaria dubia, and Astrocaryum aculeatum (the Terasen® Nutraceutical) Increases the Lifespan of Caenorhabditis elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Product
2.2. Evaluation of Radical Scavenging Activity In Vitro
2.2.1. DPPH Radical Scavenging Activity
2.2.2. ABTS Radical Scavenging Assay
2.3. Caenorhabditis elegans Strains
2.3.1. Reproduction Assay
2.3.2. Pharyngeal Pumping Rate
2.3.3. Growth Alteration Assay
2.3.4. Locomotion Analysis Assay
2.3.5. Lifespan Assessment
2.4. Statistical Analysis
3. Results
3.1. Radical Scavenging Assessment
3.2. Assessment of Pharyngeal Pumping Rate
3.3. Reproduction Assessment
3.4. Locomotion Assessment
3.5. Size Evaluation
3.6. Lifespan Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briga, M.; Verhulst, S. What Can Long-Lived Mutants Tell Us about Mechanisms Causing Aging and Lifespan Variation in Natural Environments? Exp. Gerontol. 2015, 71, 21–26. [Google Scholar] [CrossRef]
- Sharma, R.; Padwad, Y. Perspectives of the Potential Implications of Polyphenols in Influencing the Interrelationship between Oxi-Inflammatory Stress, Cellular Senescence and Immunosenescence during Aging. Trends Food Sci. Technol. 2020, 98, 41–52. [Google Scholar] [CrossRef]
- De Freitas Rodrigues, C.; Ramos Boldori, J.; Valandro Soares, M.; Somacal, S.; Emanuelli, T.; Izaguirry, A.; Weber Santos Cibin, F.; Rossini Augusti, P.; Casagrande Denardin, C. Goji Berry (Lycium barbarum L.) Juice Reduces Lifespan and Premature Aging of Caenorhabditis elegans: Is It Safe to Consume It? Food Res. Int. 2021, 144, 110297. [Google Scholar] [CrossRef]
- World Health Organization (n.d.). Ageing. W.H.O. Available online: https://www.who.int/health-topics/ageing (accessed on 8 November 2023).
- Trendelenburg, A.U.; Scheuren, A.C.; Potter, P.; Müller, R.; Bellantuono, I. Geroprotectors: A Role in the Treatment of Frailty. Mech. Ageing Dev. 2019, 180, 11–20. [Google Scholar] [CrossRef]
- Yue, Y.; Li, S.; Shen, P.; Park, Y. Caenorhabditis elegans as a Model for Obesity Research. Curr. Res. Food Sci. 2021, 4, 692–697. [Google Scholar] [CrossRef]
- Liu, L.; Guo, P.; Wang, P.; Zheng, S.; Qu, Z.; Liu, N. The Review of Anti-Aging Mechanism of Polyphenols on Caenorhabditis elegans. Front. Bioeng. Biotechnol. 2021, 9, 635768. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, G.A.; Ashrafi, K. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends Endocrinol. Metab. 2016, 27, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Lim, W.H.; Van Le, V.; Ko, S.R.; Kim, B.; Oh, H.M.; Ahn, C.Y. Lifespan Extension and Anti-Oxidant Effects of Carotenoid Pigments in Caenorhabditis elegans. Bioresour. Technol. Rep. 2022, 17, 100962. [Google Scholar] [CrossRef]
- Kim, E.J.E.; Lee, S.-J.V. Recent Progresses on Anti-Aging Compounds and Their Targets in Caenorhabditis elegans. Transl. Med. Aging 2019, 3, 121–124. [Google Scholar] [CrossRef]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant. Songklanakarin J. Sci. Technol. SJST 2004, 26, 211–219. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Roxo, M.; Cheng, X.; Zhang, S.; Cheng, H.; Wink, M. Pro-Oxidant and Lifespan Extension Effects of Caffeine and Related Methylxanthines in Caenorhabditis elegans. Food Chem. X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, X.; Zhang, J.; Li, M.; Qi, Y.; Zhou, L. Calycosin Promotes Lifespan in Caenorhabditis elegans through Insulin Signaling Pathway via Daf-16, Age-1 and Daf-2. J. Biosci. Bioeng. 2017, 124, 1–7. [Google Scholar] [CrossRef]
- Liao, V.H.-C.; Yu, C.-W.; Chu, Y.-J.; Li, W.-H.; Hsieh, Y.-C.; Wang, T.-T. Curcumin-Mediated Lifespan Extension in Caenorhabditis elegans. Mech. Ageing Dev. 2011, 132, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Liao, W.-R.; How, C.M.; Yen, P.-L.; Wei, C.-C. Chronic Exposure of Zearalenone Inhibits Antioxidant Defense and Results in Aging-Related Defects Associated with DAF-16/FOXO in Caenorhabditis elegans. Environ. Pollut. 2021, 285, 117233. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X. Anthocyanins: Structural Characteristics That Result in Unique Metabolic Patterns and Biological Activities. Free Radic. Res. 2006, 40, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Cano, A.; Acosta, M. The Hydrophilic and Lipophilic Contribution to Total Antioxidant Activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Huang, C.; Xiong, C.; Kornfeld, K. Measurements of Age-Related Changes of Physiological Processes That Predict Lifespan of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2004, 101, 8084–8089. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Zhang, G.; Chen, X.; Wang, X. Itaconate Prolongs the Healthy Lifespan by Activating UPRmt in Caenorhabditis elegans. Eur. J. Pharmacol. 2022, 923, 174951. [Google Scholar] [CrossRef] [PubMed]
- Lüersen, K.; Faust, U.; Gottschling, D.C.; Döring, F. Gait-Specific Adaptation of Locomotor Activity in Response to Dietary Restriction in Caenorhabditis elegans. J. Exp. Biol. 2014, 217, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xie, Y.; Yang, H.; Sun, P.; Xue, B.; Garcia, L.R.; Zhang, L. EAT-2 Attenuates C. Elegans Development via Metabolic Remodeling in a Chemically Defined Food Environment. Cell. Mol. Life Sci. 2023, 80, 205. [Google Scholar] [CrossRef] [PubMed]
- You, Y.J.; Kim, J.; Raizen, D.M.; Avery, L. Insulin, CGMP, and TGF-β Signals Regulate Food Intake and Quiescence in C. Elegans: A Model for Satiety. Cell Metab. 2008, 7, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Mörck, C.; Pilon, M.C. Elegans Feeding Defective Mutants Have Shorter Body Lengths and Increased Autophagy. BMC Dev. Biol. 2006, 6, 39. [Google Scholar] [CrossRef]
- Evason, K.; Collins, J.J.; Huang, C.; Hughes, S.; Kornfeld, K. Valproic Acid Extends Caenorhabditis elegans Lifespan. Aging Cell 2008, 7, 305–317. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wang, K.; Yang, X.; Liu, X.; Chen, J.; Li, J.; Wang, J.; Guo, Q.; Wang, H. Black Rice Anthocyanin Extract Enhances the Antioxidant Capacity in PC12 Cells and Improves the Lifespan by Activating IIS Pathway in Caenorhabditis elegans. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 265, 109533. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Z.; Shan, S.; Wu, A.; Zhao, C.; Ye, X.; Zheng, X.; Zhu, R. Cyanidin-3-O-Glucoside Promotes Stress Tolerance and Lifespan Extension of Caenorhabditis elegans Exposed to Polystyrene via DAF-16 Pathway. Mech. Ageing Dev. 2022, 207, 111723. [Google Scholar] [CrossRef]
- Van de Klashorst, D.; van den Elzen, A.; Weeteling, J.; Roberts, M.; Desai, T.; Bottoms, L.; Hughes, S. Montmorency Tart Cherry (Prunus cerasus L.) Acts as a Calorie Restriction Mimetic That Increases Intestinal Fat and Lifespan in Caenorhabditis elegans. J. Funct. Foods 2020, 68, 103890. [Google Scholar] [CrossRef]
- Wang, S.; Xue, J.; Zhang, S.; Zheng, S.; Xue, Y.; Xu, D.; Zhang, X. Composition of Peony Petal Fatty Acids and Flavonoids and Their Effect on Caenorhabditis elegans Lifespan. Plant Physiol. Biochem. 2020, 155, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, H.; Roxo, M.; Krstin, S.; Röhrig, T.; Richling, E.; Wink, M. An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Seeberger, J.; Alberico, T.; Wang, C.; Wheeler, C.T.; Schauss, A.G.; Zou, S. Açai Palm Fruit (Euterpe oleracea Mart.) Pulp Improves Survival of Flies on a High Fat Diet. Exp. Gerontol. 2010, 45, 243–251. [Google Scholar] [CrossRef]
- Tambara, A.L.; de Los Santos Moraes, L.; Dal Forno, A.H.; Boldori, J.R.; Gonçalves Soares, A.T.; de Freitas Rodrigues, C.; Mariutti, L.R.B.; Mercadante, A.Z.; de Ávila, D.S.; Denardin, C.C. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem. Toxicol. 2018, 120, 639–650. [Google Scholar] [CrossRef]
- Kampkötter, A.; Timpel, C.; Zurawski, R.F.; Ruhl, S.; Chovolou, Y.; Proksch, P.; Wätjen, W. Increase of Stress Resistance and Lifespan of Caenorhabditis elegans by Quercetin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Surco-Laos, F.; González-Manzano, S.; González-Paramás, A.M.; Gómez-Orte, E.; Cabello, J.; Santos-Buelga, C. Deglycosylation Is a Key Step in Biotransformation and Lifespan Effects of Quercetin-3-O-Glucoside in Caenorhabditis elegans. Pharmacol. Res. 2013, 76, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Martorell, P.; Forment, J.V.; de Llanos, R.; Montón, F.; Llopis, S.; González, N.; Genovés, S.; Cienfuegos, E.; Monzó, H.; Ramón, D. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as Model Organisms To Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress. J. Agric. Food Chem. 2011, 59, 2077–2085. [Google Scholar] [CrossRef]
- Lashmanova, E.; Proshkina, E.; Zhikrivetskaya, S.; Shevchenko, O.; Marusich, E.; Leonov, S.; Melerzanov, A.; Zhavoronkov, A.; Moskalev, A. Fucoxanthin Increases Lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol. Res. 2015, 100, 228–241. [Google Scholar] [CrossRef] [PubMed]
- González-Peña, M.A.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Carotenoids from Mamey (Pouteria sapota) and Carrot (Daucus carota) Increase the Oxidative Stress Resistance of Caenorhabditis elegans. Biochem. Biophys. Rep. 2021, 26, 100989. [Google Scholar] [CrossRef]
- Aan, G.; Zainudin, M.; Karim, N.; Ngah, W. Effect of the Tocotrienol-Rich Fraction on the Lifespan and Oxidative Biomarkers in Caenorhabditis elegans under Oxidative Stress. Clinics 2013, 68, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Linton, D.R.; Alavez, S.; Navarro-Ocaña, A.; Román-Guerrero, A.; Pinzón-López, L.; Pérez-Flores, L.J. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-Tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans. Planta Med. 2021, 87, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Vellai, T.; Takacs-Vellai, K.; Zhang, Y.; Kovacs, A.L.; Orosz, L.; Müller, F. Influence of TOR Kinase on Lifespan in C. Elegans. Nature 2003, 426, 620. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Sheng, Y.; Liu, F.; Gao, J.; Liu, G.; Li, S.; Jiang, N.; Yu, C.; Liu, Y. Usnic Acid Extends Healthspan and Improves the Neurodegeneration Diseases via MTOR/PHA-4 Signaling Pathway in Caenorhabditis elegans. iScience 2022, 25, 105539. [Google Scholar] [CrossRef]
Group | n | Median [Interquartiles] | Mean ± SEM | Range | Sum | Chi-Square (vs. Control/Total) | Log-Rank p (vs. Control/Total) |
---|---|---|---|---|---|---|---|
Control (EC) | 60 | 6 [4/7] | 5.83 ± 0.27 | 8 [3,4,5,6,7,8,9,10,11] | 350 | - | - |
Ter 0.25 | 60 | 6 [4/7] | 5.70 ±0.29 | 11 [3,4,5,6,7,8,9,10,11,12,13,14] | 342 | 1.160 | 0.2814 |
Ter 0.5 | 60 | 7 [5/9.5] | 7.40 ± 0.40 | 13 [3,4,5,6,7,8,9,10,11,12,13,14,15,16] | 444 | 5.503 | 0.0190 |
Ter 1.0 | 60 | 8 [6/9.8] | 8.35 ± 0.41 | 113 [3,4,5,6,7,8,9,10,11,12,13,14,15,16] | 501 | 9.943 | 0.0016 |
Total | 240 | 6 [5/8] | 6.82 ± 0.19 | 13 [3,4,5,6,7,8,9,10,11,12,13,14,15,16] | 1637 | 8.471 | 0.0036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo, E.L.; Tavares, B.A.M.; Colares, N.N.D.; do Nascimento, A.L.; Carvalho, H.d.O.; Castro, A.N.; Pereira, A.C.M.; Winter, C.E.; Sena, I.d.S.; Moreira, L.F.; et al. Association of Euterpe oleracea, Bixa orellana, Myciaria dubia, and Astrocaryum aculeatum (the Terasen® Nutraceutical) Increases the Lifespan of Caenorhabditis elegans. J. Ageing Longev. 2023, 3, 494-504. https://doi.org/10.3390/jal3040022
de Melo EL, Tavares BAM, Colares NND, do Nascimento AL, Carvalho HdO, Castro AN, Pereira ACM, Winter CE, Sena IdS, Moreira LF, et al. Association of Euterpe oleracea, Bixa orellana, Myciaria dubia, and Astrocaryum aculeatum (the Terasen® Nutraceutical) Increases the Lifespan of Caenorhabditis elegans. Journal of Ageing and Longevity. 2023; 3(4):494-504. https://doi.org/10.3390/jal3040022
Chicago/Turabian Stylede Melo, Ester Lopes, Bruno Augusto Machado Tavares, Nayara Nílcia Dias Colares, Aline Lopes do Nascimento, Helison de Oliveira Carvalho, Andrés Navarrete Castro, Arlindo César Matias Pereira, Carlos Eduardo Winter, Iracirema da Silva Sena, Luiz Fernando Moreira, and et al. 2023. "Association of Euterpe oleracea, Bixa orellana, Myciaria dubia, and Astrocaryum aculeatum (the Terasen® Nutraceutical) Increases the Lifespan of Caenorhabditis elegans" Journal of Ageing and Longevity 3, no. 4: 494-504. https://doi.org/10.3390/jal3040022
APA Stylede Melo, E. L., Tavares, B. A. M., Colares, N. N. D., do Nascimento, A. L., Carvalho, H. d. O., Castro, A. N., Pereira, A. C. M., Winter, C. E., Sena, I. d. S., Moreira, L. F., & Carvalho, J. C. T. (2023). Association of Euterpe oleracea, Bixa orellana, Myciaria dubia, and Astrocaryum aculeatum (the Terasen® Nutraceutical) Increases the Lifespan of Caenorhabditis elegans. Journal of Ageing and Longevity, 3(4), 494-504. https://doi.org/10.3390/jal3040022