Sustainable Co-Habitation Housing Design: A Computational Approach for Addressing Biodiversity Threats in the Galapagos Islands
Abstract
:1. Introduction
2. Methodology
2.1. Analysis or the Ecosystem
2.2. Digital Prototyping and Evolutionary Multi-Objective Optimisation
2.3. Computational Analysis
3. Species Approach
3.1. Selection of Species
3.2. The Study of Selected Species
4. Material Development
4.1. Material Study
4.1.1. Existing Application and Potentialities of CBPC
4.1.2. Material Properties
4.1.3. Application of Bioceramic
4.1.4. Components
4.1.5. Digital Experiment Set-Up
4.1.6. Physical Experiment Set-Up
4.1.7. Preparation of the Material Samples
4.1.8. Compression Test
4.1.9. Analysis of the Data
- Specific gravity (g/cm3) 1.7–2.0;
- Tensile strength (MPa) 2.1–14;
- Compression strength, MPa (psi) 20–91 (2860–13,000);
- Young’s modulus (GPa) 35–105;
- Fracture toughness (MPa m1/2) 0.3–0.8.
5. Architectural Development
5.1. Design Set-Up
5.1.1. Architectural Strategy
5.1.2. Spatial and Environmental Animal Needs
5.2. First Simulation
5.2.1. Form-Finding Strategy
5.2.2. Multi-Objective Optimisation
5.2.3. Selection
5.2.4. Selection Strategy Driven by Animals Needs and Material Performances
5.3. Spatial and Environmental Animal Needs: CFD
5.4. Second Simulation
5.4.1. Multi-Objective Optimisation
5.4.2. Selection
5.4.3. Selection Strategy Driven by Animals’ Needs and Material Performances
5.5. Unity Aggregation
5.6. Validation Environmental Analysis
5.6.1. Computational Fluid Dynamics
5.6.2. Temperature Analysis
5.6.3. Humidity
5.6.4. Environmental Analysis Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artmann, M.; Inostroza, L.; Fan, P. Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? Ecol. Indic. 2019, 96, 3–9. [Google Scholar] [CrossRef]
- Weisser, W.W.; Hensel, M.; Barath, S.; Culshaw, V.; Grobman, Y.J.; Hauck, T.E.; Joschinski, J.; Ludwig, F.; Mimet, A.; Perini, K.; et al. Creating ecologically sound buildings by integrating ecology, architecture and computational design. People Nat. 2023, 5, 4–20. [Google Scholar] [CrossRef]
- Pawlyn, M. Biomimicry in Architecture, 2nd ed.; RIBA Publishing: London, UK, 2016. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Weisser, W.W.; Hauck, T.E. Using a Species’ Life-Cycle to Improve Open Space Planning and Conservation in Cities and Elsewhere. 2017. Available online: https://www.researchgate.net/publication/345729882_ANIMAL-AIDED_DESIGN_-_using_a_species'_life-cycle_to_improve_open_space_planning_and_conservation_in_cities_and_elsewhere (accessed on 27 January 2023).
- Charles Darwin Foundation. Planning for a Climate-Change-Resilient Galapagos Marine Reserve. Charles Darwin Foundation. Available online: https://www.darwinfoundation.org/en/news/all-news-stories/planning-for-a-climate-change-resilient-galapagos-marine-reserve/ (accessed on 9 November 2024).
- Bensted-Smith, R.; Grenier, F.H. Sustainable Management of the Galapagos Islands: Balancing Conservation and Human Needs. In Islands of the World: Ecological and Evolutionary Aspects of Insular Biodiversity; Perry, R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 257–272. [Google Scholar]
- INEC. Análisis de Resultados Definitivos Censo de Población y Vivienda Galápagos 2015. 2015. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/CPV_Galapagos_2015/Analisis_Galapagos%202015.pdf (accessed on 13 September 2023).
- González, J.A.; Montes, C.; Rodríguez, J.; Tapia, W. Rethinking the Galapagos Islands as a Complex Social-Ecological System: Implications for Conservation and Management. Ecol. Soc. 2008, 13, 13. [Google Scholar] [CrossRef]
- Delahaye, P. A Methodology for the Study of Interspecific Cohabitation Issues in the City. Biosemiotics 2023, 16, 143–152. [Google Scholar] [CrossRef]
- Gatto, G.; McCardle, J.R. Multispecies Design and Ethnographic Practice: Following Other-Than-Humans as a Mode of Exploring Environmental Issues. Sustainability 2019, 11, 5032. [Google Scholar] [CrossRef]
- Selvan, S.U.; Saroglou, S.T.; Joschinski, J.; Calbi, M.; Vogler, V.; Barath, S.; Grobman, Y.J. Toward multi-species building envelopes: A critical literature review of multi-criteria decision-making for design support. Build. Environ. 2023, 231, 110006. [Google Scholar] [CrossRef]
- Showkatbakhsh, M.; Makki, M. Multi-Objective Optimisation of Urban Form: A Framework for Selecting the Optimal Solution. Buildings 2022, 12, 1473. [Google Scholar] [CrossRef]
- Paine, R.T. A Conversation on Refining the Concept of Keystone Species. Conserv. Biol. 1995, 9, 962–964. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. OIKOS 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Tapia, W.; Goldspiel, H.B.; Gibbs, J.P. Introduction of giant tortoises as a replacemet “ecosystme engineer” to facilitate restoration of Santa Fe Island, Galapagos. Restor. Ecol. 2022, 30, e13476. [Google Scholar] [CrossRef]
- Tapia, W.; Gibbs, J.P. Galapagos land iguanas as ecosystem engineers. PeerJ 2022, 10, e12711. [Google Scholar] [CrossRef] [PubMed]
- Roberge, J.-M.; Angelstam, P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conserv. Biol. 2004, 18, 76–85. [Google Scholar] [CrossRef]
- Ochoa, D. Just Another Day in the Life of the Galapagos Sea Lion. Center for Galapgos Studies. 2016. Available online: https://www.galapagosscience.org/just-another-day-in-the-life-of-the-galapagos-sea-lion/ (accessed on 17 September 2023).
- Ragazzi, M.; Catellani, R.; Rada, E.C.; Torretta, V.; Salazar-Valenzuela, X. Management of Urban Wastewater on One of the Galapagos Islands. Sustainability 2016, 8, 208. [Google Scholar] [CrossRef]
- Water Management. Available online: http://web.mit.edu/12.000/www/m2008/teams/eerika/tavillage/water.ta.html (accessed on 6 March 2024).
- Di Capua, F.; de Sario, S.; Ferraro, A.; Petrella, A.; Race, M.; Pirozzi, F.; Fratino, U.; Spasiano, D. Phosphorous removal and recovery from urban wastewater: Current practices and new directions. Sci. Total Environ. 2022, 823, 153750. [Google Scholar] [CrossRef]
- Fontana, D.; Forte, F.; Pietrantonio, M.; Pucciarmati, S.; Marcoaldi, C. Magnesium recovery from seawater desalination brines: A technical review. Environ. Dev. Sustain. 2023, 25, 13733–13754. [Google Scholar] [CrossRef]
- Dorozhkin, S. Calcium Orthophosphate Cements for Biomedical Application. J. Mater. Sci. 2008, 43, 3028–3057. [Google Scholar] [CrossRef]
- Singh, D.; Wagh, A.S.; Cunnane, J.C.; Mayberry, J.L. Chemically bonded phosphate ceramics for low-level mixed-waste stabilization. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1997, 32, 527–541. [Google Scholar] [CrossRef]
- Wagh, A.S.; Sayenko, S.Y.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields. J. Nucl. Mater. 2015, 462, 165–172. [Google Scholar] [CrossRef]
- Wagh, A.S. Chapter 1—Introduction to Chemically Bonded Ceramics. In Chemically Bonded Phosphate Ceramics, 2nd ed.; Wagh, A.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–16. Available online: https://www.sciencedirect.com/science/article/pii/B9780081003800000014 (accessed on 6 March 2024).
- Geoship. Available online: https://www.geoship.is/ (accessed on 6 March 2024).
- Simonton, T.C.; Roy, R.; Komarneni, S.; Breval, E. Microstructure and mechanical properties of synthetic opal: A chemically bonded ceramic. J. Mater. Res. 1986, 1, 667–674. [Google Scholar] [CrossRef]
- New Strong Cement Materials: Chemically Bonded Ceramics Science. Available online: https://www.science.org/doi/10.1126/science.235.4789.651 (accessed on 6 March 2024).
- Park, J. Bioceramics: Properties, Characterizations, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 741. [Google Scholar]
- Wagh, A.S. Chapter 9—Magnesium Phosphate Ceramics. In Chemically Bonded Phosphate Ceramics, 2nd ed.; Wagh, A.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–131. Available online: https://www.sciencedirect.com/science/article/pii/B9780081003800000099 (accessed on 6 March 2024).
- Wagh, A.S. Chapter 19—Chemically Bonded Phosphate Bioceramics. In Chemically Bonded Phosphate Ceramics, 2nd ed.; Wagh, A.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 347–358. Available online: https://www.sciencedirect.com/science/article/pii/B9780081003800000191 (accessed on 6 November 2024).
- Wagh, A.S.; Jeong, S.Y.; Lohan, D.; Elizabeth, A. Chemically Bonded Phospho-Silicate Ceramics. U.S. Patent 6518212B1, 11 February 2003. Available online: https://patents.google.com/patent/US6518212B1/en (accessed on 6 March 2024).
- Xu, B.; Lothenbach, B.; Winnefeld, F. Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cem. Concr. Res. 2020, 131, 106012. [Google Scholar] [CrossRef]
- Wagh, A.S.; Singh, D.; Jeong, S.-Y. Method of waste stabilization via chemically bonded phosphate ceramics. U.S. Patent 5830815A, 3 November 1998. Available online: https://patents.google.com/patent/US5830815A/en (accessed on 6 March 2024).
- Beer, F.; Johnston, E.; DeWolf, J.; Mazurek, D. Mechanics of Materials, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 978-0-07-339823-5. [Google Scholar]
- Galapagos Conservation Trust. Galapagos Giant Tortoises and Their Ecosystem Role. Available online: https://galapagosconservation.org.uk/galapagos-giant-tortoises/ (accessed on 10 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiorano, G.; Juca Freire, N.; Teparaksa, R.; Bhapkar, P.D.; Erdine, E.; Showkatbakhsh, M. Sustainable Co-Habitation Housing Design: A Computational Approach for Addressing Biodiversity Threats in the Galapagos Islands. Architecture 2024, 4, 1101-1135. https://doi.org/10.3390/architecture4040058
Maiorano G, Juca Freire N, Teparaksa R, Bhapkar PD, Erdine E, Showkatbakhsh M. Sustainable Co-Habitation Housing Design: A Computational Approach for Addressing Biodiversity Threats in the Galapagos Islands. Architecture. 2024; 4(4):1101-1135. https://doi.org/10.3390/architecture4040058
Chicago/Turabian StyleMaiorano, Gianfranco, Natalia Juca Freire, Rapas Teparaksa, Pinak Dilip Bhapkar, Elif Erdine, and Milad Showkatbakhsh. 2024. "Sustainable Co-Habitation Housing Design: A Computational Approach for Addressing Biodiversity Threats in the Galapagos Islands" Architecture 4, no. 4: 1101-1135. https://doi.org/10.3390/architecture4040058
APA StyleMaiorano, G., Juca Freire, N., Teparaksa, R., Bhapkar, P. D., Erdine, E., & Showkatbakhsh, M. (2024). Sustainable Co-Habitation Housing Design: A Computational Approach for Addressing Biodiversity Threats in the Galapagos Islands. Architecture, 4(4), 1101-1135. https://doi.org/10.3390/architecture4040058