An Experiment in Transdisciplinary Systems Mapping: Architecture and the Water–Energy–Sanitation Nexus in Brazil
Abstract
:1. Introduction
1.1. Architectural Intersections with the WES Nexus
1.2. Research Scope and Structure
2. Materials and Methods
3. WES Nexus Challenges in Brazil
4. Mapping the WES Nexus: Nodes and Their Interconnections
5. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The notion of ‘efficiency’ in the context of resource use is not without critique. Scrutinizing the so-called ‘techno-optimism’ (the hope that technology will resolve current sustainability challenges and the climate emergency), the research shows that improvements in efficiency have not necessarily contributed to social, environmental, or economic sustainability in recent decades [55]. As Saunders and Tsao [56] argue, the ‘rebound effect’—i.e., the observation that gains from improvement in efficiency are minimized by an increase in demand—should not deter scholars, practitioners, and policy makers from seeking energy improvements, as they may still contribute to a reduction in resource use. |
2 | Informality, as defined by UN-HABITAT [66], is the presence of multiple deprivations: the lack of access to improved water, lack of access to improved sanitation, the lack of a sufficient living area and quality/durability of structure, and the lack of security of tenure. Although they are not usually thought of as the architect’s domain, the deprivations characterizing urban informality are directly related to the design, production, maintenance, and inhabitation of the built environment. Architecturally engaging with informality means, therefore, expanding into an ‘enlarged professional field with a responsibility for all architectures, including those where formal outcomes are uncertain and where makeshift forms play important roles’ [32]. The entanglement of the built form, environmental systems, economic structures, and social relations suggests the transgression of ‘normalised boundaries of architectural practice and ideology’ [32]. This requires the application of systems thinking to introduce new perspectives on seemingly familiar phenomena in architectural and urban research [10,67]. |
3 | |
4 | The geographical focus of the workshop was the Tietê River Basin in São Paulo, Brazil. |
5 | A common application within systems mapping is causal loop diagraming, a qualitative method portraying causal relationships between elements. These connections can be either positive or negative [77]. Causal loop diagraming enables researchers to integrate diverse stakeholder perspectives and to capture emergent dynamics that a linear approach might overlook. |
6 | In the context of architectural education, practice, and research, systemic diagraming—a type of systems mapping—is a method to encourage architects to engage with issues beyond the immediate building site or master plan [10]. Borrowed from the natural sciences, systemic diagraming provides a tool to map and communicate actors, resources, and flows within a system, allowing for a nuanced understanding of the interconnections at various scales. Systemic diagraming can be employed to map relationships and to assess the potential consequences of proposed interventions. This enables architects to address complex conditions and understand the broader implications of their interventions on political, socio-economic, and environmental dimensions. The spatial scale emerges as a practical self-regulation mechanism, allowing architects to understand smaller systems within the broader context of a given site. |
7 | These nodes are representative of the disciplinary backgrounds of the workshop participants and may vary with the set up of a multi-disciplinary team. |
References
- UN-ESCAP. The Urban Nexus: Integrating Resources for Sustainable Cities; ST/ESCAP/2859; UN-ESCAP: Bangkok, Thailand, 2019. [Google Scholar]
- Hoff, H. Understanding the Nexus. 2011. Available online: https://policycommons.net/ (accessed on 4 July 2023).
- United Nations Environment Programme. Agriculture: Investing in Natural Capital—Towards a Green Economy Pathways to Sustainable Development and Poverty Eradication; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- Wei, T.; Wu, J.; Chen, S. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front. Sustain. Cities 2021, 3, 696381. [Google Scholar] [CrossRef]
- Heller, L. The Human Rights to Water and Sanitation; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Lisboa, S.S.; Heller, L.; Silveira, R.B. Desafios do planejamento municipal de saneamento básico em municípios de pequeno porte: A percepção dos gestores. Eng. Sanit. Ambient. 2013, 18, 341–348. [Google Scholar] [CrossRef]
- Acselrad, H.; Herculano, S.; Pádua, J.A. Justiça ambiental e cidadania. In Justiça Ambiental e Cidadania; Relume Dumará: Rio de Janeiro, Brazil, 2004; 315p. [Google Scholar]
- Liu, Q.; Iossifova, D. Socio-metabolic practices and heterogeneous sanitation infrastructures in urbanizing China. Trans. Plan. Urban Res. 2023. [Google Scholar] [CrossRef]
- Till, J. Architecture Depends; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Sengupta, U.; Iossifova, D. Systemic Diagramming: An approach to decoding urban ecologies. Archit. Des. 2012, 82, 44–51. [Google Scholar] [CrossRef]
- Iossifova, D.; Zavos, S.; Gasparatos, A.; Valencio, N.; Bhide, A.; Baltazar, A.P.; Sengupta, U.; Cheung, E.; Baptista, M.d.S.; Dong, N.; et al. Infrastructuring with care in cities of the global south. In Urban Infrastructuring: Reconfigurations, Transformations and Sustainability in the Global South; Iossifova, D., Gasparatos, A., Zavos, S., Gamal, Y., Long, Y., Eds.; Springer Nature: Singapore, 2022; pp. 309–319. [Google Scholar]
- McPhearson, T.; Haase, D.; Kabisch, N.; Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 2016, 70, 566–573. [Google Scholar] [CrossRef]
- Santos, M. Metamorfoses do Espaço Habitado; Hucitec: São Paulo, Brazil, 1988. [Google Scholar]
- Morin, E. Os desafios da complexidade. In Morin E, Organizador. A Religação dos Saberes. O Desafio do Século XXI; Editora Bertrand Brasil: Rio de Janeiro, Brazil, 2001; pp. 559–567. [Google Scholar]
- Meadows, D.H. Thinking in Systems: A Primer; Earthscan: London, UK, 2008. [Google Scholar]
- Thackara, J. How to Make Systems Thinking Sexy. 2011. Available online: http://designobserver.com/ (accessed on 30 June 2011).
- Brouwer, F.; Avgerinopoulos, G.; Fazekas, D.; Laspidou, C.; Mercure, J.-F.; Pollitt, H.; Ramos, E.P.; Howells, M. Energy modelling and the Nexus concept. Energy Strategy Rev. 2018, 19, 1–6. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y. Urban nexus: A new paradigm for urban studies. Ecol. Model. 2015, 318, 5–7. [Google Scholar] [CrossRef]
- Huan, S.; Liu, X. Network modeling and stability improvement of the water-energy-fertilizer-food nexus flows based on global agricultural trade. Sustain. Prod. Consum. 2023, 39, 480–494. [Google Scholar] [CrossRef]
- Abdali, H.; Sahebi, H.; Pishvaee, M. The water-energy-food-land nexus at the sugarcane-to-bioenergy supply chain: A sustainable network design model. Comput. Chem. Eng. 2021, 145, 107199. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. An inclusive approach for integrated systems: Incorporation of climate in the water-food-energy-land nexus index. Sustain. Prod. Consum. 2023, 39, 42–52. [Google Scholar] [CrossRef]
- Laspidou, C.S.; Kofinas, D.T.; Mellios, N.K.; Witmer, M. Modelling the Water-Energy-Food-Land Use-Climate Nexus: The Nexus Tree Approach. Proceedings 2018, 2, 617. [Google Scholar]
- Zeng, Y.; Liu, D.; Guo, S.; Xiong, L.; Liu, P.; Chen, J.; Yin, J.; Wu, Z.; Zhou, W. Assessing the effects of water resources allocation on the uncertainty propagation in the water–energy–food–society (WEFS) nexus. Agric. Water Manag. 2023, 282, 108279. [Google Scholar] [CrossRef]
- Feng, M.; Zhao, R.; Huang, H.; Xiao, L.; Xie, Z.; Zhang, L.; Sun, J.; Chuai, X. Water–energy–carbon nexus of different land use types: The case of Zhengzhou, China. Ecol. Indic. 2022, 141, 109073. [Google Scholar] [CrossRef]
- Su, Q.; Dai, H.; Xie, S.; Yu, X.; Lin, Y.; Singh, V.P.; Karthikeyan, R. Water–Energy–Carbon Nexus: Greenhouse Gas Emissions from Integrated Urban Drainage Systems in China. Environ. Sci. Technol. 2023, 57, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; Bellomi, D.; Cazzoli, A.; De Carolis, G.; D’Odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 2016, 6, 22521. [Google Scholar] [CrossRef] [PubMed]
- Yuxi, Z.; Jingke, H.; Wen, Q.; Yang, C.; Danfei, N. Managing water-land-food nexus towards resource efficiency improvement: A superedge-based analysis of China. J. Environ. Manag. 2023, 325, 116607. [Google Scholar] [CrossRef]
- Cristiano, E.; Deidda, R.; Viola, F. The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Sci. Total Environ. 2021, 756, 143876. [Google Scholar] [CrossRef]
- Crestaz, E.; Cimmarrusti, Y.; Farinosi, F.; Biedler, M.; Amani, A.; Mishra, A.; Carmona-Gutierrez, A. (Eds.) Implementing the Water–Energy–Food–Ecosystems Nexus and Achieving the Sustainable Development Goals; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2021. [Google Scholar]
- Rani, A.; Snyder, S.W.; Kim, H.; Lei, Z.; Pan, S.-Y. Pathways to a net-zero-carbon water sector through energy-extracting wastewater technologies. NPJ Clean Water 2022, 5, 49. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Dovey, K. Informalising Architecture: The Challenge of Informal Settlements. Archit. Des. 2013, 83, 82–89. [Google Scholar] [CrossRef]
- Gurr, J.M.; Walloth, C. Introduction: Towards a Transdisciplinary Understanding of Complex Urban Systems. In Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling; Walloth, C., Gurr, J.M., Schmidt, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–12. [Google Scholar]
- Hester, R.T. Design for Ecological Democracy; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Mostafavi, M.; Doherty, G. (Eds.) Ecological Urbanism; Lars Müller Publishers: Zurich, Switzerland, 2010. [Google Scholar]
- Hochhäusl, S.; Lange, T.; Adams, R.E.; Barber, D.A.; Bierig, A.; Cupers, K.; Doucet, I.; Ferng, J.; von Fischer, S.; Förster, K.; et al. Architecture and the Environment. Archit. Hist. 2018, 6, 20. [Google Scholar] [CrossRef]
- Kalhor, K.; Emaminejad, N. Sustainable development in cities: Studying the relationship between groundwater level and urbanization using remote sensing data. Groundw. Sustain. Dev. 2019, 9, 100243. [Google Scholar] [CrossRef]
- Sharifi, A. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Sci. Total Environ. 2021, 750, 141642. [Google Scholar] [CrossRef] [PubMed]
- van den Brandeler, F.; Gupta, J.; Hordijk, M. Megacities and rivers: Scalar mismatches between urban water management and river basin management. J. Hydrol. 2019, 573, 1067–1074. [Google Scholar] [CrossRef]
- Houghton, A.; Castillo-Salgado, C. Health Co-Benefits of Green Building Design Strategies and Community Resilience to Urban Flooding: A Systematic Review of the Evidence. Int. J. Environ. Res. Public Health 2017, 14, 1519. [Google Scholar] [CrossRef] [PubMed]
- Jabornig, S. Overview and feasibility of advanced grey water treatment systems for single households. Urban Water J. 2014, 11, 361–369. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef] [PubMed]
- Kinkade-Levario, H. Design for Water: Rainwater Harvesting, Stormwater Catchment, and Alternate Water Reuse; New Society Publishers: Gabriola, BC, Canada, 2007. [Google Scholar]
- Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [Google Scholar] [CrossRef]
- Liu, Q.; Browne, A.L.; Iossifova, D. A socio-material approach to resource consumption and environmental sustainability of tourist accommodations in a Chinese hot spring town. Sustain. Prod. Consum. 2022, 30, 424–437. [Google Scholar] [CrossRef]
- Ellis, J.B. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Malaviya, P.; Sharma, R.; Sharma, P.K. Rain gardens as stormwater management Tool. In Sustainable Green Technologies for Environmental Management; Shah, S., Venkatramanan, V., Prasad, R., Eds.; Springer: Singapore, 2019; pp. 141–166. [Google Scholar]
- Ishimatsu, K.; Ito, K.; Mitani, Y.; Tanaka, Y.; Sugahara, T.; Naka, Y. Use of rain gardens for stormwater management in urban design and planning. Landsc. Ecol. Eng. 2017, 13, 205–212. [Google Scholar] [CrossRef]
- Hube, S.; Wu, B. Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. Sci. Total Environ. 2021, 779, 146545. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Singh, N.K.; Kazmi, A.A.; Starkl, M. A review on full-scale decentralized wastewater treatment systems: Techno-economical approach. Water Sci. Technol. 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Lofrano, G.; Brown, J. Wastewater management through the ages: A history of mankind. Sci. Total Environ. 2010, 408, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Sojobi, A.O.; Zayed, T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environ. Res. 2022, 203, 111609. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy efficient design of building: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Alexander, S.; Rutherford, J. A critique of techno-optimism: Efficiency without sufficiency is lost. In Routledge Handbook of Global Sustainability Governance; Routledge: New York, NY, USA, 2019; pp. 231–241. [Google Scholar]
- Saunders, H.D.; Tsao, J.Y. Rebound effects for lighting. Energy Policy 2012, 49, 477–478. [Google Scholar] [CrossRef]
- Lotfabadi, P. Analyzing passive solar strategies in the case of high-rise building. Renew. Sustain. Energy Rev. 2015, 52, 1340–1353. [Google Scholar] [CrossRef]
- Ralegaonkar, R.V.; Gupta, R. Review of intelligent building construction: A passive solar architecture approach. Renew. Sustain. Energy Rev. 2010, 14, 2238–2242. [Google Scholar] [CrossRef]
- Morrissey, J.; Moore, T.; Horne, R.E. Affordable passive solar design in a temperate climate: An experiment in residential building orientation. Renew. Energy 2011, 36, 568–577. [Google Scholar] [CrossRef]
- Stevanović, S. Optimization of passive solar design strategies: A review. Renew. Sustain. Energy Rev. 2013, 25, 177–196. [Google Scholar] [CrossRef]
- Dai, Y.; Bai, Y. Performance Improvement for Building Integrated Photovoltaics in Practice: A Review. Energies 2021, 14, 178. [Google Scholar] [CrossRef]
- Osseweijer, F.J.W.; van den Hurk, L.B.P.; Teunissen, E.J.H.M.; van Sark, W.G.J.H.M. A comparative review of building integrated photovoltaics ecosystems in selected European countries. Renew. Sustain. Energy Rev. 2018, 90, 1027–1040. [Google Scholar] [CrossRef]
- Jelle, B.P. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways. Energies 2016, 9, 21. [Google Scholar] [CrossRef]
- Gross, M.; Hoffmann-Riem, H. Ecological restoration as a real-world experiment: Designing robust implementation strategies in an urban environment. Public Underst. Sci. 2005, 14, 269–284. [Google Scholar] [CrossRef]
- Chick, A.; Micklethwaite, P. Design for Sustainable Change: How Design and Designers Can Drive the Sustainability Agenda; Bloomsbury Academic: London, UK, 2011. [Google Scholar]
- UN-HABITAT. World Cities Report 2022: Envisaging the Future of Cities; UN-HABITAT: Nairobi, Kenya, 2022. [Google Scholar]
- Sengupta, U.; Doll, C.N.; Gasparatos, A.; Iossifova, D.; Angeloudis, P.; Baptista, M.S.; Cheng, S.; Graham, D.; Hyde, R.; Kraenkel, R. Sustainable Smart Cities: Applying Complexity Science to Achieve Urban Sustainability; UNU-IAS: Tokyo, Japan, 2017; pp. 2409–3017. [Google Scholar]
- Shove, E. What is wrong with energy efficiency? Build. Res. Inf. 2018, 46, 779–789. [Google Scholar] [CrossRef]
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Swilling, M.; Thomas, C.J. Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Rigolot, C. Transdisciplinarity as a discipline and a way of being: Complementarities and creative tensions. Humanit. Soc. Sci. Commun. 2020, 7, 100. [Google Scholar] [CrossRef]
- Scholz, R.W.; Steiner, G. The real type and ideal type of transdisciplinary processes: Part II—What constraints and obstacles do we meet in practice? Sustain. Sci. 2015, 10, 653–671. [Google Scholar] [CrossRef]
- Archibald, M.M.; Lawless, M.T.; de Plaza, M.A.P.; Kitson, A.L. How transdisciplinary research teams learn to do knowledge translation (KT), and how KT in turn impacts transdisciplinary research: A realist evaluation and longitudinal case study. Health Res. Policy Syst. 2023, 21, 20. [Google Scholar] [CrossRef]
- Lopes, A.M.; Fam, D.; Williams, J. Designing sustainable sanitation: Involving design in innovative, transdisciplinary research. Des. Stud. 2012, 33, 298–317. [Google Scholar] [CrossRef]
- Fam, D.; Palmer, J.; Riedy, C.; Mitchell, C. Transdisciplinary Research and Practice for Sustainability Outcomes; Taylor & Francis: London, UK, 2016. [Google Scholar]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; Volume 26, pp. 91–108. [Google Scholar]
- Kiekens, A.; Dierckx de Casterlé, B.; Vandamme, A.-M. Qualitative systems mapping for complex public health problems: A practical guide. PLoS ONE 2022, 17, e0264463. [Google Scholar] [CrossRef]
- Rusoja, E.; Haynie, D.; Sievers, J.; Mustafee, N.; Nelson, F.; Reynolds, M.; Sarriot, E.; Swanson, R.C.; Williams, B. Thinking about complexity in health: A systematic review of the key systems thinking and complexity ideas in health. J. Eval. Clin. Pract. 2018, 24, 600–606. [Google Scholar] [CrossRef]
- Plsek, P.E.; Greenhalgh, T. The challenge of complexity in health care. BMJ 2001, 323, 625–628. [Google Scholar] [CrossRef]
- Kiekens, A.; Dierckx de Casterlé, B.; Pellizzer, G.; Mosha, I.H.; Mosha, F.; Rinke de Wit, T.F.; Sangeda, R.Z.; Surian, A.; Vandaele, N.; Vranken, L.; et al. Exploring the mechanisms behind HIV drug resistance in sub-Saharan Africa: Conceptual mapping of a complex adaptive system based on multi-disciplinary expert insights. BMC Public Health 2022, 22, 455. [Google Scholar] [CrossRef]
- Király, G.; Miskolczi, P. Dynamics of participation: System dynamics and participation—An empirical review. Syst. Res. Behav. Sci. 2019, 36, 199–210. [Google Scholar] [CrossRef]
- ISO 14001-2015; Environmental Management Systems-Requirements with Guidance for Use. ISO—International Organization Standards: Geneva, Switzerland, 2015.
- SNIS—Sistema Nacional de Informação Sobre Saneamento: Diagnóstico Anual de Resíduos Sólidos—2020. Available online: https://www.gov.br/cidades/pt-br/acesso-a-informacao/acoes-e-programas/saneamento/snis/painel/rs (accessed on 4 July 2023).
- Energy Information Administration. Annual Energy Outlook 2020; US Department of Energy: Washington, DC, USA, 2020. [Google Scholar]
- Ribeiro, W.C.; Santos, C.L.S.d.; Silva, L.P.B.d. Conflito pela água, entre a escassez e a abundância: Marcos teóricos. AMBIENTES Rev. Geogr. Ecol. Política 2019, 1, 11. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Von Sperling, M. Análise da confiabilidade de estações de tratamento de esgotos. Eng. Sanit. Ambient. 2007, 12, 389–398. [Google Scholar] [CrossRef]
- Freitas, T.C.d.; Sant’Anna, E.M.E.; Guedes, C.D.; Ferreira, T.C.R.; Guarda, V.L.d.M.; Jardim, F.A. Análise qualitativa e toxicológica de uma floração de cianobactérias na Lagoa do Gambá em Ouro Preto, MG, e uma síntese da ocorrência de florações de cianobactérias no Brasil. Rev. Bras. Recur. Hídricos 2012, 17, 17–28. [Google Scholar] [CrossRef]
- Almeida, R.P.; Hungaro, L. Water and sanitation governance between austerity and financialization. Util. Policy 2021, 71, 101229. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Woerden, F.v. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Kumar, A.; Agrawal, A. Recent trends in solid waste management status, challenges, and potential for the future Indian cities—A review. Curr. Res. Environ. Sustain. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Brazil. Law no. 11445. Establishes National Guidelines (The Legal Landmark) for Basic Sanitation. 2007. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/lei/l11445.htm (accessed on 9 June 2023).
- Brazil. Law No. 12305. Establishes the National Solid Waste Policy. 2010. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 9 June 2023).
- Brazil. Law No. 14026. Updates the Legal Landmark on Sanitation. 2020. Available online: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/l14026.htm (accessed on 9 June 2023).
- Stella, E.A.; Carvalho, I.R.B.D.; Fratta, K.D.D.S.A.; Lacerda, L.F.D.S.; Ziglio, L.A.I.; Gonçalves-Dias, S.L.F. Governança na coleta seletiva de resíduos sólidos urbanos: Mapeamento dos atores presentes no município de São Paulo. Cad. Campo Rev. Ciências Sociais 2021, 31, 141–176. [Google Scholar] [CrossRef]
- Valencio, N.; Valencio, A.; da Silva Baptista, M. What Lies Behind the Acute Crises: The Social and Infrasystems Links with Disasters in Brazil. In Urban Infrastructuring: Reconfigurations, Transformations and Sustainability in the Global South; Iossifova, D., Gasparatos, A., Zavos, S., Gamal, Y., Long, Y., Eds.; Springer Nature: Singapore, 2022; pp. 35–52. [Google Scholar]
- Ministry of Mines and Energy; Energy Research Office. Brazil Energy Balance: 50 Years; Ministry of Mines and Energy: Brasilia, Brazil, 2020. [Google Scholar]
- Custódio, V. A Crise Hídrica na Região Metropolitana de São Paulo (2014–2015). GEOUSP Espaço Tempo (Online) 2015, 19, 445. [Google Scholar] [CrossRef]
- Heller, L.; Nascimento, N.d.O. Pesquisa e desenvolvimento na área de saneamento no Brasil: Necessidades e tendências. Eng. Sanitária Ambient. 2005, 10, 24–35. [Google Scholar] [CrossRef]
- Álvarez, X.; Valero, E.; Torre-Rodríguez, N.d.l.; Acuña-Alonso, C. Influence of Small Hydroelectric Power Stations on River Water Quality. Water 2020, 12, 312. [Google Scholar] [CrossRef]
- Gonçalves, J.C.; Marchezini, V.; da Silva Valencio, N.F.L. Desastres relacionados con colapsos de embalses en Brasil: Aspectos sociopolíticos de una seguridad ilusoria. Estud. Sociol. 2012, 30, 773–804. Available online: https://estudiossociologicos.colmex.mx/index.php/es/article/view/93 (accessed on 24 January 2024).
- Cunha, D.G.F.; Grull, D.; Damato, M.; Blum, J.R.C.; Lutti, J.E.I.; Eiger, S.; Mancuso, P.C.S. Trophic state evolution in a subtropical reservoir over 34 years in response to different management procedures. Water Sci. Technol. 2011, 64, 2338–2344. [Google Scholar] [CrossRef]
- Vilanova, M.R.N.; Balestieri, J.A.P. Hydropower recovery in water supply systems: Models and case study. Energy Convers. Manag. 2014, 84, 414–426. [Google Scholar] [CrossRef]
- Rodríguez-Luna, D.; Alcalá, F.J.; Encina-Montoya, F.; Vela, N. The Environmental Impact Assessment of Sanitation Projects in Chile: Overview and Improvement Opportunities Focused on Follow-Ups. Int. J. Environ. Res. Public Health 2022, 19, 3964. [Google Scholar] [CrossRef]
- Elala, D.; Labhasetwar, P.; Tyrrel, S.F. Deterioration in water quality from supply chain to household and appropriate storage in the context of intermittent water supplies. Water Supply 2011, 11, 400–408. [Google Scholar] [CrossRef]
- Molle, F. River-basin planning and management: The social life of a concept. Geoforum 2009, 40, 484–494. [Google Scholar] [CrossRef]
- Silva, L.P.B.; Ribeiro, W.C. Los ríos transfronterizos y la frontera brasil-bolivia: Los usos del agua y la gobernanza hídrica en el centro del continente sudamericano. Scr. Nova 2021, 25, 79–102. [Google Scholar] [CrossRef]
- Kaza, N.; Curtis, M.P. The Land Use Energy Connection. J. Plan. Lit. 2014, 29, 355–369. [Google Scholar] [CrossRef]
- Chen, Y.-k.; Kirkerud, J.G.; Bolkesjø, T.F. Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios. Appl. Energy 2022, 310, 118557. [Google Scholar] [CrossRef]
- Debastiani Júnior, J.R.; Naliato, D.A.D.O.; Perbiche-Neves, G.; Nogueira, M.G. Fluvial lateral environments in Río de La Plata basin: Effects of hydropower damming and eutrophication. Acta Limnol. Brasil. 2016, 28, e26. [Google Scholar] [CrossRef]
- International Energy Agency. Water Energy Nexus; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Andersson, K.; Otoo, M.; Nolasco, M. Innovative sanitation approaches could address multiple development challenges. Water Sci. Technol. 2017, 77, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Novaes, J.L.C.; Carvalho, E.D. Artisanal fisheries in a Brazilian hypereutrophic reservoir: Barra Bonita reservoir, middle Tietê river. Braz. J. Biol. 2011, 71, 821–832. [Google Scholar] [CrossRef]
- Marston, S.A. The social construction of scale. Prog. Hum. Geogr. 2000, 24, 219–242. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Zhu, Z.; Zhang, Y.; Zhao, Y.; Li, R.; Watson, J.; Li, B.; Liu, Z. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy Convers. Manag. 2017, 134, 340–346. [Google Scholar] [CrossRef]
- Yacob, T.W.; Fisher, R.; Linden, K.G.; Weimer, A.W. Pyrolysis of human feces: Gas yield analysis and kinetic modeling. Waste Manag. 2018, 79, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Fangzhou, D.; Zhenglong, L.; Shaoqiang, Y.; Beizhen, X.; Hong, L. Electricity generation directly using human feces wastewater for life support system. Acta Astronaut. 2011, 68, 1537–1547. [Google Scholar] [CrossRef]
- WHO/UNICEF. Improved and Unimproved Water and Sanitation Facilities. Available online: https://www.who.int/data/nutrition/nlis/info/improved-sanitation-facilities-and-drinking-water-sources (accessed on 28 April 2023).
- Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Junk, W.J.; Mello, J.A.S.N.D. Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira. Estud. Avançados 1990, 4, 126–143. [Google Scholar] [CrossRef]
- Heller, L. Report of the Special Rapporteur on the Human Right to Safe Drinking Water and Sanitation; United Nations General Assembly: Geneva, Switzerland, 2018; Available online: https://contrattoacqua.it/public/upload/1/2/tab_elms_docs/1543591628rapporto-rapporteur-heller-2018-n1822481.pdf (accessed on 24 January 2024).
- Iossifova, D.; Doll, C.; Gasparatos, A. (Eds.) Defining the Urban: Interdisciplinary and Professional Perspectives; Routledge: London, UK, 2018. [Google Scholar]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
Knowledge Gap | Explanation |
---|---|
Lack of emphasis on interconnections and interdependencies | Limited understanding of the interconnections between water, energy, sanitation, and architecture [34,35]. |
Limited research on practical implementation and performance evaluation | Insufficient research on implementing and evaluating design strategies in real-world settings [64,65]. |
Neglect of social and cultural aspects | Inadequate attention to the social and cultural dimensions of the WES nexus [34,35]. |
Imbalance toward developed countries | Disproportionate focus on developed countries, neglecting the specific challenges faced by developing countries, like Brazil. |
Insufficient consideration of broader implications of efficiency | Lack of critical examination of the broader implications of efficiency policies in terms of social, environmental, and economic sustainability [55,61,68]. |
Link | Node1 | Sector1 | Type1 | Node2 | Sector2 | Type2 | Reference |
---|---|---|---|---|---|---|---|
L01 | N08 | W | T05 | N04 | E | T05 | [99] |
L02 | N12 | W | T01 | N17 | E | T05 | [98] |
L03 | N16 | W | T02 | N10 | E | T02 | [100] |
L04 | N01 | W | T02 | N15 | E | T02 | [101] |
L05 | N16 | W | T02 | N06 | S | T05 | [102] |
L06 | N16 | W | T02 | N02 | W | T02 | [103] |
L07 | N02 | W | T01 | N01 | W | T02 | [104,105] |
L08 | N13 | E | T01 | N11 | E | T05 | [106,107] |
L09 | N04 | E | T05 | N01 | W | T02 | [98] |
L10 | N15 | E | T02 | N16 | W | T02 | [108] |
L11 | N18 | S | T01 | N05 | E | T05 | [109] |
L12 | N09 | S | T01 | N15 | E | T02 | [110] |
L13 | N14 | S | T03 | N03 | S | T04 | [87] |
L14 | N07 | S | T05 | N16 | W | T02 | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, M.A.S.d.; Valencio, N.; Iossifova, D.; Santiago, C.D.; Ziglio, L.; Valencio, A.; Pugliesi, E.; Gonçalves, J.C.; Cheung, E.; Sengupta, U. An Experiment in Transdisciplinary Systems Mapping: Architecture and the Water–Energy–Sanitation Nexus in Brazil. Architecture 2024, 4, 73-88. https://doi.org/10.3390/architecture4010006
Castro MASd, Valencio N, Iossifova D, Santiago CD, Ziglio L, Valencio A, Pugliesi E, Gonçalves JC, Cheung E, Sengupta U. An Experiment in Transdisciplinary Systems Mapping: Architecture and the Water–Energy–Sanitation Nexus in Brazil. Architecture. 2024; 4(1):73-88. https://doi.org/10.3390/architecture4010006
Chicago/Turabian StyleCastro, Marco Aurélio Soares de, Norma Valencio, Deljana Iossifova, Cristine Diniz Santiago, Luciana Ziglio, Arthur Valencio, Erica Pugliesi, Juliano Costa Gonçalves, Eric Cheung, and Ulysses Sengupta. 2024. "An Experiment in Transdisciplinary Systems Mapping: Architecture and the Water–Energy–Sanitation Nexus in Brazil" Architecture 4, no. 1: 73-88. https://doi.org/10.3390/architecture4010006
APA StyleCastro, M. A. S. d., Valencio, N., Iossifova, D., Santiago, C. D., Ziglio, L., Valencio, A., Pugliesi, E., Gonçalves, J. C., Cheung, E., & Sengupta, U. (2024). An Experiment in Transdisciplinary Systems Mapping: Architecture and the Water–Energy–Sanitation Nexus in Brazil. Architecture, 4(1), 73-88. https://doi.org/10.3390/architecture4010006