Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques
Abstract
:1. Introduction
- Determining the factors influencing building-related health problems and discomforts;
- Identifying numerous amenities to increase building occupant thermal comfort;
- Analyzing methods to improve occupant thermal comfort in buildings;
- Assessing current practices’ negative effects and innovative methods’ potential health and well-being advantages.
2. Literature Studies
3. Methods
4. Strategies to Improving the Occupants’ Thermal Comfort
4.1. Passive Ventilation
4.2. Solar Heating Applications
4.3. Solar Cooling System
4.4. Solar Daylighting
4.5. Electricity from Solar Energy
5. Discussion
6. Future Scope
7. Conclusions
- A wide range of building-related technologies exist to improve occupants’ thermal comfort, from space and water heating to ventilation, air conditioning, and lighting;
- Energy requirements for operating thermal comfort enhancement technologies are a major obstacle for the building sector globally;
- In spite of the fact that fossil fuels provide the majority of the required energy, their utilization and the strategies that have traditionally been used to put that energy to use have been linked to a number of detrimental outcomes for the environment and human health;
- Renewable energy is one viable solution to the problem of meeting the globe’s growing energy needs, and cutting-edge, novel approaches are being sought to mitigate the problems caused by the widespread use of conventional methods for improving thermal comfort;
- There are many ways in which solar energy may be utilized to improve the thermal comfort of the built environment, and as solar power becomes more widely-accessible throughout the globe, it will also become a more reliable and sustainable energy source;
- The most efficient use of conventional energy sources and conventional thermal comfort-enhancing applications may be attained via the best techniques of incorporating solar energy harvesting setups into the structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. e-Prime-Adv. Electr. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- One Nine ELMS. How Many Buildings Are There in the World 2022. Available online: https://www.onenineelms.co.uk/2022/09/13/how-many-buildings-are-there-in-the-world-2022/ (accessed on 25 March 2023).
- Kakoulli, C.; Kyriacou, A.; Michaelides, M.P. A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk. Atmosphere 2022, 13, 191. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Nag, P.K. Sick Building Syndrome and Other Building-Related Illnesses. In Office Buildings: Design Science and Innovation; Springer: Singapore, 2018; pp. 53–103. ISBN 978-981-13-2576-2. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Buildings and Climate Change; United Nations Environment Programme: Paris, France, 2009; pp. 1–56. ISBN 978-92-807-0000-0. [Google Scholar]
- United Nations. Causes and Effects of Climate Change. Available online: https://www.un.org/en/climatechange/science/causes-effects-climate-change# (accessed on 20 March 2023).
- Bambrick, H.J.; Capon, A.G.; Barnett, G.B.; Beaty, R.M.; Burton, A.J. Climate Change and Health in the Urban Environment: Adaptation Opportunities in Australian Cities. Asia-Pac. J. Public Health 2011, 23, 675–795. [Google Scholar] [CrossRef]
- Yüksek, İ.; Karadağ, İ. Use of Renewable Energy in Buildings; IntechOpen: London, UK, 2020; pp. 1–13. [Google Scholar]
- Kaushik, A.K.; Arif, M.; Syal, M.M.G.; Rana, M.Q.; Oladinrin, O.T.; Sharif, A.A.; Alshdiefat, A.S. Effect of Indoor Environment on Occupant Air Comfort and Productivity in Office Buildings: A Response Surface Analysis Approach. Sustainability 2022, 14, 15719. [Google Scholar] [CrossRef]
- Salari, N.; Khodayari, Y.; Hosseinian-Far, A.; Zarei, H.; Rasoulpoor, S.; Akbari, H.; Mohammadi, M. Global Prevalence of Chronic Fatigue Syndrome among Long COVID-19 Patients: A Systematic Review and Meta-Analysis. Biopsychosoc. Med. 2022, 16, 21. [Google Scholar] [CrossRef]
- Quinn, A.; Shaman, J. Health Symptoms in Relation to Temperature, Humidity, and Self- Reported Perceptions of Climate in New York City Residential Environments. Int. J. Biometeorol. 2017, 61, 1209–1220. [Google Scholar] [CrossRef]
- Hasager, F.; Bjerregaard, J.D.; Bonomaully, J.; Knap, H. Indoor Air Quality: Status and Standards. In Air Pollution Sources, Statistics and Health Effects; Springer: New York, NY, USA, 2021; pp. 135–162. [Google Scholar] [CrossRef]
- Surawattanasakul, V.; Sirikul, W.; Sapbamrer, R.; Wangsan, K.; Panumasvivat, J.; Assavanopakun, P.; Muangkaew, S. Respiratory Symptoms and Skin Sick Building Syndrome among Office Workers at University Hospital, Chiang Mai, Thailand: Associations with Indoor Air Quality, AIRMED Project. Int. J. Environ. Res. Public Health 2022, 19, 10850. [Google Scholar] [CrossRef]
- Berezina, E.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.V.; Belikov, I.; Belousov, V.; Elansky, N.F. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef]
- Shahzad, S.S.; Brennan, J.; Theodossopoulos, D.; Hughes, B.; Calautit, J.K. Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices. Sustainability 2016, 8, 331. [Google Scholar] [CrossRef]
- Hou, J.; Sun, Y.; Dai, X.; Liu, J.; Shen, X.; Tan, H.; Yin, H.; Huang, K.; Gao, Y.; Lai, D.; et al. Associations of Indoor Carbon Dioxide Concentrations, Air Temperature, and Humidity with Perceived Air Quality and Sick Building Syndrome Symptoms in Chinese Homes. Indoor Air 2021, 31, 1018–1028. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation Rates and Health: Multidisciplinary Review of the Scientific Literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Panahi, A.S. The Health Risks Associated with Energy Efficient Fluorescent, LEDs, and Artificial Lighting. In Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V; SPIE: Bellingham, WA, USA, 2014; Volume 9202, p. 92020K. [Google Scholar] [CrossRef]
- Berouine, A.; Ouladsine, R.; Bakhouya, M.; Essaaidi, M. A Predictive Control Approach for Thermal Energy Management in Buildings. Energy Rep. 2022, 8, 9127–9141. [Google Scholar] [CrossRef]
- Murillo Camacho, K.S.; Fouseki, K.; Altamirano-Medina, H. Decision-Making Processes of Residents in Preservation, Thermal Comfort, and Energy Efficiency in Heritage Buildings: A Pilot Study in Mexico City. Appl. Sci. 2022, 12, 1486. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Masi, R.F.; Mastellone, M.; Peter Vanoli, G. Phase Change Materials for Reducing Cooling Energy Demand and Improving Indoor Comfort: A Step-by-Step Retrofit of a Mediterranean Educational Building. Energies 2019, 12, 3661. [Google Scholar] [CrossRef]
- Li, Y.; Yin, W.; Zhong, Y.; Zhu, M.; Hao, X.; Li, Y.; Ouyang, Y.; Han, J. Energy Consumption of Apartment Conversion into Passive Houses in Hot-Summer and Cold-Winter Regions of China. Buildings 2023, 13, 168. [Google Scholar] [CrossRef]
- Martínez-molina, A.; Tort-ausina, I.; Cho, S.; Vivancos, J. Energy Efficiency and Thermal Comfort in Historic Buildings: A Review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Navarro, L.; de Gracia, A.; Niall, D.; Castell, A.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 2. Integration as Passive System. Renew. Energy 2016, 85, 1334–1356. [Google Scholar] [CrossRef]
- Hafez, F.S.; Sa’di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.H.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strateg. Rev. 2023, 45, 101013. [Google Scholar] [CrossRef]
- Schröder, M.; Ekins, P.; Power, A.; Zulauf, M.; Lowe, R. The KFW Experience in the Reduction of Energy Use in and CO2 Emissions from Buildings: Operation, Impacts and Lessons for the UK; UCL Energy Institute, University College London: London, UK, 2011; pp. 1–77. [Google Scholar]
- Hermann, C. The International Commission on Illumination—CIE: What It Is and How It Works. Symp.-Int. Astron. Union 2001, 196, 60–68. [Google Scholar] [CrossRef]
- Apipuchayakul, N.; Vassanadumrongdee, S. Factors Affecting the Consumption of Energy-Efficient Lighting Products: Exploring Purchase Behaviors of Thai Consumers. Sustainability 2020, 12, 4887. [Google Scholar] [CrossRef]
- Salamone, F.; Masullo, M.; Sibilio, S. Wearable Devices for Environmental Monitoring in the Built Environment: A Systematic Review. Sensors 2021, 21, 4727. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.; Esteves, M.J.; Mercado, M.V.; Barea, G.; Gelardi, D. Building Shape That Promotes Sustainable Architecture. Evaluation of the Indicative Factors and Its Relation with the Construction Costs. Archit. Res. 2018, 8, 111–122. [Google Scholar]
- Haq, M.A.U.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F.; Said, D.M. A Review on Lighting Control Technologies in Commercial Buildings, Their Performance and Affecting Factors. Renew. Sustain. Energy Rev. 2014, 33, 268–279. [Google Scholar] [CrossRef]
- Roccotelli, M.; Rinaldi, A.; Fanti, M.P.; Iannone, F. Article Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation. Energies 2021, 14, 138. [Google Scholar] [CrossRef]
- Lee, E.S.; Fernandes, L.L.; Wang, T.; Selkowitz, S.E.; Mesh, S.; Frank, Y.; Yancey, R. Demonstration of Energy Efficient Retrofits for Lighting and Daylighting in New York City Office Buildings; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2017; pp. 1–160. [Google Scholar]
- Li, Y.; Arulnathan, V.; Heidari, M.D.; Pelletier, N. Design Considerations for Net Zero Energy Buildings for Intensive, Confined Poultry Production: A Review of Current Insights, Knowledge Gaps, and Future Directions. Renew. Sustain. Energy Rev. 2022, 154, 2–17. [Google Scholar] [CrossRef]
- Flor, J.F.; Liu, X.; Sun, Y.; Beccarelli, P.; Chilton, J.; Wu, Y. Switching Daylight: Performance Prediction of Climate Adaptive ETFE Foil Façades. Build. Environ. 2022, 209, 108650. [Google Scholar] [CrossRef]
- Atamewan, E.E. Appraisal of Day-Lighting in Sustainable Housing Development in Developing Countries. J. Stud. Sci. Eng. 2022, 2, 59–75. [Google Scholar] [CrossRef]
- Chew, I.; Kalavally, V.; Tan, C.P.; Parkkinen, J. A Spectrally Tunable Smart LED Lighting System with Closed-Loop Control. IEEE Sens. J. 2016, 16, 4452–4459. [Google Scholar] [CrossRef]
- Lee, E.S.; Matusiak, B.S.; Geisler-Moroder, D.; Selkowitz, S.E.; Heschong, L. Advocating for View and Daylight in Buildings: Next Steps. Energy Build. 2022, 265, 112079. [Google Scholar] [CrossRef]
- Yuan, T.; Zou, H. Effects of Air Pollution on Myopia: An Update on Clinical Evidence and Biological Mechanisms. Environ. Sci. Pollut. Res. 2022, 29, 70674–70685. [Google Scholar] [CrossRef]
- Laeng, B.; Brennen, T.; Elden, Å.; Gaare Paulsen, H.; Banerjee, A.; Lipton, R. Latitude-of-Birth and Season-of-Birth Effects on Human Color Vision in the Arctic. Vision Res. 2007, 47, 1595–1607. [Google Scholar] [CrossRef]
- Blume, C.; Garbazza, C.; Spitschan, M. Effects of Light on Human Circadian Rhythms, Sleep and Mood. Somnologie 2019, 23, 147–156. [Google Scholar] [CrossRef]
- Münch, M.; Wirz-Justice, A.; Brown, S.A.; Kantermann, T.; Martiny, K.; Stefani, O.; Vetter, C.; Wright, K.P.; Wulff, K.; Skene, D.J. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020, 2, 61–85. [Google Scholar] [CrossRef]
- Fernandez-Antolin, M.M.; Del-Río, J.M.; Gonzalez-Lezcano, R.A. Influence of Solar Reflectance and Renewable Energies on Residential Heating and Cooling Demand in Sustainable Architecture: A Case Study in Different Climate Zones in Spain Considering Their Urban Contexts. Sustainability 2019, 11, 6782. [Google Scholar] [CrossRef]
- Wahl, S.; Engelhardt, M.; Schaupp, P.; Lappe, C.; Ivanov, I.V. The Inner Clock—Blue Light Sets the Human Rhythm. J. Biophotonics 2019, 12, e201900102. [Google Scholar] [CrossRef]
- Gooley, J.J. Light-Induced Resetting of Circadian Rhythms in Humans. J. Sci. Technol. Light. 2018, 41, 69–76. [Google Scholar] [CrossRef]
- Knoop, M.; Stefani, O.; Bueno, B.; Matusiak, B.; Hobday, R.; Wirz-Justice, A.; Martiny, K.; Kantermann, T.; Aarts, M.P.J.; Zemmouri, N.; et al. Daylight: What Makes the Difference? Light. Res. Technol. 2020, 52, 423–442. [Google Scholar] [CrossRef]
- Juda, M.; Liu-Ambrose, T.; Feldman, F.; Suvagau, C.; Mistlberger, R.E. Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks Sleep 2020, 2, 557–576. [Google Scholar] [CrossRef]
- Lowden, A.; Kecklund, G. Considerations on How to Light the Night-Shift. Light. Res. Technol. 2021, 53, 437–452. [Google Scholar] [CrossRef]
- Gupta, P.; Sinha, A.; Malik, S.; Rani, S. Dawn and Dusk Chorus as a Potential Zeitgeber. Biol. Rhythm Res. 2023, 54, 41–51. [Google Scholar] [CrossRef]
- Stefani, O.; Freyburger, M.; Veitz, S.; Basishvili, T.; Meyer, M.; Weibel, J.; Kobayashi, K.; Shirakawa, Y.; Cajochen, C. Changing Color and Intensity of LED Lighting across the Day Impacts on Circadian Melatonin Rhythms and Sleep in Healthy Men. J. Pineal Res. 2021, 70, 12714. [Google Scholar] [CrossRef] [PubMed]
- Gabel, V.; Reichert, C.F.; Maire, M.; Schmidt, C.; Schlangen, L.J.M.; Kolodyazhniy, V.; Garbazza, C.; Cajochen, C.; Viola, A.U. Differential Impact in Young and Older Individuals of Blue-Enriched White Light on Circadian Physiology and Alertness during Sustained Wakefulness. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bluyssen, P.M.; Cox, C.; Seppänen, O.; Oliveira Fernandes, E.; Clausen, G.; Müller, B.; Roulet, C.A. Why, When and How Do HVAC-Systems Pollute the Indoor Environment and What to Do about It? The European AIRLESS Project. Build. Environ. 2003, 38, 209–225. [Google Scholar] [CrossRef]
- Liu, S.; Koupriyanov, M.; Paskaruk, D.; Fediuk, G.; Chen, Q. Investigation of Airborne Particle Exposure in an Office with Mixing and Displacement Ventilation. Sustain. Cities Soc. 2022, 79, 103718. [Google Scholar] [CrossRef]
- Giampieri, A.; Ma, Z.; Ling-Chin, J.; Roskilly, A.P.; Smallbone, A.J. An Overview of Solutions for Airborne Viral Transmission Reduction Related to HVAC Systems Including Liquid Desiccant Air-Scrubbing. Energy 2022, 244, 122709. [Google Scholar] [CrossRef]
- Sakellaris, I.; Saraga, D.; Mandin, C.; de Kluizenaar, Y.; Fossati, S.; Spinazzè, A.; Cattaneo, A.; Mihucz, V.; Szigeti, T.; de Oliveira Fernandes, E.; et al. Association of Subjective Health Symptoms with Indoor Air Quality in European Office Buildings: The OFFICAIR Project. Indoor Air 2021, 31, 426–439. [Google Scholar] [CrossRef]
- Akova, İ.; Kiliç, E.; Sümer, H.; Keklikçi, T. Prevalence of Sick Building Syndrome in Hospital Staff and Its Relationship with Indoor Environmental Quality. Int. J. Environ. Health Res. 2022, 32, 1204–1219. [Google Scholar] [CrossRef]
- Mirabi, E.; Nazanin, N. Urban Facade Geometry on Outdoor Comfort Conditions: A Review. Indones. J. Urban Environ. Technol. 2020, 9, 45–59. [Google Scholar] [CrossRef]
- Chew, L.W.; Chen, C.; Gorlé, C. Improving Thermal Model Predictions for Naturally Ventilated Buildings Using Large Eddy Simulations. Build. Environ. 2022, 220, 109241. [Google Scholar] [CrossRef]
- Xu, F.; Xu, S.; Xiong, Q. Computational Investigation of Natural Ventilation Induced by Solar Chimneys: Significance of Building Space on Thermofluid Behavior. Phys. Fluids 2022, 34, 117101. [Google Scholar] [CrossRef]
- Anan-archa, A.; Chantawong, P.; Khedari, J. A New Configuration of Roof Skylight Combined With Solar Chimney. J. Eng. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- ETSAP. Water Heating. IEA ETSAP—Technol. Br. 2012, 1–9. Available online: https://iea-etsap.org/E-TechDS/PDF/R03%20Water%20Heating%20FINAL_GSOK.pdf (accessed on 10 April 2023).
- Simoni, M.; Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Viegi, G. Adverse Effects of Outdoor Pollution in the Elderly. J. Thorac. Dis. 2015, 7, 34–45. [Google Scholar] [CrossRef]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Dastoorpoor, M.; Riahi, A.; Yazdaninejhad, H.; Borsi, S.H.; Khanjani, N.; Khodadadi, N.; Mohammadi, M.J.; Aghababaeian, H. Exposure to Particulate Matter and Carbon Monoxide and Cause-Specific Cardiovascular-Respiratory Disease Mortality in Ahvaz. Toxin Rev. 2021, 40, 1362–1372. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source Sector and Fuel Contributions to Ambient PM2.5 and Attributable Mortality across Multiple Spatial Scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable Energy Technologies for Sustainable Development of Energy Efficient Building. Alex. Eng. J. 2018, 57, 655–669. [Google Scholar] [CrossRef]
- Tian, M.; Su, Y.; Zheng, H.; Pei, G.; Li, G.; Riffat, S. A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications. Renew. Sustain. Energy Rev. 2018, 82, 1272–1296. [Google Scholar] [CrossRef]
- Patel, D.K.; Brahmbhatt, P.K.; Panchal, H. A Review on Compound Parabolic Solar Concentrator for Sustainable Development. Int. J. Ambient Energy 2018, 39, 533–546. [Google Scholar] [CrossRef]
- Ajib, S.; Alahmer, A. Solar Cooling Technologies; Intech: London, UK, 2019; pp. 39–54. [Google Scholar]
- Applications, L.D.; Li, J.; Member, S.; Lu, Y.; Member, S.; Cho, Y. Design, Analysis and Prototyping of a Water-Cooled Axial-Flux Permanent-Magnet Machine For. IEEE Trans. Ind. Appl. 2019, 55, 3555–3565. [Google Scholar]
- Al-Falahi, A.; Alobaid, F.; Epple, B. A New Design of an Integrated Solar Absorption Cooling System Driven by an Evacuated Tube Collector: A Case Study for Baghdad, Iraq. Appl. Sci. 2020, 10, 3622. [Google Scholar] [CrossRef]
- Kalair, A.R.; Seyedmahmoudian, M.; Saleem, M.S.; Abas, N.; Rauf, S.; Stojcevski, A. A Comparative Thermal Performance Assessment of Various Solar Collectors for Domestic Water Heating. Int. J. Photoenergy 2022, 2022, 9536772. [Google Scholar] [CrossRef]
- Wankhede, S.V.; Hole, J.A. MOORA and TOPSIS Based Selection of Input Parameter in Solar Powered Absorption Refrigeration System. Int. J. Ambient Energy 2022, 43, 3396–3401. [Google Scholar] [CrossRef]
- Sainz-Mañas, M.; Bataille, F.; Caliot, C.; Vossier, A.; Flamant, G. Direct Absorption Nanofluid-Based Solar Collectors for Low and Medium Temperatures. A Review. Energy 2022, 260, 124916. [Google Scholar] [CrossRef]
- Rambhad, K.S.; Walke, P.V.; Tidke, D.J. Solid Desiccant Dehumidification and Regeneration Methods—A Review. Renew. Sustain. Energy Rev. 2016, 59, 73–83. [Google Scholar] [CrossRef]
- Jankovic, A.; Goia, F. Control of Heat Transfer in Single-Story Mechanically Ventilated Double Skin Facades. Energy Build. 2022, 271, 112304. [Google Scholar] [CrossRef]
- US Department of Energy—Energy Efficiency and Renewable Energy. What Is the Energy Payback for PV? 2004. Available online: http://www.nrel.gov/docs/fy04osti/35489.pdf (accessed on 10 April 2023).
- Lugaresi, F.; Kotsovinos, P.; Lenk, P.; Rein, G. Review of the Mechanical Failure of Non-Combustible Facade Systems in Fire. Constr. Build. Mater. 2022, 361, 129506. [Google Scholar] [CrossRef]
- Curtius, H.C. The Adoption of Building-Integrated Photovoltaics: Barriers and Facilitators. Renew. Energy 2018, 126, 783–790. [Google Scholar] [CrossRef]
- Badawy, N.M.; Hosam Salah, E.S.; Waseef, A.A.E. Relevance of Monocrystalline and Thin-Film Technologies in Implementing Efficient Grid-Connected Photovoltaic Systems in Historic Buildings in Port Fouad City, Egypt. Alex. Eng. J. 2022, 61, 12229–12246. [Google Scholar] [CrossRef]
- Mohanty, P.; Muneer, T.; Gago, E.J.; Kotak, Y. Solar Radiation Fundamentals and PV System Components, Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2016; pp. 7–47. [Google Scholar] [CrossRef]
- Ravn, M.; Mach, G.; Hansen, E.K.; Triantafyllidis, G. Simulating Physiological Potentials of Daylight Variables in Lighting Design. Sustainability 2022, 14, 881. [Google Scholar] [CrossRef]
- Romaní, J.; Ramos, A.; Salom, J. Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations. Energies 2022, 15, 3286. [Google Scholar] [CrossRef]
- Cavalcanti, R.M.; do Sacramento, E.M.; de Lima, L.C.; Batista, N.E. Study Comparison of the Efficiency of a Photovoltaic System with Fixed Panels and with Solar Tracker in the Northwest of Brazil. Int. J. Adv. Eng. Res. Sci. 2022, 9, 183–189. [Google Scholar] [CrossRef]
- Bevan, W.J.; Nolan, L. Barriers for Renewable Technology in Commercial Buildings. In Proceedings of the 8th World Construction Symposium, Colombo, Sri Lanka, 8–10 November 2019; pp. 116–124. [Google Scholar] [CrossRef]
- Florez, L.; Ghazali, N.N. Barriers to Implementing Solar Energy Systems in Buildings: The Resident’s Perspective in Malaysia. In Proceedings of the IGLC 28—28th Annual Conference of the International Group for Lean Construction 2020, Berkeley, CA, USA, 6–10 July 2020; pp. 817–827. [Google Scholar] [CrossRef]
- Hai, M.A.; Moula, M.M.E.; Seppälä, U. Results of Intention-Behaviour Gap for Solar Energy in Regular Residential Buildings in Finland. Int. J. Sustain. Built Environ. 2017, 6, 317–329. [Google Scholar] [CrossRef]
- Gross, S. Renewables, Land Use, and Local Opposition in the United States. Policy Brook. 2020, 1–24. [Google Scholar]
- Koch, J.; Christ, O. Household Participation in an Urban Photovoltaic Project in Switzerland: Exploration of Triggers and Barriers. Sustain. Cities Soc. 2018, 37, 420–426. [Google Scholar] [CrossRef]
- Stokes, L.C. The Politics of Renewable Energy Policies: The Case of Feed-in Tariffs in Ontario, Canada. Energy Policy 2013, 56, 490–500. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M.; Kaldelli, E.; Katsanou, E. Comparing Recent Views of Public Attitude on Wind Energy, Photovoltaic and Small Hydro Applications. Renew. Energy 2013, 52, 197–208. [Google Scholar] [CrossRef]
- Mulvaney, D. Identifying the Roots of Green Civil War over Utility-Scale Solar Energy Projects on Public Lands across the American Southwest. J. Land Use Sci. 2017, 12, 493–515. [Google Scholar] [CrossRef]
- Moorthy, K.; Patwa, N.; Gupta, Y. Breaking Barriers in Deployment of Renewable Energy. Heliyon 2019, 5, e01166. [Google Scholar] [CrossRef]
- Lu, J.; Ren, L.; Yao, S.; Rong, D.; Skare, M.; Streimikis, J. Renewable Energy Barriers and Coping Strategies: Evidence from the Baltic States. Sustain. Dev. 2020, 28, 352–367. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 2020, 13, 788. [Google Scholar] [CrossRef]
- Ndiritu, S.W.; Engola, M.K. The Effectiveness of Feed-in-Tariff Policy in Promoting Power Generation from Renewable Energy in Kenya. Renew. Energy 2020, 161, 593–605. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Dworkin, M.H. Energy Justice: Conceptual Insights and Practical Applications. Appl. Energy 2015, 142, 435–444. [Google Scholar] [CrossRef]
- Pan, W.; Pan, M. Drivers, Barriers and Strategies for Zero Carbon Buildings in High-Rise High-Density Cities. Energy Build. 2021, 242, 110970. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kim, S.; Kuruoğlu, N. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef]
- Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D. UK Innovation Systems for New and Renewable Energy Technologies: Drivers, Barriers and Systems Failures. Energy Policy 2005, 33, 2123–2137. [Google Scholar] [CrossRef]
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- Palacios, A.; Barreneche, C.; Navarro, M.E.; Ding, Y. Thermal Energy Storage Technologies for Concentrated Solar Power—A Review from a Materials Perspective. Renew. Energy 2020, 156, 1244–1265. [Google Scholar] [CrossRef]
- Ata, N.K. The Impact of Government Policies in the Renewable Energy Investment: Developing a Conceptual Framework and Qualitative Analysis. Glob. Adv. Res. J. Manag. Bus. Stud. 2015, 4, 67–81. [Google Scholar]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to Biogas Dissemination in India: A Review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfeey, A.M.M.; Jamei, E.; Chau, H.-W.; Ramasubramanian, B. Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques. Architecture 2023, 3, 213-233. https://doi.org/10.3390/architecture3020013
Irfeey AMM, Jamei E, Chau H-W, Ramasubramanian B. Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques. Architecture. 2023; 3(2):213-233. https://doi.org/10.3390/architecture3020013
Chicago/Turabian StyleIrfeey, Abdul Munaf Mohamed, Elmira Jamei, Hing-Wah Chau, and Brindha Ramasubramanian. 2023. "Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques" Architecture 3, no. 2: 213-233. https://doi.org/10.3390/architecture3020013
APA StyleIrfeey, A. M. M., Jamei, E., Chau, H. -W., & Ramasubramanian, B. (2023). Enhancing Occupants’ Thermal Comfort in Buildings by Applying Solar-Powered Techniques. Architecture, 3(2), 213-233. https://doi.org/10.3390/architecture3020013