The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia
Abstract
:1. Introduction
2. Methodology
2.1. Scenario Development
2.2. Description of Modelling Tool and Model Parameters
2.3. Data Analysis Protocol
3. Results
3.1. Urban Heat Intensity
3.2. Thermal Comfort
3.3. Mean Radiant Temperature
3.4. Influence on Surface Temperature
3.5. Influence on Soil Temperature and Water Content
3.6. Summary
4. Discussion
Limitations and Future Studies
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Gustin, M.; Fleming, P.R.; Allinson, D.; Watson, S. Modelling surface temperatures on 3G artificial turf. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 279. [Google Scholar]
- Satterthwaite, D. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008, 20, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Yenneti, K.; Ding, L.; Prasad, D.; Ulpiani, G.; Paolini, R.; Haddad, S.; Santamouris, M. Urban overheating and cooling potential in Australia: An evidence-based review. Climate 2020, 8, 126. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Abuseif, M.; Dupre, K.; Michael, R.N. Trees on buildings: A design framework. Nat.-Based Solut. 2023, 3, 100052. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Abuseif, M.; Dupre, K.; Michael, R.N. Trees on Buildings: A Tree Selection Framework Based on Industry Best Practice. Land 2023, 12, 97. [Google Scholar] [CrossRef]
- Abuseif, M.; Dupre, K.; Michael, R. The effect of green roof configurations including trees in a subtropical climate: A co-simulation parametric study. J. Clean. Prod. 2021, 317, 128458. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, L.; Li, Q. Numerical simulation of the impact of different vegetation species on the outdoor thermal environment. Urban For. Urban Green. 2016, 18, 138–150. [Google Scholar] [CrossRef]
- Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosyst. 2008, 11, 385–398. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-cycle cost–benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef]
- Jaffal, I.; Ouldboukhitine, S.-E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Sun, T.; Grimmond, C.; Ni, G.H. How do green roofs mitigate urban thermal stress under heat waves? J. Geophys. Res. Atmos. 2016, 121, 5320–5335. [Google Scholar] [CrossRef]
- Geros, V.; Santamouris, M.; Karatasou, S.; Tsangrassoulis, A.; Papanikolaou, N. On the cooling potential of night ventilation techniques in the urban environment. Energ. Build. 2005, 37, 243–257. [Google Scholar] [CrossRef]
- Abuseif, M.; Dupre, K.; Michael, R.N. Trees on buildings: Opportunities, challenges, and recommendations. Build. Environ. 2022, 225, 109628. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelets, A.; Berglund, L. A standard predictive index of human response to the thermal environment. ASHRAE Trans 1986, 92, 709–731. [Google Scholar]
- Rees, S.; Adjali, M.; Zhou, Z.; Davies, M.; Thomas, H. Ground heat transfer effects on the thermal performance of earth-contact structures. Renew. Sustain. Energy Rev. 2000, 4, 213–265. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Yaghoobian, N. The Effect of Heat Transfer from Artificial Turf on the Urban Energy Balance. In Proceedings of the Eighth Symposium on the Urban Environment, Aachen, Germany, 19–21 August 2009. [Google Scholar]
- Mantas, V.M.; Xian, G. Land Surface Temperature Differences Between Natural and Artificial Turf Sports Fields as Estimated from Satellite: Examples from the United States and Europe. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1777–1780. [Google Scholar]
- Golden, L.M. The Contribution of Artificial Turf to Global Warming. Sustain. Clim. Chang. 2021, 14, 436–449. [Google Scholar] [CrossRef]
- Ataabadi, Y.A.; Sadeghi, H.; Alizadeh, M.H. The effects of artificial turf on the performance of soccer players and evaluating the risk factors compared to natural grass. Neurol. Res. Ther. 2017, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Beausoleil, M.; Price, K.; Muller, C. Chemicals in Outdoor Artificial Turf: A health Risk for Users. Public Health Branch, Montreal Health and Social Services Agency. 2009. Available online: http://www.ncceh.ca/sites/default/files/Outdoor_Artificial_Turf.pdf (accessed on 24 February 2023).
- El, S. Artificial grass to replace natural grass in green areas and public parks to combat water shortage. ARPN J. Eng. Appl. Sci. 2018, 13, 8110–8119. [Google Scholar]
- Lozano, J.E.; Ferguson, S. Ecosystem Services for Compensation of Artificial Turf Systems; Swedish University of Agricultural Sciences (SLU): Uppsala, Sweden, 2021; p. 21. Available online: https://www.ifn.se/media/sq0b0gti/2021-ferguson-lozano-ecosystem-services-for-compensation-of-artificial-turf-systems.pdf (accessed on 24 February 2023).
- Nilsson, N.H.; Malmgren-Hansen, B.; Thomsen, U.S.; Institut, T. Mapping, Emissions and Environmental and Health Assessment of Chemical Substances in Artificial Turf; Danish Environmental Protection Agency: Copenhagen, Denmark, 2008. [Google Scholar]
- Levinger, P.; Cerin, E.; Milner, C.; Hill, K.D. Older people and nature: The benefits of outdoors, parks and nature in light of COVID-19 and beyond–where to from here? Int. J. Environ. Health Res. 2022, 32, 1329–1336. [Google Scholar] [CrossRef]
- Pitas, N.A.; Powers, S.L.; Mowen, A.J. Neoliberal conservation and equity in the context of local parks and recreation: Stakeholder perceptions on public-non-profit partnerships. J. Leis. Res. 2022, 53, 473–491. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Sci. Total Env. 2022, 823, 153806. [Google Scholar] [CrossRef]
- Richards, D.R.; Fung, T.K.; Belcher, R.; Edwards, P.J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Sunshine Coast Council. Sunshine Coast: Recreation Parks Plan; Sunshine Coast Council: Sunshine Coast, Australia, 2021; p. 98.
- State of Queensland. Efficient Irrigation for Water Conservation: Guideline for Water Efficient Urban Gardens and Landscapes; The Queensland Government: State of Queensland, Australia, 2020; p. 48.
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Sánchez-Sotomayor, D.; Martín-Higuera, A.; Gil-Delgado, J.A.; Gálvez, Á.; Bernat-Ponce, E. Artificial grass in parks as a potential new threat for urban bird communities. Bird Conserv. Int. 2022, 33, e16. [Google Scholar] [CrossRef]
- Bogo, M.; Rawlings, M.; Katz, E.; Logie, C. Using Simulation in Assessment and Teaching: OSCE Adapted for Social Work; Council on Social Work Education: Alexandria, VA, USA, 2014. [Google Scholar]
- Kourgiantakis, T.; Sewell, K.M.; Hu, R.; Logan, J.; Bogo, M. Simulation in social work education: A scoping review. Res. Soc. Work Pract. 2020, 30, 433–450. [Google Scholar] [CrossRef]
- Sailor, D.J. A green roof model for building energy simulation programs. Energ Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Norman, J.M. Simulation of microclimates. In Biometeorology in Integrated Pest Management; Academic Press: Cambridge, MA, USA, 1982; pp. 65–99. [Google Scholar]
- Isbell, R.; National Committee on Soil and Terrain. The Australian Soil Classification; CSIRO Publishing: Clayton, Victoria, Australia, 2021. [Google Scholar]
- Ziaul, S.; Pal, S. Modeling the effects of green alternative on heat island mitigation of a meso level town, West Bengal, India. Adv Space Res 2020, 65, 1789–1802. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zheng, B.H.; Hu, Y.Z. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef] [Green Version]
- Bruse, M.; Fleer, H. Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Env. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-met 3.0: Updated Model Overview. Available online: http://envi-met.net/documents/papers/overview30.pdf (accessed on 24 February 2023).
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met vegetation model of four common tree species in a subtropical hot-humid area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Chen, L.; Wang, Y.N.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Ouyang, W.; Sinsel, T.; Simon, H.; Morakinyo, T.E.; Liu, H.; Ng, E. Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Build. Environ. 2022, 207, 108427. [Google Scholar] [CrossRef]
- Yaghoobian, N.; Kleissl, J.; Krayenhoff, E.S. Modeling the thermal effects of artificial turf on the urban environment. J. Appl. Meteorol. Climatol. 2010, 49, 332–345. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Morales, Á.; Zaragoza, A. Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain. Sustainability 2021, 13, 1448. [Google Scholar] [CrossRef]
- Thorsson, S.; Rocklöv, J.; Konarska, J.; Lindberg, F.; Holmer, B.; Dousset, B.; Rayner, D. Mean radiant temperature—A predictor of heat related mortality. Urban Clim. 2014, 10, 332–345. [Google Scholar] [CrossRef]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Bao, Y. Evaluating the performance of different thermal indices on quantifying outdoor thermal sensation in humid subtropical residential areas in China. Front. Environ. Sci. 2022, 10, 2401. [Google Scholar] [CrossRef]
- Ghani, S.; Mahgoub, A.O.; Bakochristou, F.; ElBialy, E.A. Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. J. Build. Eng. 2021, 40, 102378. [Google Scholar] [CrossRef]
- Sundevall, E.P.; Jansson, M. Inclusive parks across ages: Multifunction and urban open space management for children, adolescents, and the elderly. Int. J. Environ. Res. Public Health 2020, 17, 9357. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R.; Lowry, W.P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1033–1047. [Google Scholar] [CrossRef]
- Ouyang, W.; Morakinyo, T.E.; Ren, C.; Ng, E. The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Build. Environ. 2020, 174, 106772. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; Higueras García, E.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G. A Comprehensive Review of Different Types of Green Infrastructure to Mitigate Urban Heat Islands: Progress, Functions, and Benefits. Land 2022, 11, 1792. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Barradas, V.L.; Miranda, J.A.; Esperón-Rodríguez, M.; Ballinas, M. (Re) Designing Urban Parks to Maximize Urban Heat Island Mitigation by Natural Means. Forests 2022, 13, 1143. [Google Scholar] [CrossRef]
- Wang, J.; Chang, L.; Aggarwal, S.; Abari, O.; Keshav, S. Soil moisture sensing with commodity RFID systems. In Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, Toronto, ON, Canada, 16–19 June 2020; pp. 273–285. [Google Scholar]
- Abuseif, M.; Gou, Z. A Review of Roofing Methods: Construction Features, Heat Reduction, Payback Period and Climatic Responsiveness. Energies 2018, 11, 3196. [Google Scholar] [CrossRef] [Green Version]
Statistics | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | |||||||||||||
Mean maximum temperature (°C) | 29 | 28.9 | 27.9 | 26 | 23.6 | 21.4 | 21.1 | 22.2 | 24.3 | 25.7 | 27.2 | 28.3 | 25.5 |
Mean minimum temperature (°C) | 21.3 | 21.3 | 20.2 | 17.1 | 13.8 | 11.4 | 9.7 | 9.9 | 13 | 15.7 | 17.9 | 19.9 | 15.9 |
Rainfall | |||||||||||||
Mean rainfall (mm) | 143 | 224 | 183 | 147 | 167 | 112 | 69 | 68 | 54 | 94 | 83 | 154 | 1517 |
Mean number of days of rain ≥ 1 mm | 10 | 12 | 12 | 11 | 10 | 9 | 7 | 5 | 5 | 7 | 7 | 10 | 106 |
Detailed climate characteristics | |||||||||||||
9 a.m. conditions | |||||||||||||
Mean temperature (°C) | 26.3 | 26.3 | 24.9 | 22.5 | 19.3 | 16.8 | 15.9 | 17.4 | 20.8 | 22.8 | 24.4 | 25.9 | 21.9 |
Mean relative humidity (%) | 73 | 73 | 74 | 75 | 75 | 76 | 73 | 68 | 65 | 66 | 67 | 69 | 71 |
Mean wind speed (km/h) | 19.3 | 18.8 | 18.3 | 17.3 | 15.8 | 15 | 14.9 | 15.8 | 16.7 | 18.2 | 18.9 | 18.5 | 17.3 |
3 p.m. conditions | |||||||||||||
Mean temperature (°C) | 27 | 27.1 | 26.1 | 24.3 | 22 | 20.1 | 19.6 | 20.3 | 22.3 | 23.4 | 24.8 | 26.2 | 23.6 |
Mean relative humidity (%) | 70 | 71 | 69 | 68 | 65 | 63 | 59 | 59 | 63 | 66 | 67 | 69 | 66 |
Mean wind speed (km/h) | 24.1 | 23.5 | 23.1 | 21.2 | 19.1 | 18.2 | 18.9 | 21.2 | 23.5 | 24.2 | 24.5 | 24.3 | 22.1 |
Vegetation Type and Parameters | Input Value |
---|---|
Tree parameters | |
Height | 15 m |
Diameter | 10 m |
LAD | 1.1 m2/m3 |
Root depth | 12 m |
Root diameter | 9 m |
Foliage shortwave albedo | 0.18 |
Foliage shortwave transmittance | 0.30 |
Emissivity of leaves | 0.96 |
Leaf weight | 100 g/m2 |
Grass parameters | |
Height | 0.05 m |
Leaf area profile | 0.3 |
Root depth | 0.2 m |
Shortwave albedo | 0.2 |
Shortwave transmittance | 0.3 |
Emissivity | 0.97 |
Surface Type | Albedo | Emissivity | Heat Capacity | Heat Conductivity |
---|---|---|---|---|
Artificial grass | 0.08 | 0.95 | 2.214 | 1.16 |
Light colour Concrete pavement | 0.8 | 0.9 | 2.083 | 1.63 |
Asphalt | 0.2 | 0.9 | 2.251 | 0.9 |
UTCI (°C) Range | Stress Category |
---|---|
46+ | Extreme heat stress |
46–38 | Very strong heat stress |
38–32 | Strong heat stress |
32–26 | Moderate heat stress |
26–9 | No thermal stress |
Parameters | Values |
---|---|
Body Parameters | |
Age of person | 9 |
Gender | Male |
Weight (kg) | 30 |
Height (m) | 1.5 |
Surface area (DuBois-Area) | 1.1 m2 |
Walking speed | 1.21 m/s |
Body position | Standing |
Clothing parameters | |
Static Insulation Outdoor (clo) | 0.5 |
Personal metabolism | |
Total Metabolic rate (W) | 128.85 (=117.18 W/m2) (met = 2.01) |
Irrigated Natural Grass | Non-Irrigated Natural Grass | Bare Soil | Artificial Grass | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tree Proximity | Low | Medium | High | Low | Medium | High | Low | Medium | High | Low | Medium | High |
Air temperature | 37.36 | 37.21 | 37.08 | 38.37 | 38.54 | 38.63 | 38.36 | 38.52 | 38.62 | 38.41 | 38.60 | 38.70 |
UTCI | 40.74 | 40.87 | 40.76 | 41.96 | 41.68 | 41.45 | 42.08 | 41.72 | 41.49 | 41.76 | 41.50 | 41.36 |
MRT | 54.86 | 54.52 | 54.11 | 58.67 | 57.73 | 56.54 | 59.08 | 57.81 | 56.52 | 57.57 | 56.80 | 55.99 |
Surfaces | 37.21 | 36.20 | 35.89 | 41.70 | 40.46 | 38.99 | 41.82 | 39.90 | 38.78 | 42.22 | 40.65 | 38.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuseif, M. The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia. Architecture 2023, 3, 195-212. https://doi.org/10.3390/architecture3020012
Abuseif M. The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia. Architecture. 2023; 3(2):195-212. https://doi.org/10.3390/architecture3020012
Chicago/Turabian StyleAbuseif, Majed. 2023. "The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia" Architecture 3, no. 2: 195-212. https://doi.org/10.3390/architecture3020012
APA StyleAbuseif, M. (2023). The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia. Architecture, 3(2), 195-212. https://doi.org/10.3390/architecture3020012