Stromal-Cell-Derived Factor-1 Antibody Decreased Cancellous Osseointegration Strength in a Murine Tibial Implant Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Murine Model
2.3. Microcomputed Tomography (MicroCT)
2.4. Biomechanical Testing
2.5. Statistical Analysis
3. Results
3.1. SDF-1 Inhibition Decreased Bone–Implant Interface Strength
3.2. SDF-1 Inhibition Did Not Change the Mass or Architecture of the Peri-Implant Cancellous Bone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jakobsen, T.; Kold, S.; Baas, J.; Soballe, K.; Rahbek, O. Sheep Hip Arthroplasty Model of Failed Implant Osseointegration. Open Orthop. J. 2015, 9, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E. Mechanisms of endosseous integration. Int. J. Prosthodont. 1998, 11, 391–401. [Google Scholar]
- Berglundh, T.; Abrahamsson, I.; Lang, N.P.; Lindhe, J. De novo alveolar bone formation adjacent to endosseous implants. Clin. Oral. Implant. Res. 2003, 14, 251–262. [Google Scholar] [CrossRef]
- Meyer, U.; Joos, U.; Mythili, J.; Stamm, T.; Hohoff, A.; Fillies, T.; Stratmann, U.; Wiesmann, H.P. Ultrastructural characterizaton of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004, 25, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Murai, K.; Takeshita, F.; Ayukawa, Y.; Kiyoshima, T.; Suetsugu, T.; Tanaka, T. Light and electron microscopit studies of bone-titanium interface in the tibiae of young and mature rats. J. Bomed. Mater. Res. 1996, 30, 523–533. [Google Scholar] [CrossRef]
- Chappard, D.; Aguado, E.; Hure, G.; Frizon, F.; Basle, M.F. The early remodeling phases around titanium implants: A histomorphometric assessment of bone quality in a 3- and 6- month study in sheep. Int. J. Oral. Maxillofac. Implant. 1999, 14, 189–196. [Google Scholar]
- Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S., Jr.; Konig, B., Jr.; Carbonari, M.J. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Mater. Sci. Eng. C 2004, 24, 647–651. [Google Scholar] [CrossRef]
- Marco, F.; Milena, F.; Gianluca, G.; Vittoria, O. Perimplant osteogenesis in health and osteoporosis. Micron 2005, 36, 630–644. [Google Scholar] [CrossRef]
- Rosenqvist, R.; Bylander, B.; Knutson, K.; Rydholm, U.; Rooser, B.; Egund, N.; Lidgren, L. Loosening of the porous coating of bicompartmental prosthesis in patients with rheumatoid arthritis. J. Bone Jt. Surg. 1986, 68, 538–542. [Google Scholar] [CrossRef]
- Wong, M.M.; Rao, L.G.; Ly, H.; Hamilton, L.; Ish-Shalom, S.; Strutridge, W.; Tong, J.; McBroom, R.; Josse, R.G.; Murray, T.M. In vitro study of osteoblastic cells from patients with idiopathic osteoporosis and comparison with cells from non-osteoporotic controls. Osteoporos Int. 1994, 4, 21–31. [Google Scholar] [CrossRef]
- Zhang, H.; Lewis, C.G.; Aronow, M.S.; Gronowicz, G.A. The effects of patient age on human osteoblats’ response to Ti-6Al-4V implants in vitro. J. Orthop. Res. 2004, 22, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A.; Cionca, N. Systemic diseases affecting osseointegration therapy. Clin. Oral. Implant. Res. 2006, 17, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Iwase, M.; Kotake, S.; Itoh, T. Effect of bone marrow grafting on the titanium porous-coated implant in bilateral total knee arthroplasty. Acta Orthop. 2007, 78, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Kurzweg, H.; Heimann, R.; Troczynski, T.; Wayman, M.L. Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia. Biomaterials 1998, 19, 1507–1511. [Google Scholar] [CrossRef]
- Soballe, K.; Overgaard, S.; Hansen, E.S.; Brokstedt-Rasmussen, H.; Lind, M.; Bunger, C. A review of ceramic coatings for implant fixation. J. Long Term Eff. Med. Implant. 1999, 9, 131–151. [Google Scholar]
- Khan, S.N.; Cammisa, F.P., Jr.; Sandhu, H.S.; Diwan, A.D.; Girardi, F.P.; Lane, J.M. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 2005, 13, 77–86. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet Neuronal Interact 2009, 9, 61–71. [Google Scholar]
- Pilliar, R.M.; Lee, J.; Maniatopoulos, C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 1986, 208, 108–113. [Google Scholar] [CrossRef]
- Giori, N.J.; Ryd, L.; Carter, D.R. Mechanical influences on tissue differentiation at bone-cement interfaces. J. Arthroplast. 1995, 10, 514–522. [Google Scholar] [CrossRef]
- Otsuki, B.; Takemoto, M.; Fujibayashi, S.; Neo, M.; Kokubo, T.; Nakamura, T. Pore throat size and connectivity deter- mine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 2006, 27, 5892–5900. [Google Scholar] [CrossRef]
- Sumner, D.R.; Turner, T.M.; Pierson, R.H.; Kienapfel, H.; Urban, R.M.; Liebner, E.J.; Galante, J.O. Effects of radiation on fixation of non-cemented porous-coated implants in a canine model. J. Bone Jt. Surg. Am. 1990, 72, 1527–1533. [Google Scholar] [CrossRef]
- Kudo, M.; Matsui, Y.; Ohno, K.; Michi, K. A histomorpho- metric study of the tissue reaction around hydroxyap- atite implants irradiated after placement. J. Oral. Maxillofac. Surg. 2001, 59, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Eder, A.; Watzek, G. Treatment of a patient with severe osteoporosis and chronic polyarthritis with fixed implant-supported prosthesis: A case report. Int. J. Oral. Maxillofac. Implant. 1999, 14, 587–590. [Google Scholar]
- Sakakura, C.E.; Marcantonio, E., Jr.; Wenzel, A.; Scaf, G. Influence of cyclosporin A on quality of bone around integrated dental implants: A radiographic study in rabbits. Clin. Oral. Implants. Res. 2007, 8, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.C.; Lisecki, E.J.; Banks, R.E.; Dalton, J.E.; Cook, S.D.; Wolff, J.D. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants. J. Bone Jt. Surg. 1995, 77, 225–230. [Google Scholar] [CrossRef]
- Dahners, L.E.; Mullis, B.H. Effects of nonsteroidal anti- inflammatory drugs on bone formation and soft-tissue healing. J. Am. Acad. Orthop. Surg. 2004, 12, 139–143. [Google Scholar] [CrossRef]
- Pablos, A.B.; Ramalho, S.A.; König, B., Jr.; Furuse, C.; de Araújo, V.C.; Cury, P.R. Effect of meloxicam and diclofenac sodium on peri-implant bone healing in rats. J. Periodontol. 2008, 79, 300–306. [Google Scholar] [CrossRef]
- Lan, J.; Wang, Z.; Wang, Y.; Wang, J.; Cheng, X. The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-I on dental implant osseointegration by confocal laser scanning microscopy. J. Periodontol. 2006, 77, 357–363. [Google Scholar] [CrossRef]
- Hannink, G.; Aspenberg, P.; Schreurs, B.W.; Buma, P. High doses of OP-1 inhibit fibrous tissue ingrowth in impaction grafting. Clin. Orthop. Relat. Res. 2006, 452, 250–259. [Google Scholar] [CrossRef]
- Raphel, J.; Holodniy, M.; Goodman, S.B.; Heilshorn, S.C. Multifunctional Coatings to Simultaneously Promote Osseointegration and Prevent Infection of Orthopaedic Implants. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef]
- Ara, T.; Nakamura, Y.; Egawa, T.; Sugiyama, T.; Abe, K.; Kishimoto, T.; Matsui, Y.; Nagasawa, T. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc. Natl. Acad. Sci. USA 2003, 100, 5319–5323. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Fu, G.; Dai, T.; Huang, H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J. Cardiovasc. Pharmacol. 2007, 50, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Li, Y.-J.; Kukita, A.; Yamaza, T.; Ayukawa, Y.; Moriyama, K.; Uehara, N.; Nomiyama, H.; Koyano, K.; Kukita, T. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Lab. Investig. 2014, 94, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Zwingenberger, S.; Yao, Z.; Jacobi, A.; Vater, C.; Valladares, R.D.; Li, C.; Nich, C.; Rao, A.J.; Christman, J.E.; Antonios, J.K.; et al. Enhancement of BMP-2 Induced Bone Regeneration by SDF-1α Mediated Stem Cell Recruitment. Tissue Eng. Part A 2014, 20, 810–818. [Google Scholar] [CrossRef]
- Thevenot, P.T.; Nair, A.M.; Shen, J.; Lotfi, P.; Ko, C.-Y.; Tang, L. The effect of incorporation of SDF-1a into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 2010, 31, 3997–4008. [Google Scholar] [CrossRef]
- Ji, W.; Yang, F.; Ma, J.; Bouma, M.J.; Boerman, O.C.; Chen, Z.; van den Beucken, J.J.J.P.; Jansen, J.A. Incorporation of stromal cell-derived factor-1a in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 2013, 34, 735–745. [Google Scholar] [CrossRef]
- Karlsson, J.; Harmankay, N.; Palmquist, A.; Atefyekta, S.; Omar, O.; Tengvali, P.; Andresson, M. Stem cell homing using local delivery of plerixafor and stromal derived growth factor-1alpha for improved bone regeneration around Ti-implants. J. Biomed. Mater. Res. A 2016, 104, 2466–2475. [Google Scholar] [CrossRef]
- Yang, X.; Ricciardi, B.F.; Dvorzhinskiy, A.; Brial, C.; Lane, Z.; Bhimani, S.; Burket, J.C.; Hu, B.; Sarkisian, A.M.; Ross, F.P.; et al. Intermitent parathyroid hormone enchances cancellous osseointegration of a novel murine tibial implant. J. Bone Jt. Surg. Am. 2015, 97, 1074–1083. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Berce, C.; Lucaciu, D.; Cosma, D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. J. Int. Med. Res. 2018, 46, 2104–2119. [Google Scholar] [CrossRef]
- Ponomaryov, T.; Peled, A.; Petit, I. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Investig. 2000, 106, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Kollet, O.; Shivtiel, S.; Chen, Y. HGF, SDF-1, and MMP-9 are involved in stress-induced huan CD34 stem cell recruitment to the liver. J Clin. Investig. 2003, 112, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.T.; Wang, D.-A. Stromal cell-derived factor-1 (SDF-1): Homing factor for engineered regenerative medicine. Expert Opin. Biol. Ther. 2011, 11, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, J.; Baj-Krzyworzeka, M.; Majka, M. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001, 19, 453–466. [Google Scholar] [CrossRef]
- Neuhaus, T.; Stier, S.; Totzke, G. Stromal cell-derived factor 1 (SDF-1) induces gene-expression of early growth response-1 (Egf-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif. 2003, 36, 75–86. [Google Scholar] [CrossRef]
- Jin, Q.; Giannobile, W.V. SDF-1 Enhances Wound Healing of Critical-Sized Calvaria Defects beyond Slef-Repair Capacity. PLoS ONE 2014, 9, e97035. [Google Scholar]
- Kawakami, Y.; Li, M.; Matsumoto, T.; Kuroda, R.; Kuroda, T.; Kwon, S.M.; Kawamoto, A.; Akimaru, H.; Mifune, Y.; Shoji, T.; et al. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. J. Bone. Miner. Res. 2015, 30, 95–105. [Google Scholar] [CrossRef]
- Kumagai, K.; Vasanji, A.; Drazba, J.A.; Butler, R.S.; Muschler, G.F. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J. Orthop. Res. 2008, 26, 165–175. [Google Scholar] [CrossRef]
Control | SDF-1 Ab | t-Test (p-Value) | |
---|---|---|---|
BV/TV | 0.178 ± 0.034 | 0.195 ± 0.029 | 0.234 |
Trabecular Number | 6.07 ± 1.57 | 6.27 ± 1.22 | 0.745 |
Trabecular Thickness | 0.050 ± 0.006 | 0.049 ± 0.006 | 0.710 |
Tissue Mineral Density | 1096.27 ± 50.71 | 1093.18 ± 59.45 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhardi, V.J.; Oktarina, A.; Ricciardi, B.F.; Bostrom, M.P.G.; Yang, X. Stromal-Cell-Derived Factor-1 Antibody Decreased Cancellous Osseointegration Strength in a Murine Tibial Implant Model. Int. J. Transl. Med. 2024, 4, 680-686. https://doi.org/10.3390/ijtm4040047
Suhardi VJ, Oktarina A, Ricciardi BF, Bostrom MPG, Yang X. Stromal-Cell-Derived Factor-1 Antibody Decreased Cancellous Osseointegration Strength in a Murine Tibial Implant Model. International Journal of Translational Medicine. 2024; 4(4):680-686. https://doi.org/10.3390/ijtm4040047
Chicago/Turabian StyleSuhardi, Vincentius J., Anastasia Oktarina, Benjamin F. Ricciardi, Mathias P. G. Bostrom, and Xu Yang. 2024. "Stromal-Cell-Derived Factor-1 Antibody Decreased Cancellous Osseointegration Strength in a Murine Tibial Implant Model" International Journal of Translational Medicine 4, no. 4: 680-686. https://doi.org/10.3390/ijtm4040047
APA StyleSuhardi, V. J., Oktarina, A., Ricciardi, B. F., Bostrom, M. P. G., & Yang, X. (2024). Stromal-Cell-Derived Factor-1 Antibody Decreased Cancellous Osseointegration Strength in a Murine Tibial Implant Model. International Journal of Translational Medicine, 4(4), 680-686. https://doi.org/10.3390/ijtm4040047