Differences in Prevalence of Colorectal Carcinoma by Gender and Marital Status and Expression of DNA Mismatch Repair Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Patients
2.2. Inclusion and Exclusion Criteria
2.3. Race/Ethnicity, Patients’ Demographics, and Body Mass Index (BMI)
2.4. Data Availability
2.5. Statistical Analysis
2.6. DNA Mismatch Repair Protein Expression (MMRP)
3. Results
3.1. Distribution of CRC Based on Anatomic Site and Tumor Stage
3.2. Sex and Marital Status Differences in CRC
3.3. MMRP Status in CRC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Colorectal Cancer Facts & Figures 2023–2025; American Cancer Society: Atlanta, GA, USA, 2022. [Google Scholar]
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021, 41, 1137–1151. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, I.; Ros, J.; Saoudi, N.; Salvà, F.; García, A.; Castells, M.R.; Tabernero, J.; Élez, E. Sex and gender perspectives in colorectal cancer. ESMO Open 2023, 8, 101204. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.J. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. Clin. Gastroenterol. Hepatol. 2021, 19, 955–966.e961. [Google Scholar] [CrossRef]
- Ramai, D.; Barakat, M.; Dhaliwal, A.; Dhindsa, B.; Chandan, S.; Ofosu, A.; Facciorusso, A.; Etienne, D.; Reddy, M. Gender and racial disparities in colorectal cancer incidence and mortality: A national cancer registry study. Int. J. Colorectal. Dis. 2021, 36, 1801–1804. [Google Scholar] [CrossRef]
- van Erning, F.N.; Greidanus, N.E.M.; Verhoeven, R.H.A.; Buijsen, J.; de Wilt, H.W.; Wagner, D.; Creemers, G.J. Gender differences in tumor characteristics, treatment and survival of colorectal cancer: A population-based study. Cancer Epidemiol. 2023, 86, 102441. [Google Scholar] [CrossRef]
- Montiel Ishino, F.A.; Odame, E.A.; Villalobos, K.; Liu, X.; Salmeron, B.; Mamudu, H.; Williams, F. A National Study of Colorectal Cancer Survivorship Disparities: A Latent Class Analysis Using SEER (Surveillance, Epidemiology, and End Results) Registries. Front. Public Health 2021, 9, 628022. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gan, L.; Liang, L.; Li, X.; Cai, S. The influence of marital status on stage at diagnosis and survival of patients with colorectal cancer. Oncotarget 2015, 6, 7339–7347. [Google Scholar] [CrossRef]
- Martínez, M.E.; Anderson, K.; Murphy, J.D.; Hurley, S.; Canchola, A.J.; Keegan, T.H.; Cheng, I.; Clarke, C.A.; Glaser, S.L.; Gomez, S.L. Differences in marital status and mortality by race/ethnicity and nativity among California cancer patients. Cancer 2016, 122, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiao, Y.; Nie, J.; O’Neil, A.; Huang, W.; Zhang, L.; Han, J.; Liu, H.; Zhu, Y.; Yu, C.; et al. Sex differences in the association between marital status and the risk of cardiovascular, cancer, and all-cause mortality: A systematic review and meta-analysis of 7,881,040 individuals. Glob. Health Res. Policy 2020, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Zito Marino, F.; Amato, M.; Ronchi, A.; Panarese, I.; Ferraraccio, F.; De Vita, F.; Tirino, G.; Martinelli, E.; Troiani, T.; Facchini, G.; et al. Microsatellite Status Detection in Gastrointestinal Cancers: PCR/NGS Is Mandatory in Negative/Patchy MMR Immunohistochemistry. Cancers 2022, 14, 2204. [Google Scholar] [CrossRef] [PubMed]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 2010, 28, 3219–3226. [Google Scholar] [CrossRef]
- Kumarasinghe, A.P.; de Boer, B.; Bateman, A.C.; Kumarasinghe, M.P. DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: A comparison of biopsy and resection material. Pathology 2010, 42, 414–420. [Google Scholar] [CrossRef]
- André, T.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann. Oncol. 2022, 33, 1052–1060. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Thibodeau, S.N.; Bren, G.; Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 1993, 260, 816–819. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. AJCC Cancer Staging Manual, 8th ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhang, P.; Mendoza, A.; Bakhtar, O.; Wixom, C.; Muller, S.; Sadeghi, S.; Clement, A.; Kabakibi, L.; Schwab, M. Race/ethnicity and social determinants of health in endometrial carcinomaand DNA mismatch repair protein expression status. Obstet. Gynecol. 2024, submitted.
- Sun, B.L. Current Microsatellite Instability Testing in Management of Colorectal Cancer. Clin. Colorectal. Cancer 2021, 20, e12–e20. [Google Scholar] [CrossRef]
- Sahin, I.H.; Akce, M.; Alese, O.; Shaib, W.; Lesinski, G.B.; El-Rayes, B.; Wu, C. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br. J. Cancer 2019, 121, 809–818. [Google Scholar] [CrossRef]
- Goldstein, J.B.; Wu, W.; Borras, E.; Masand, G.; Cuddy, A.; Mork, M.E.; Bannon, S.A.; Lynch, P.M.; Rodriguez-Bigas, M.; Taggart, M.W.; et al. Can Microsatellite Status of Colorectal Cancer Be Reliably Assessed after Neoadjuvant Therapy? Clin. Cancer Res. 2017, 23, 5246–5254. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Franco, R.; Facchini, G.; Addeo, R.; Ciardiello, F.; Berretta, M.; Vita, G.; Sgambato, A.; Pignata, S.; Caraglia, M.; et al. Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers. Int. J. Mol. Sci. 2022, 23, 8726. [Google Scholar] [CrossRef] [PubMed]
- Uribe, Y.; Brown, D.; Dean, J.R.; O’Brian, C.A.; Simon, M.A. Intersectionality Between Epigenetics and Cancer Health Disparities Stemming from Social Determinants of Health (SDoH) Through a Gynecologic Oncology Lens: A Narrative Review. Clin. Obstet. Gynecol. 2023, 66, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Cherstvy, A.G.; Teif, V.B. Structure-driven homology pairing of chromatin fibers: The role of electrostatics and protein-induced bridging. J. Biol. Phys. 2013, 39, 363–385. [Google Scholar] [CrossRef]
T-Stage | T1 | T2 | T3 | T4 | p |
---|---|---|---|---|---|
(N = 156) (15.3%) | (N = 143) (14%) | (N = 496) (48.7%) | (N = 223) (21.9%) | ||
Marital status | <0.01 | ||||
-Divorced | 10 (6.4%) | 17 (11.9%) | 61 (12.3%) | 33 (14.8%) | |
-Married | 96 (61.5%) | 81 (56.6%) | 244 (49.2%) | 103 (46.2%) | |
-Other | 1 (0.6%) | 1 (0.7%) | 5 (1.0%) | 2 (0.9%) | |
-Single | 41 (26.3%) | 32 (22.4%) | 103 (20.8%) | 60 (26.9%) | |
-Widowed | 8 (5.1%) | 12 (8.4%) | 83 (16.7%) | 25 (11.2%) | |
BMI | 26.0 [23.0;31.0] | 27.0 [23.0;30.0] | 25.0 [22.0;30.0] | 24.0 [21.0;29.0] | <0.01 |
MMRP status | <0.01 | ||||
-Proficient | 83 (91.2%) | 97 (89.8%) | 309 (78.0%) | 147 (81.7%) | |
-Deficient | 8 (8.8%) | 11 (10.2%) | 87 (22.0%) | 33 (18.3%) | |
Faith (religious belief) | 88 (59.9%) | 85 (60.7%) | 324 (66.8%) | 141 (64.7%) | 0.34 |
Sex (gender) | 0.65 | ||||
Female | 82 (52.6%) | 69 (48.3%) | 269 (54.2%) | 116 (52.0%) | |
Male | 74 (47.4%) | 74 (51.7%) | 227 (45.8%) | 107 (48.0%) | |
Patient’s age (year) | 63.0 [54.5;72.0] | 65.0 [55.0;78.0] | 70.0 [60.0;81.0] | 67.0 [59.0;76.5] | <0.01 |
Tumor size (cm) | 1.0 [0.5;2.0] | 3.0 [1.5;4.0] | 4.6 [3.3;5.8] | 5.1 [3.8;7.3] | <0.01 |
Histologic grade | <0.01 | ||||
-Grade 1 | 82 (52.6%) | 50 (35.0%) | 118 (23.8%) | 37 (16.6%) | |
-Grade 2 | 70 (44.9%) | 87 (60.8%) | 332 (66.9%) | 141 (63.2%) | |
-Grade 3 | 4 (2.6%) | 6 (4.2%) | 46 (9.3%) | 45 (20.2%) | |
Lymph node number | 17.0 [12.0;21.0] | 17.0 [14.0;23.0] | 19.0 [14.0;26.0] | 18.0 [14.0;25.0] | <0.01 |
N stage (TNM-N) | <0.01 | ||||
-No data | 12 (7.7%) | 9 (6.3%) | 2 (0.4%) | 3 (1.3%) | |
-No nodal metastasis | 124 (79.5%) | 100 (69.9%) | 264 (53.2%) | 55 (24.7%) | |
-1a | 9 (5.8%) | 20 (14.0%) | 70 (14.1%) | 37 (16.6%) | |
-1b | 6 (3.8%) | 6 (4.2%) | 69 (13.9%) | 42 (18.8%) | |
-1c | 1 (0.6%) | 0 (0.0%) | 14 (2.8%) | 7 (3.1%) | |
-2a | 1 (0.6%) | 5 (3.5%) | 43 (8.7%) | 36 (16.1%) | |
-2b | 3 (1.9%) | 3 (2.1%) | 34 (6.9%) | 43 (19.3%) | |
BRAF | 1 (14.3%) | 2 (40.0%) | 26 (49.1%) | 10 (30.3%) | 0.17 |
MLH | 2 (66.7%) | 6 (100.0%) | 32 (91.4%) | 8 (80.0%) | 0.35 |
Lynch syndrome | 4 (50.0%) | 3 (27.3%) | 16 (18.4%) | 5 (15.2%) | 0.14 |
Gender | Female | Male | Total | p |
---|---|---|---|---|
(N = 536) (52.7%) | (N = 482) (47.3%) | (N = 1018) | ||
Marital status | <0.01 | |||
-Divorced | 72 (13.4%) | 49 (10.2%) | 121 (11.9%) | |
-Married | 238 (44.4%) | 286 (59.3%) | 524 (51.5%) | |
-Other | 6 (1.1%) | 3 (0.6%) | 9 (0.9%) | |
-Single | 120 (22.4%) | 116 (24.1%) | 236 (23.2%) | |
-Widowed | 100 (18.7%) | 28 (5.8%) | 128 (12.6%) | |
BMI | 25.0 [22.0;30.0] | 26.0 [23.0;30.0] | 26.0 [22.0;30.0] | 0.10 |
MMRP | <0.01 | |||
-Proficient | 329 (78.0%) | 307 (87.0%) | 636 (82.1%) | |
-Deficient | 93 (22.0%) | 46 (13.0%) | 139 (17.9%) | |
Faith (religious belief) | 369 (70.3%) | 269 (57.8%) | 638 (64.4%) | <0.01 |
Patient’s age (year) | 69.0 [56.0;79.0] | 67.0 [59.0;77.0] | 68.0 [58.0;78.0] | 0.55 |
Tumor size (cm) | 4.0 [2.5;5.7] | 4.1 [2.2;5.5] | 4.0 [2.3;5.6] | 0.75 |
Histologic grade | 0.06 | |||
-Grade 1 | 138 (25.7%) | 149 (30.9%) | 287 (28.2%) | |
-Grade 2 | 336 (62.7%) | 294 (61.0%) | 630 (61.9%) | |
-Grade 3 | 62 (11.6%) | 39 (8.1%) | 101 (9.9%) | |
Tumor stage (TNM-T) | 0.65 | |||
-1 | 82 (15.3%) | 74 (15.4%) | 156 (15.3%) | |
-2 | 69 (12.9%) | 74 (15.4%) | 143 (14.0%) | |
-3 | 269 (50.2%) | 227 (47.1%) | 496 (48.7%) | |
-4 | 116 (21.6%) | 107 (22.2%) | 223 (21.9%) | |
Nodal stage (TNM-N) | 0.59 | |||
-No data | 10 (1.9%) | 16 (3.3%) | 26 (2.6%) | |
-No nodal metastasis | 282 (52.6%) | 261 (54.1%) | 543 (53.3%) | |
-1a | 74 (13.8%) | 62 (12.9%) | 136 (13.4%) | |
-1b | 70 (13.1%) | 53 (11.0%) | 123 (12.1%) | |
-1c | 9 (1.7%) | 13 (2.7%) | 22 (2.2%) | |
-2a | 46 (8.6%) | 39 (8.1%) | 85 (8.3%) | |
-2b | 45 (8.4%) | 38 (7.9%) | 83 (8.2%) |
Marital Status | Divorced | Married | Other | Single | Widowed | p |
---|---|---|---|---|---|---|
(N = 121) | (N = 524) | (N = 9) | (N = 236) | (N = 128) | ||
BMI | 25.0 [22.0;31.0] | 26.0 [22.0;30.0] | 25.0 [21.0;27.0] | 25.0 [22.0;29.5] | 25.5 [22.0;30.0] | 0.77 |
MMRP | <0.01 | |||||
-Proficient | 67 (76.1%) | 347 (85.9%) | 6 (75.0%) | 155 (87.1%) | 61 (62.9%) | |
-Deficient | 21 (23.9%) | 57 (14.1%) | 2 (25.0%) | 23 (12.9%) | 36 (37.1%) | |
Faith (religious belief) | 68 (57.6%) | 346 (67.7%) | 2 (28.6%) | 126 (54.5%) | 96 (78.0%) | <0.01 |
Sex (gender) | <0.01 | |||||
-Female | 72 (59.5%) | 238 (45.4%) | 6 (66.7%) | 120 (50.8%) | 100 (78.1%) | |
-Male | 49 (40.5%) | 286 (54.6%) | 3 (33.3%) | 116 (49.2%) | 28 (21.9%) | |
Patient’s age (year) | 66.0 [59.0;75.0] | 67.0 [56.5;76.0] | 77.0 [77.0;81.0] | 64.0 [54.0;73.0] | 84.0 [76.0;90.0] | <0.01 |
Tumor size (cm) | 4.8 [3.3;6.5] | 3.9 [2.1;5.4] | 5.2 [3.5;5.5] | 3.5 [2.0;5.1] | 4.5 [3.3;6.4] | <0.01 |
Histologic grade | 0.56 | |||||
-Grade 1 | 31 (25.6%) | 150 (28.6%) | 1 (11.1%) | 72 (30.5%) | 33 (25.8%) | |
-Grade 2 | 77 (63.6%) | 325 (62.0%) | 6 (66.7%) | 145 (61.4%) | 77 (60.2%) | |
-Grade 3 | 13 (10.7%) | 49 (9.4%) | 2 (22.2%) | 19 (8.1%) | 18 (14.1%) | |
T stage (TNM-T) | <0.01 | |||||
-1 | 10 (8.3%) | 96 (18.3%) | 1 (11.1%) | 41 (17.4%) | 8 (6.2%) | |
-2 | 17 (14.0%) | 81 (15.5%) | 1 (11.1%) | 32 (13.6%) | 12 (9.4%) | |
-3 | 61 (50.4%) | 244 (46.6%) | 5 (55.6%) | 103 (43.6%) | 83 (64.8%) | |
-4 | 33 (27.3%) | 103 (19.7%) | 2 (22.2%) | 60 (25.4%) | 25 (19.5%) | |
N stage (TNM-N) | 0.64 | |||||
-No data | 4 (3.3%) | 15 (2.9%) | 0 (0.0%) | 5 (2.1%) | 2 (1.6%) | |
-No nodal metastasis | 59 (48.8%) | 290 (55.3%) | 5 (55.6%) | 117 (49.6%) | 72 (56.2%) | |
-1a | 19 (15.7%) | 67 (12.8%) | 1 (11.1%) | 32 (13.6%) | 17 (13.3%) | |
-1b | 16 (13.2%) | 58 (11.1%) | 0 (0.0%) | 29 (12.3%) | 20 (15.6%) | |
-1c | 0 (0.0%) | 13 (2.5%) | 0 (0.0%) | 8 (3.4%) | 1 (0.8%) | |
-2a | 8 (6.6%) | 41 (7.8%) | 2 (22.2%) | 25 (10.6%) | 9 (7.0%) | |
-2b | 15 (12.4%) | 40 (7.6%) | 1 (11.1%) | 20 (8.5%) | 7 (5.5%) | |
BRAF mutation | 5 (41.7%) | 15 (34.9%) | 0 (0.0%) | 6 (28.6%) | 13 (61.9%) | 0.17 |
MLH gene methylation | 7 (77.8%) | 15 (83.3%) | 1 (100.0%) | 9 (90.0%) | 16 (100.0%) | 0.43 |
Lynch syndrome | 4 (19.0%) | 17 (29.8%) | 0 (0.0%) | 5 (21.7%) | 2 (5.6%) | 0.07 |
MMRP Status | Proficient | Deficient | Total | p |
---|---|---|---|---|
(N = 636) | (N = 111) | (N = 747) | ||
Race/ethnicity | 0.04 | |||
-Asian | 91 (14.3%) | 6 (5.4%) | 97 (13.0%) | |
-Black | 25 (3.9%) | 3 (2.7%) | 28 (3.7%) | |
-Hispanic | 121 (19.0%) | 17 (15.3%) | 138 (18.5%) | |
-Other | 90 (14.2%) | 16 (14.4%) | 106 (14.2%) | |
-White | 309 (48.6%) | 69 (62.2%) | 378 (50.6%) | |
Marital status | <0.01 | |||
-Divorced | 67 (10.5%) | 17 (15.3%) | 84 (11.2%) | |
-Married | 347 (54.6%) | 40 (36.0%) | 387 (51.8%) | |
-Other | 6 (0.9%) | 2 (1.8%) | 8 (1.1%) | |
-Single | 155 (24.4%) | 18 (16.2%) | 173 (23.2%) | |
-Widowed | 61 (9.6%) | 34 (30.6%) | 95 (12.7%) | |
BMI | 26.0 [22.0;30.0] | 25.0 [22.0;28.5] | 26.0 [22.0;30.0] | 0.43 |
Faith (religious belief) | 388 (62.7%) | 68 (63.6%) | 456 (62.8%) | 0.95 |
Gender (sex) | <0.01 | |||
-Female | 329 (51.7%) | 77 (69.4%) | 406 (54.4%) | |
-Male | 307 (48.3%) | 34 (30.6%) | 341 (45.6%) | |
Patient age (year) | 65.5 ± 14.0 | 74.3 ± 13.2 | 67.9 ± 14.2 | <0.01 |
Anatomic site | <0.01 | |||
-Right colon | 182 (28.7%) | 80 (72.0%) | 262 (35.1%) | |
-Left colon | 54 (8.4%) | 6 (5.4%) | 60 (8.0%) | |
-Sigmoid and Rectum | 364 (57.2%) | 9 (8.1%) | 373 (49.9%) | |
-Transverse | 36 (5.7%) | 16 (14.4%) | 52 (7.0%) | |
Tumor size (cm) | 4.0 [2.5;5.5] | 6.0 [4.5;7.5] | 4.0 [2.3;5.5] | <0.01 |
Histologic grade | <0.01 | |||
-Grade 1 | 180 (28.3%) | 17 (15.3%) | 197 (26.4%) | |
-Grade 2 | 411 (64.6%) | 60 (54.1%) | 471 (63.1%) | |
-Grade 3 | 45 (7.1%) | 34 (30.6%) | 79 (10.6%) | |
Tumor stage (TNM-T) | <0.01 | |||
-1 | 83 (13.1%) | 4 (3.6%) | 87 (11.6%) | |
-2 | 97 (15.3%) | 8 (7.2%) | 105 (14.1%) | |
-3 | 309 (48.6%) | 71 (64.0%) | 380 (50.9%) | |
-4 | 147 (23.1%) | 28 (25.2%) | 175 (23.4%) | |
Nodal stage (TNM-N) | 0.01 | |||
No data | 12 (1.9%) | 0 (0.0%) | 12 (1.6%) | |
N0 | 304 (47.8%) | 68 (61.3%) | 372 (49.8%) | |
-1a | 107 (16.8%) | 6 (5.4%) | 113 (15.1%) | |
-1b | 76 (11.9%) | 18 (16.2%) | 94 (12.6%) | |
-1c | 14 (2.2%) | 2 (1.8%) | 16 (2.1%) | |
-2a | 60 (9.4%) | 7 (6.3%) | 67 (9.0%) | |
-2b | 63 (9.9%) | 10 (9.0%) | 73 (9.8%) | |
BRAF | 7 (14.9%) | 32 (65.3%) | 39 (40.6%) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Bakhtar, O.; Wixom, C.; Cox, B.; Lee, J.; Sadeghi, S.; Clement, A.; Kabakibi, L.; Schwab, M. Differences in Prevalence of Colorectal Carcinoma by Gender and Marital Status and Expression of DNA Mismatch Repair Proteins. Int. J. Transl. Med. 2024, 4, 584-594. https://doi.org/10.3390/ijtm4030040
Zhang P, Bakhtar O, Wixom C, Cox B, Lee J, Sadeghi S, Clement A, Kabakibi L, Schwab M. Differences in Prevalence of Colorectal Carcinoma by Gender and Marital Status and Expression of DNA Mismatch Repair Proteins. International Journal of Translational Medicine. 2024; 4(3):584-594. https://doi.org/10.3390/ijtm4030040
Chicago/Turabian StyleZhang, Peilin, Omid Bakhtar, Chris Wixom, Brian Cox, John Lee, Saha Sadeghi, Aidan Clement, Lana Kabakibi, and Madeleine Schwab. 2024. "Differences in Prevalence of Colorectal Carcinoma by Gender and Marital Status and Expression of DNA Mismatch Repair Proteins" International Journal of Translational Medicine 4, no. 3: 584-594. https://doi.org/10.3390/ijtm4030040
APA StyleZhang, P., Bakhtar, O., Wixom, C., Cox, B., Lee, J., Sadeghi, S., Clement, A., Kabakibi, L., & Schwab, M. (2024). Differences in Prevalence of Colorectal Carcinoma by Gender and Marital Status and Expression of DNA Mismatch Repair Proteins. International Journal of Translational Medicine, 4(3), 584-594. https://doi.org/10.3390/ijtm4030040