Assessing High-Density Lipoprotein: Shifting Focus from Quantity to Quality in Cardiovascular Disease Risk Assessment
Abstract
:1. Introduction
2. Origins of HDL
3. Composition of HDL
4. HDL Sub-Classes
5. HDL Functions
6. Cholesterol Efflux and Reverse Cholesterol Transport
7. Anti-Inflammatory Functions
8. Anti-Oxidative Functions
9. Antithrombotic Activity
10. Shifting the Focus from HDL Quantity to HDL Quality
Author, Journal, Year, Country | Type of Study | Findings |
---|---|---|
Liu et al. [56], Jama Cardiology, 2022. | Multicenter Cohort study. The study included patients with CAD, 14,478 patients (median follow-up of 8.9 years), and 5467 patients (median follow-up of 6.7 years). | A U-shaped association of HDL with all-cause mortality was found. Both low and very high HDL levels (>80 mg/dL) were associated with higher risk than normal (40–60 mg/dL). |
Hamer et al. [57], Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, United Kingdom. | A population-based observational study. Adult participants (N = 37,059) were recruited from the Health Survey for England and Scottish Health Survey. | A U-shaped association was found with all causes of mortality, and risk was not attenuated with the highest and lowest category of HDL. |
Oh et al. [58], Atherosclerosis, 2019, South Korea. | Observational Study. The research incorporated 365,457 participants who were part of the Korean National Health Insurance Service–National Sample Cohort. | An extremely high HDL level was associated with an increased risk of all-cause mortality. |
Hirata et al. [59], Journal of Clinical Lipidology, 2018, Japan. | A pooled analysis of observational cohort studies. It included 43,407 participants from 9 Japanese Cohort Studies. | Significant associations have been established between elevated levels of HDL and an increased susceptibility to mortality resulting from cardiovascular disease, coronary heart disease, and ischemic stroke. |
Le et al. [60], The Journal of Clinical Endocrinology and Metabolism, 2019, United States. | Prospective cohort study. A total of 7756 elderly individuals were enrolled who had a median follow up of 5.9 years. | HDL concentrations <61 mg/dL and >87 mg/dL. These two-groups showed significantly higher risk for all-cause mortality than those who had 61 to 87 mg/dL HDL levels. |
Zhong et al. [61], European Journal of Preventive Cardiology, Country (US, UK, Japan, Canada, Denmark, Iran, Peru, Israel, South Korea, Turkey). | Thirty-seven prospective cohort studies were analyzed. The study sample size was 3,524,505 participants. | The j-shaped association was found between HDL level and mortality from all causes, including CVD and cancer. The risk was higher in both low- and high-HDL groups. |
Liu et al. [62], The American Journal of Cardiology, 2022, UK. | Prospective cohort study, Number of participants are 415,416 without CAD, median follow up was 9 years. | No significant difference was found in the risk of cardiovascular mortality between women with high (>60 and ≤80 mg/100 mL) or very high levels of HDL (>80 mg/100 mL) and those with normal HDL levels. Men showed two-fold higher risk of CVD death after adjusting for confounding factors. |
Yi et al. [63], European Journal of Preventive Cardiology, 2022, Republic of Korea. | Prospective cohort study, mean follow up was 8.8 years. Sample was 15,859,501 Korean Adults with no CVD or cancer. | Both high and low HDL were significantly associated with increased CVD mortality. |
11. Different Methods for HDL Quality Determination
12. Conclusions
Funding
Conflicts of Interest
References
- Casula, M.; Colpani, O.; Xie, S.; Catapano, A.L.; Baragetti, A. HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Westerterp, M.; von Eckardstein, A.; Remaley, A.; Rye, K.A. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021, 143, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Fujita, M.; Ikewaki, K. HDL Functions—Current Status and Future Perspectives. Biomolecules 2023, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Bardagjy, A.S.; Steinberg, F.M. Relationship Between HDL Functional Characteristics and Cardiovascular Health and Potential Impact of Dietary Patterns: A Narrative Review. Nutrients 2019, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Novel Insights from Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Cochran, B.J.; Manandhar, B.; Thomas, S.; Rye, K.A. HDL maturation and remodelling. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids. 2022, 1867, 159119. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Rysz, J.; Ławiński, J.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021, 9, 1083. [Google Scholar] [CrossRef] [PubMed]
- The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915494/ (accessed on 18 March 2024).
- Marsche, G.; Heine, G.H.; Stadler, J.T.; Holzer, M. Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020, 10, 1348. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Kashfi, K. Lipoproteins and cancer: The role of HDL-C, LDL-C, and cholesterol-lowering drugs. Biochem. Pharmacol. 2022, 196, 114654. [Google Scholar] [CrossRef]
- Manthei, K.A.; Ahn, J.; Glukhova, A.; Yuan, W.; Larkin, C.; Manett, T.D.; Chang, L.; Shayman, J.A.; Axley, M.J.; Schwendeman, A.; et al. A retractable lid in lecithin:cholesterol acyltransferase provides a structural mechanism for activation by apolipoprotein A-I. J. Biol. Chem. 2017, 292, 20313–20327. [Google Scholar] [CrossRef]
- Thakkar, H.; Vincent, V.; Sen, A.; Singh, A.; Roy, A. Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. J. Lipids 2021, 2021, e5585521. [Google Scholar] [CrossRef] [PubMed]
- Bonizzi, A.; Piuri, G.; Corsi, F.; Cazzola, R.; Mazzucchelli, S. HDL Dysfunctionality: Clinical Relevance of Quality Rather Than Quantity. Biomedicines 2021, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Marathe, G.K.; Zimmerman, G.A.; McIntyre, T.M. Platelet-activating Factor Acetylhydrolase, and Not Paraoxonase-1, Is the Oxidized Phospholipid Hydrolase of High Density Lipoprotein Particles. J. Biol. Chem. 2003, 278, 3937–3947. [Google Scholar] [CrossRef] [PubMed]
- von Eckardstein, A.; Nordestgaard, B.G.; Remaley, A.T.; Catapano, A.L. High-density lipoprotein revisited: Biological functions and clinical relevance. Eur. Heart J. 2023, 44, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.T.; Charakida, M. High-Density Lipoprotein Function and Dysfunction in Health and Disease. Cardiovasc. Drugs Ther. 2019, 33, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Chen, J.B.; Moi, S.H.; Yang, C.H. Association of proportion of the HDL-cholesterol subclasses HDL-2b and HDL-3 and macrovascular events among patients undergoing hemodialysis. Sci. Rep. 2021, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Lappegård, K.T.; Kjellmo, C.A.; Hovland, A. High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021, 9, 836. [Google Scholar] [CrossRef] [PubMed]
- Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle Subclasses and Molecular Components. In High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; von Eckardstein, A., Kardassis, D., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 3–51. [Google Scholar] [CrossRef]
- Chei, C.L.; Yamagishi, K.; Kitamura, A.; Kiyama, M.; Imano, H.; Ohira, T.; Cui, R.; Tanigawa, T.; Sankai, T.; Ishikawa, Y.; et al. High-density Lipoprotein Subclasses and Risk of Stroke and its Subtypes in Japanese Population. Stroke 2013, 44, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Kalbitzer, T.; Lobenhofer, K.; Martin, S.; Beck Erlach, M.; Kremer, W.; Kalbitzer, H.R. NMR derived changes of lipoprotein particle concentrations related to impaired fasting glucose, impaired glucose tolerance, or manifest type 2 diabetes mellitus. Lipids Health Dis. 2023, 22, 42. [Google Scholar] [CrossRef]
- Ogino, M.; Kameda, T.; Mutsuda, Y.; Tanaka, H.; Takahashi, J.; Okazaki, M.; Ai, M.; Ohkawa, R. Development of internal standard for lipoprotein subclass analysis using dual detection gel-permeation high-performance liquid chromatography system. Biosci. Rep. 2022, 42, BSR20220291. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.G.; Florida, E.; Li, H.; Parel, P.M.; Mehta, N.N.; Sorokin, A.V. Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 9, 1023651. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Virdis, A.; Borghi, C. Risk of cardiovascular mortality associated with very high HDL-cholesterol level and hyperuricemia in chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Gluba-Brzózka, A.; Rysz-Górzyńska, M.; Franczyk, B. The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 601. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, A.; Xie, D.; Cedillo-Couvert, E.; Charleston, J.; Chen, J.; Deo, R.; Feldman, H.I.; Go, A.S.; He, J.; Horwitz, E.; et al. Lipids, Apolipoproteins, and Risk of Atherosclerotic Cardiovascular Disease in Persons With CKD. Am. J. Kidney Dis. 2019, 73, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Lopez, M.; Forne, C.; Amigo, N.; Bozic, M.; Arroyo, D.; Bretones, T.; Alonso, N.; Cambray, S.; Del Pino, M.D.; Mauricio, D.; et al. An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients. Expert. Opin. Ther. Targets 2019, 23, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Allard-Ratick, M.P.; Kindya, B.R.; Khambhati, J.; Engels, M.C.; Sandesara, P.B.; Rosenson, R.S.; Sperling, L.S. HDL: Fact, fiction, or function? HDL cholesterol and cardiovascular risk. Eur. J. Prev. Cardiol. 2021, 28, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Shea, S.; Stein, J.H.; Jorgensen, N.W.; McClelland, R.L.; Tascau, L.; Shrager, S.; Heinecke, J.W.; Yvan-Charvet, L.; Tall, A.R. Cholesterol Mass Efflux Capacity, Incident Cardiovascular Disease, and Progression of Carotid Plaque. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 89–96. [Google Scholar] [CrossRef]
- Grao-Cruces, E.; Lopez-Enriquez, S.; Martin, M.E.; Montserrat-de la Paz, S. High-density lipoproteins and immune response: A review. Int. J. Biol. Macromol. 2022, 195, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport: Basic Mechanisms and their Roles in Vascular Health and Disease. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef]
- Crossman, D.; Rothman, A. The Canakinumab Antiinflammatory Thrombosis Outcome Study trial—The starting gun has fired. J. Thorac. Dis. 2017, 9, 4922–4925. [Google Scholar] [CrossRef] [PubMed]
- Colchicine Cardiovascular Outcomes Trial. American College of Cardiology. Available online: https://www.acc.org/Latest-in-Cardiology/Clinical-Trials/2019/11/15/17/23/http%3a%2f%2fwww.acc.org%2fLatest-in-Cardiology%2fClinical-Trials%2f2019%2f11%2f15%2f17%2f23%2fCOLCOT (accessed on 2 April 2024).
- Su, X.; Zhang, G.; Cheng, Y.; Wang, B. New insights into the emerging effects of inflammatory response on HDL particles structure and function. Mol. Biol. Rep. 2021, 48, 5723–5733. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, F.; Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Couret, D.; Tran-Dinh, A.; Duranteau, J.; Montravers, P.; Schwendeman, A.; Meilhac, O. High-density lipoproteins during sepsis: From bench to bedside. Crit. Care 2020, 24, 134. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S.; Jankowski, V.; Bender, G.; Zewinger, S.; Rye, K.A.; van der Vorst, E.P.C. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv. Drug Deliv. Rev. 2020, 159, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Hine, D.; Mackness, B.; Mackness, M. Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation. IUBMB Life 2012, 64, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzman, E. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 2018, 7, 212525. [Google Scholar] [CrossRef] [PubMed]
- Brites, F.; Martin, M.; Guillas, I.; Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017, 8, 66–77. [Google Scholar] [CrossRef]
- van der Stoep, M.; Korporaal, S.J.A.; Van Eck, M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc. Res. 2014, 103, 362–371. [Google Scholar] [CrossRef]
- Brinck, J.W.; Thomas, A.; Brulhart-Meynet, M.C.; Lauer, E.; Frej, C.; Dahlbäck, B.; Stenvinkel, P.; James, R.W.; Frias, M.A. High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur. J. Clin. Investig. 2018, 48, e12866. [Google Scholar] [CrossRef] [PubMed]
- Kaseda, R.; Tsuchida, Y.; Yang, H.C.; Yancey, P.G.; Zhong, J.; Tao, H.; Bian, A.; Fogo, A.B.; Linton, M.R.; Fazio, S.; et al. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: Effects of liver X receptor agonism. BMC Nephrol. 2018, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, S.; Lee, Y.; Kang, M.W.; Park, S.; Park, S.; Han, K.; Paek, J.H.; Park, W.Y.; Jin, K.; et al. Predictive value of triglyceride/high-density lipoprotein cholesterol for major clinical outcomes in advanced chronic kidney disease: A nationwide population-based study. Clin. Kidney J. 2021, 14, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Maeba, R.; Kojima, K.I.; Nagura, M.; Komori, A.; Nishimukai, M.; Okazaki, T.; Uchida, S. Association of cholesterol efflux capacity with plasmalogen levels of high-density lipoprotein: A cross-sectional study in chronic kidney disease patients. Atherosclerosis 2018, 270, 102–109. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.M.; Antonio Pinheiro Braga, M.; Oliveira Franchini, A.E.; Martins, O.C.; Silveira Filho, R.B.; Catao, M. Abstract 12281, Association Between Extremely High HDL-C Levels and Mortality: A Systematic Review and Meta-Analysis. Circulation 2023, 148 (Suppl. 1), A12281. [Google Scholar] [CrossRef]
- Nam, K.H.; Chang, T.I.; Joo, Y.S.; Kim, J.; Lee, S.; Lee, C.; Yun, H.R.; Park, J.T.; Yoo, T.H.; Sung, S.A.; et al. Association Between Serum High-Density Lipoprotein Cholesterol Levels and Progression of Chronic Kidney Disease: Results From the KNOW-CKD. J. Am. Heart Assoc. 2019, 8, e011162. [Google Scholar] [CrossRef]
- EBSCOhost|163642187|Paradoxical Mortality Differential of HDL Cholesterol. Available online: https://web.s.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=24679100&AN=163642187&h=ywkHnYu9EwKhEIF5TJ3n%2foKBj9SCZmKqckYvVMs6W0jfQBbWfHD3Ltafkt2dwhj8DJu7tNAOrov%2fWzj%2fx1VMdg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d24679100%26AN%3d163642187 (accessed on 8 December 2023).
- Navaneethan, S.D.; Schold, J.D.; Walther, C.P.; Arrigain, S.; Jolly, S.E.; Virani, S.S.; Winkelmayer, W.C.; Nally, J.V., Jr. HDL-cholesterol and causes of death in chronic kidney disease. J. Clin. Lipidol. 2018, 12, 1061–1071.e7. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, F. HDL in CKD—The Devil Is in the Detail. J. Am. Soc. Nephrol. JASN 2018, 29, 1356–1371. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Fisher, E.A. Dysfunctional HDL Takes Its Toll in Chronic Kidney Disease. Immun. Camb. Mass. 2013, 38, 628–630. [Google Scholar] [CrossRef]
- Ertek, S. High-density Lipoprotein (HDL) Dysfunction and the Future of HDL. Curr. Vasc. Pharmacol. 2018, 16, 490–498. [Google Scholar] [CrossRef]
- Quesada, J.A.; Bertomeu-González, V.; Orozco-Beltrán, D.; Cordero, A.; Gil-Guillén, V.F.; López-Pineda, A.; Nouni-García, R.; Carratalá-Munuera, C. The benefits of measuring the size and number of lipoprotein particles for cardiovascular risk prediction: A systematic review and meta-analysis. Clínica E Investig. En. Arterioscler. Engl. Ed. 2023, 35, 165–177. [Google Scholar] [CrossRef]
- Liu, C.; Dhindsa, D.; Almuwaqqat, Z.; Ko, Y.A.; Mehta, A.; Alkhoder, A.A.; Alras, Z.; Desai, S.R.; Patel, K.J.; Hooda, A.; et al. Association Between High-Density Lipoprotein Cholesterol Levels and Adverse Cardiovascular Outcomes in High-risk Populations. JAMA Cardiol. 2022, 7, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; O’Donovan, G.; Stamatakis, E. High-Density Lipoprotein Cholesterol and Mortality. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.H.; Hur, J.K.; Ryoo, J.H.; Jung, J.Y.; Park, S.K.; Yang, H.J.; Choi, J.M.; Jung, K.W.; Won, Y.J.; Oh, C.M. Very high high-density lipoprotein cholesterol is associated with increased all-cause mortality in South Koreans. Atherosclerosis 2019, 283, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Sugiyama, D.; Watanabe, M.; Tamakoshi, A.; Iso, H.; Kotani, K.; Kiyama, M.; Yamada, M.; Ishikawa, S.; Murakami, Y.; et al. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH–JAPAN study. J. Clin. Lipidol. 2018, 12, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Lv, Y.B.; Zhong, W.F.; Gao, X.; Byers Kraus, V.; Zou, M.C.; Zhang, X.R.; Li, F.R.; Yuan, J.Q.; Shi, X.M.; et al. High-Density Lipoprotein Cholesterol and All-Cause and Cause-Specific Mortality Among the Elderly. J. Clin. Endocrinol. Metab. 2019, 104, 3370–3378. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.C.; Huang, S.Q.; Peng, Y.; Wan, L.; Wu, Y.Q.; Hu, T.Y.; Hu, J.J.; Hao, F.B. HDL-C is associated with mortality from all causes, cardiovascular disease and cancer in a J-shaped dose-response fashion: A pooled analysis of 37 prospective cohort studies. Eur. J. Prev. Cardiol. 2020, 27, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dhindsa, D.; Almuwaqqat, Z.; Sun, Y.V.; Quyyumi, A.A. Very High High-Density Lipoprotein Cholesterol Levels and Cardiovascular Mortality. Am. J. Cardiol. 2022, 167, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.W.; Park, H.B.; Jung, M.H.; Yi, J.J.; Ohrr, H. High-density lipoprotein cholesterol and cardiovascular mortality: A prospective cohort study among 15.8 million adults. Eur. J. Prev. Cardiol. 2022, 29, 844–854. [Google Scholar] [CrossRef]
- Faaborg-Andersen, C.C.; Liu, C.; Subramaniyam, V.; Desai, S.R.; Sun, Y.V.; Wilson, P.W.; Sperling, L.S.; Quyyumi, A.A. U-shaped relationship between apolipoprotein A1 levels and mortality risk in men and women. Eur. J. Prev. Cardiol. 2023, 30, 293–304. [Google Scholar] [CrossRef]
- Dong, H.; Wang, J.; Hu, P.; Lu, N. Association of Apolipoprotein A1, High Density Lipoprotein Cholesterol, and Their Ratio with Inflammatory Marker in Chinese Adults with Coronary Artery Disease. Angiology 2023, 74, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Emmens, J.E.; Jia, C.; Ng, L.L.; van Veldhuisen, D.J.; Dickstein, K.; Anker, S.D.; Lang, C.C.; Filippatos, G.; Cleland, J.G.; Metra, M.; et al. Impaired High-Density Lipoprotein Function in Patients with Heart Failure. J. Am. Heart Assoc. 2021, 10, e019123. [Google Scholar] [CrossRef] [PubMed]
- Brinton, E.A.; Pulipati, V.P. Fibrate Therapy: Impact on Dyslipidemia and Cardiovascular Events in Patients with Diabetes Mellitus Type 2. In Lipoproteins in Diabetes Mellitus; Jenkins, A.J., Toth, P.P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 637–679. [Google Scholar] [CrossRef]
- Borja, M.S.; Hammerson, B.; Tang, C.; Juarez-Serrano, L.; Savinova, O.V.; Harris, W.S.; Oda, M.N.; Shearer, G.C. Effects of niacin and omega-3 fatty acids on HDL-apolipoprotein A-I exchange in subjects with metabolic syndrome. PLoS ONE 2024, 19, e0296052. [Google Scholar] [CrossRef]
- Lee, J.; Egolum, U.; Parihar, H.; Cooley, M.; Ling, H. Effect of Ezetimibe Added to High-Intensity Statin Therapy on Low-Density Lipoprotein Cholesterol Levels: A Meta-Analysis. Cardiol. Res. 2021, 12, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Naresh, S.; Bitla, A.R.; Rao, P.V.L.N.S.; Sachan, A.; Amancharla, Y.L. Efficacy of oral rosuvastatin intervention on HDL and its associated proteins in men with type 2 diabetes mellitus. Endocrine 2021, 71, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Darabi, M.; Kontush, A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2022, 1867, 159058. [Google Scholar] [CrossRef] [PubMed]
- Güleç, S.; Erol, C. High-Density Lipoprotein Cholesterol and Risk of Cardiovascular Disease. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-19/high-density-lipoprotein-cholesterol-and-risk-of-cardiovascular-disease (accessed on 7 April 2024).
- Barter, P.; Genest, J. HDL cholesterol and ASCVD risk stratification: A debate. Atherosclerosis 2019, 283, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Mehta, A.; Jain, V.; Patel, P.; Liu, C.; Patel, N.; Eisenberg, S.; Vaccarino, V.; Isiadinso, I.; Sperling, L.S. High-Density Lipoprotein Cholesterol in Atherosclerotic Cardiovascular Disease Risk Assessment: Exploring and Explaining the “U”-Shaped Curve. Curr. Cardiol. Rep. 2023, 25, 1725–1733. [Google Scholar] [CrossRef]
- Cho, K.H. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int. J. Mol. Sci. 2022, 23, 3967. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, J.R.; Lee, I.C.; Kwon, H.J. Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect Against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity. Antioxidants 2021, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Kim, J.-R. Rapid decrease in HDL-C in the puberty period of boys associated with an elevation of blood pressure and dyslipidemia in Korean teenagers: An explanation of why and when men have lower HDL-C levels than women. Med. Sci. 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Huang, H.C.; Chiang, H.Y.; Chung, C.W.; Chang, S.N.; Chu, P.L.; Kuo, C.C. Longitudinal lipid trends and adverse outcomes in patients with CKD: A 13-year observational cohort study. J. Lipid Res. 2019, 60, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Matera, R.; Horvath, K.V.; Nair, H.; Schaefer, E.J.; Asztalos, B.F. HDL Particle Measurement: Comparison of 5 Methods. Clin. Chem. 2018, 64, 492–500. [Google Scholar] [CrossRef]
- Emeasoba, E.U.; Ibeson, E.; Nwosu, I.; Montemarano, N.; Shani, J.; Shetty, V.S. Clinical Relevance of Nuclear Magnetic Resonance LipoProfile. Front. Nucl. Med. 2022, 2, 960522. [Google Scholar] [CrossRef]
Major Components of HDL | ||
---|---|---|
Protein | Apolipoprotein | ApoA-I, ApoA-II, ApoA-IV, C Apolipoproteins, ApoE, ApoM etc |
Enzymes | lecithin–cholesterol acyltransferase (LCAT), cholesterol ester transfer protein (CETP), and phospholipid transfer protein (PLTP), paraoxonase-1 (PON), platelet-activating factor acetyl hydrolase (PAF-AH) etc. | |
Lipids | Free Cholesterol | |
cholesterol esters | ||
Glycerophospholipids: Phosphatidylcholine (PC) and sphingomyelin (SM) | ||
Triglycerides | ||
Phospholipid | ||
MicroRNAs (miRNA) and metabolites |
Ultracentrifugation | ||||
---|---|---|---|---|
HDL2 | HDL3 | |||
1063–1125 mg/mL | 1125–1210 mg/mL | |||
Gradient Gel Electrophoresis | ||||
HDL2b | HDL2a | HDL3a | HDL3b | HDL3c |
9.7–12 nm | 8.8–9.7 nm | 8.2–8.8 nm | 7.8–8.2 nm | 7.2–7.8 nm |
Nuclear Magnetic Resonance | ||||
Large | Medium | Small | ||
8.8–13 nm | 8.2–8.8 nm | 7.3–8.2 nm | ||
2-D Gel Electrophoresis | ||||
pre-β-1 HDL | α-4 HDL | α-3 HDL | α-2 HDL | α-1 HDL |
5.6 nm | 7.4 nm | 8.0 nm | 9.2 nm | large spherical HDL |
Agarose Gel Electrophoresis | ||||
α-migrating particles | preβ-migrating particles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.; Bowden, R.G. Assessing High-Density Lipoprotein: Shifting Focus from Quantity to Quality in Cardiovascular Disease Risk Assessment. Int. J. Transl. Med. 2024, 4, 369-380. https://doi.org/10.3390/ijtm4020024
Ahmed T, Bowden RG. Assessing High-Density Lipoprotein: Shifting Focus from Quantity to Quality in Cardiovascular Disease Risk Assessment. International Journal of Translational Medicine. 2024; 4(2):369-380. https://doi.org/10.3390/ijtm4020024
Chicago/Turabian StyleAhmed, Tanvir, and Rodney G. Bowden. 2024. "Assessing High-Density Lipoprotein: Shifting Focus from Quantity to Quality in Cardiovascular Disease Risk Assessment" International Journal of Translational Medicine 4, no. 2: 369-380. https://doi.org/10.3390/ijtm4020024
APA StyleAhmed, T., & Bowden, R. G. (2024). Assessing High-Density Lipoprotein: Shifting Focus from Quantity to Quality in Cardiovascular Disease Risk Assessment. International Journal of Translational Medicine, 4(2), 369-380. https://doi.org/10.3390/ijtm4020024