Micro(Nano)plastics in Human Carcinogenesis: Emerging Evidence and Mechanistic Insights
Abstract
1. Introduction
| Type of Cancer/Sample | Type of Microplastic Detected | Size/Concentration of Microplastic | Detection Technique | Reference |
|---|---|---|---|---|
| Cervical cancer (tumor tissue) | PE, PP | <20 µm 2.24 ± 1.61 MP particles/g | Micro-Raman spectroscopy Scanning electron microscopy | [14] |
| Cervical cancer (blood, tumor tissue, and paracancerous tissue) | PE, PP | Blood: 2.2 ± 1.42 MP particles/mL Tumor: 1.67 ± 0.94 MP particles/mL) Paracancer: 0.87 ± 0.72 MP particles/mL | Raman spectroscopy Pyrolysis–gas chromatography–mass spectroscopy (Py-GC/MS) | [15] |
| Prostate cancer (paratumor and tumor tissue) | PS, PE, PP, PVC | Paratumor: 20–30 µm 181.0 µg/g Tumor: 50–100 µm 290.3 µg/g | Pyrolysis–gas chromatography–mass spectroscopy (Py-GC/MS) | [16] |
| Breast cancer (tumor tissue) | PIC, PP | >100 µm | Laser direct infrared (LDIR) spectroscopy Scanning electron microscopy (SEM) | [17] |
| Lung cancer Pancreatic cancer Gastric cancer Colorectal cancer Cervical cancer (tumor tissue) | PS, PVC, PE | 111.04 ± 156.77 ng MP/g | Pyrolysis–gas chromatography–mass spectroscopy (Py-GC/MS) | [18] |
| Colorectal cancer (colon resection samples) | PE, PMMA, PA | 1–613 µm 702.68 ± 504.26 MP particles/g | Attenuated total reflection–Fourier-transform infrared (ATR-FTIR) spectroscopy Raman spectroscopy | [19] |
| Colorectal cancer (tumor tissues) | PP, PE, PA, PET, PVC | 20–500 µm | Laser direct infrared (LDIR) chemical imaging system Scanning electron microscopy (SEM) | [20] |
| Colorectal cancer (tumor and peritumoral tissues) | PA, PET, PVC, PU | <100 µm | Laser direct infrared (LDIR) chemical imaging system Scanning electron microscopy (SEM) | [21] |
| Penile cancer (cancerous and paracancerous tissues) | PE, PP, PVC, PA | 20–50 µm | Laser direct infrared (LDIR) spectroscopy | [22] |
| Normal Tissue Sample | Type/Size/Concentration of Microplastic Detected | Tumor Sample | Type/Size/Concentration of Microplastic Detected | References |
|---|---|---|---|---|
| Prostate tissue | PA, PP, PAA, PDMS (2.5–26 µm) | Prostate cancer | PS, PE, PP, PVC (50–100 µm; 290.3 µg/g) | [16,23] |
| Breast milk | PE, PVC, PP (2–12 µm) | Breast cancer | PIC, PP (>100 µm) | [17,24] |
| Lung tissue | PP, PET (12–2475 μm; 0.69 ± 0.84 MP particles/g | Lung cancer | PS, PVC, PE (122.30 ± 154.88 ng/g) | [18,25] |
| Colon tissue (colectomy samples) | PC, PA, PP (800–16,000 µm; 28.1–15.4 MP particles/g) | Colorectal cancer (colon resection samples) | PE, PMMA, PA (1–613 µm 702.68 ± 504.26 MP particles/g) | [19,26] |
| Penile tissue | PET, PP (20–500 µm) | Penile cancer (cancerous and paracancerous tissues) | PE, PP, PVC, PA (20–50 µm) | [22,27] |
| Kidney (nephrectomy samples) | PE, PS (1–29 µm) | Clear-cell renal-cell carcinoma (tumor tissue) | PET, PVC (<200 µm) | [28,29] |

2. Review Methodology
3. Molecular Mechanism of Micro(Nanoplastic)-Induced Carcinogenesis
3.1. Oxidative Stress as a Driver of Carcinogenesis
3.2. DNA Damage and Genotoxicity
3.3. Chronic Inflammation and Immune Dysregulation
3.4. Epigenetic Reprogramming and Gene Expression Alterations
3.5. MNPs as Vectors for Carcinogens and Co-Exposure Synergy
3.6. Endocrine Disruption and Hormonal Signaling
4. Micro(Nano)plastics as Drivers of Tumor Growth, Metastasis, and Therapy Resistance
| Type of Cancer | MP/NPs Involved | Model Organism | Carcinogenic Effect | Reference |
|---|---|---|---|---|
| Skin cancer | PE (1 µm; 0–1 mg/mL) | Skin squamous-cell carcinoma cells: SCL-1, A431 | Increased proliferation of skin cancer cells with increased mitochondrial ROS and NLRP3-mediated inflammation | [94] |
| Breast cancer | PP (16.4 µm; 1.6 mg/mL) | Human breast cancer cells: MCF-7, MDA-MB-231 | Breast cancer cells relatively resistant to PP-MPs induced cytotoxicity and promoted inflammation and metastasis | [100] |
| PS-NPs (0.5, 1.0, 4.5 µm; 4000–64,000 particles/mL) | MDA-MB-231-DSP1-7 | Dose- and size-dependent absorption of PS-MPs and enhanced proliferation and migration of cancer cells | [99] | |
| Ovarian cancer | PS-NPs (100 nm; 10 mg/mL) | Mouse xenograft (human epithelial ovarian cancer cells; HEY) | Increased tumor growth in mice via THBD gene-mediated tumor microenvironment pathway | [102] |
| Lung cancer | PS-NPs (20–50 nm; 0–160 µg/mL) | Human alveolar epithelial cancer cells: A549 | Increased cancer cell migration and EMT with NOX4-mediated oxidative stress | [103] |
| Colorectal cancer | PS-MPs (0.25, 1 µm; 0.16–5 µg/mL) | Human colorectal cancer cells: HT29, HCT116, SW480 | Transfer of MP particles during cell division and increased cell migration | [98] |
| MPs (60–80 nm; 25 µg/mL) | Human colorectal cancer cells: HCT116, SW480 Mouse tumor model (xenograft) | MP exposure increased proliferation and migration of colorectal cancer cells and enhanced protective autophagy of tumor cells by modulating mTOR pathway, leading to oxaliplatin resistance | [20] | |
| Cervical cancer | PE-, PP-MPs (<20 µm; 2.24 ± 1.61 particles/g) | Cervical cancer tissues from patients | Increased MP exposure level with cervical cancer progression and enhanced amino sugar and nucleotide sugar metabolism pathways | [14] |
| Gastric cancer | PS-MPs (9.5–11.5 µm; 8.61 × 105 particles/mL) | Human gastric cancer cells: AGS, MKN1, MKN45, NCI-N87, KATOIII) Xenograft mouse model | Increased tumor proliferation, growth, and invasion and multidrug resistance of tumor cells against tested chemotherapeutic agents, mediated by the ASGR2 gene | [68] |
| PE-, PP-MPs (37–75 µm) | Human gastric adenocarcinoma cells (AGS) | Increased proliferation and survival upon long-term exposure in both 2D and 3D cancer cell models | [96] | |
| Glioblastoma | PE-MPs (37–75 µm; 0.62–20 mg/mL) | Human glioblastoma cells (U87) | Enhanced cellular proliferation and migration with increased capacity to form colonies (spheroids) upon both short and chronic exposure | [95] |
5. Impact of Micro(Nano)plastics on the Tumor Microenvironment and Contrasting Antitumor Effects
6. Limitations and Future Recommendations
6.1. Mechanistic Uncertainties
6.2. Experimental and Methodological Challenges
6.3. Chemical Complexity of Plastic Additives
6.4. Epidemiological Gaps
6.5. Lack of Specific Biomarkers for Exposure Assessment
6.6. Innovative Therapeutic Potential
6.7. Integrated and Interdisciplinary Approach
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Akt | Protein kinase B |
| BPA | Bisphenol A |
| CAT | Catalase |
| DAMP | Danger-associated membrane protein |
| DEHP | Diethylhexyl phthalate |
| EDC | Endocrine-disrupting chemical |
| EGFR | Epidermal growth factor receptor |
| FGFR | Fibroblast growth factor receptor |
| IL | Interleukin |
| IGF-1R | Insulin-like growth factor receptor |
| MAPK | Mitogen-activated protein kinase |
| MDA | Malondialdehyde |
| MP | Microplastic |
| NP | Nanoplastic |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| PA | Polyamide |
| PAH | Polycyclic aromatic hydrocarbon |
| PDGFR | Platelet-derived growth factor receptor |
| PD-L1 | Programmed death-ligand 1 |
| PE | Polyethylene |
| PET | Polyethylene terephthalate |
| PI3K | Phosphatidylinositol-3-kinase |
| PMC | Polymorphonuclear cell |
| PMMA | Poly(methyl methacrylate) |
| PP | Polypropylene |
| PPS | Polyphenylene sulfite |
| PS | Polystyrene |
| PVC | Polyvinylchloride |
| ROS | Reactive oxygen species |
| RTK | Receptor tyrosine kinase |
| SOD | Superoxide dismutase |
| Th17 | T helper 17 cell |
| TME | Tumor microenvironment |
| TNF-α | Tumor necrosis factor alpha |
| TPHP | Triphenyl phosphate |
| Treg | Regulatory T cell |
| VEGFR | Vascular endothelial growth factor receptor |
References
- Giri, S.; Lamichhane, G.; Khadka, D.; Devkota, H.P. Microplastics Contamination in Food Products: Occurrence, Analytical Techniques and Potential Impacts on Human Health. Curr. Res. Biotechnol. 2024, 7, 100190. [Google Scholar] [CrossRef]
- Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. [Google Scholar] [CrossRef]
- Global Plastic Waste Set to Almost Triple by 2060, Says OECD. Available online: https://www.oecd.org/en/about/news/press-releases/2022/06/global-plastic-waste-set-to-almost-triple-by-2060.html (accessed on 24 February 2025).
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Domenech, J.; Annangi, B.; Marcos, R.; Hernández, A.; Catalán, J. Insights into the Potential Carcinogenicity of Micro- and Nano-Plastics. Mutat. Res. Rev. Mutat. Res. 2023, 791, 108453. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C.; Sivanesan, S.; Ogunkanmi, A.L.; Krishnamurthi, K. Micro (Nano)-Plastics in the Environment and Risk of Carcinogenesis: Insight into Possible Mechanisms. J. Hazard. Mater. 2021, 416, 126143. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from Food Packaging: An Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Barceló, D.; Picó, Y.; Alfarhan, A.H. Microplastics: Detection in Human Samples, Cell Line Studies, and Health Impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Kumar, N.; Lamba, M.; Pachar, A.K.; Yadav, S.; Acharya, A. Microplastics—A Growing Concern as Carcinogens in Cancer Etiology: Emphasis on Biochemical and Molecular Mechanisms. Cell Biochem. Biophys. 2024, 82, 3109–3121. [Google Scholar] [CrossRef]
- Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A Comprehensive Review on the Carcinogenic Potential of Bisphenol A: Clues and Evidence. Environ. Sci. Pollut. Res. 2021, 28, 19643–19663. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, C.; Tsai, C.; Hsieh, T.; Hsu, C.; Tsai, E. Possible Mechanism of Phthalates-induced Tumorigenesis. Kaohsiung J. Med. Sci. 2012, 28, S22–S27. [Google Scholar] [CrossRef]
- Abbas, G.; Ahmed, U.; Ahmad, M.A. Impact of Microplastics on Human Health: Risks, Diseases, and Affected Body Systems. Microplastics 2025, 4, 23. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic Sources, Formation, Toxicity and Remediation: A Review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef]
- Xu, H.; Dong, C.; Xiang, T.; Shentu, X.; Yu, Z.; Xu, J.; Yu, J.; Ma, D.; Xie, Y. Microplastic Changes during the Development of Cervical Cancer and Its Effects on the Metabolomic Profiles of Cancer Tissues. J. Hazard. Mater. 2024, 483, 136656. [Google Scholar] [CrossRef]
- Xu, H.; Dong, C.; Yu, Z.; Ozaki, Y.; Hu, Z.; Zhang, B.; Yao, W.; Yu, J.; Xie, Y. Detection and Analysis of Microplastics in Tissues and Blood of Human Cervical Cancer Patients. Environ. Res. 2024, 259, 119498. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhu, J.; Fang, Z.; Yang, Y.; Zhao, Q.; Zhang, Z.; Jin, Z.; Jiang, H. Identification and Analysis of Microplastics in Para-Tumor and Tumor of Human Prostate. EBioMedicine 2024, 108, 105360. [Google Scholar] [CrossRef]
- Tian, Z.; Ding, B.; Guo, Y.; Zhou, J.; Jiang, S.; Lu, J.; Li, N.; Zhou, X.; Zhang, W. Microplastics Accumulated in Breast Cancer Patients Lead to Mitophagy via ANXA2-Mediated Endocytosis and IL-17 Signaling Pathway. Environ. Pollut. 2025, 364, 125321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, H.; Shi, L.; Jia, Y.; Sheng, H. Detection and Quantification of Microplastics in Various Types of Human Tumor Tissues. Ecotoxicol. Environ. Saf. 2024, 283, 116818. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Demirkaya Miloglu, F.; Kilic Baygutalp, N.; Ceylan, O.; Yildirim, S.; Eser, G.; Gul, H.İ. Higher Number of Microplastics in Tumoral Colon Tissues from Patients with Colorectal Adenocarcinoma. Environ. Chem. Lett. 2023, 21, 639–646. [Google Scholar] [CrossRef]
- Pan, W.; Han, Y.; Zhang, M.; Zhu, K.; Yang, Z.; Qiu, M.; Guo, Y.; Dong, Z.; Hao, J.; Zhang, X.; et al. Effects of Microplastics on Chemo-Resistance and Tumorigenesis of Colorectal Cancer. Apoptosis 2025, 30, 1005–1020. [Google Scholar] [CrossRef]
- Pan, W.; Hao, J.; Zhang, M.; Liu, H.; Tian, F.; Zhang, X.; Jiang, Z.; Chen, C.; Gao, M.; Zhang, H. Identification and Analysis of Microplastics in Peritumoral and Tumor Tissues of Colorectal Cancer. Sci. Rep. 2025, 15, 16130. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Q.; Zhang, X.; Jiang, H.; Zhang, X. Identification and Analysis of Microplastics in Human Penile Cancer Tissues. Sci. Total Environ. 2025, 969, 178815. [Google Scholar] [CrossRef]
- Demirelli, E.; Tepe, Y.; Oğuz, U.; Aydın, H.; Kodat, M.; Tok, D.S.; Sönmez, M.G.; Öğreden, E. The First Reported Values of Microplastics in Prostate. BMC Urol. 2024, 24, 106. [Google Scholar] [CrossRef]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of Microplastics in Human Lung Tissue Using μFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.S.; Anuar, S.T.; Azmi, A.A.; Khalik, W.M.A.W.M.; Lehata, S.; Hamzah, S.R.; Ismail, D.; Ma, Z.F.; Dzulkarnaen, A.; Zakaria, Z.; et al. Detection of Microplastics in Human Colectomy Specimens. JGH Open Access J. Gastroenterol. Hepatol. 2020, 5, 116. [Google Scholar] [CrossRef] [PubMed]
- Codrington, J.; Varnum, A.A.; Hildebrandt, L.; Pröfrock, D.; Bidhan, J.; Khodamoradi, K.; Höhme, A.-L.; Held, M.; Evans, A.; Velasquez, D.; et al. Detection of Microplastics in the Human Penis. Int. J. Impot. Res. 2025, 37, 377–383. [Google Scholar] [CrossRef]
- Massardo, S.; Verzola, D.; Alberti, S.; Caboni, C.; Santostefano, M.; Eugenio Verrina, E.; Angeletti, A.; Lugani, F.; Ghiggeri, G.M.; Bruschi, M.; et al. MicroRaman Spectroscopy Detects the Presence of Microplastics in Human Urine and Kidney Tissue. Environ. Int. 2024, 184, 108444. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, S.; Chen, S.; Zhou, Z.; Zhan, Y.; Zhang, X. Multimodal Detection and Analysis of Microplastics in Human Clear Cell Renal Cell Carcinoma. Environ. Pollut. 2025, 383, 126729. [Google Scholar] [CrossRef]
- Goswami, S.; Adhikary, S.; Bhattacharya, S.; Agarwal, R.; Ganguly, A.; Nanda, S.; Rajak, P. The Alarming Link between Environmental Microplastics and Health Hazards with Special Emphasis on Cancer. Life Sci. 2024, 355, 122937. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress—Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef]
- Das, A. The Emerging Role of Microplastics in Systemic Toxicity: Involvement of Reactive Oxygen Species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, P.-K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways and Clinical Translation for Targeted Cancer Therapy. Sig. Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef]
- Tudek, B.; Winczura, A.; Janik, J.; Siomek, A.; Foksinski, M.; Oliński, R. Involvement of Oxidatively Damaged DNA and Repair in Cancer Development and Aging. Am. J. Transl. Res. 2010, 2, 254–284. [Google Scholar]
- Nigam, M.; Punia, B.; Dimri, D.B.; Mishra, A.P.; Radu, A.-F.; Bungau, G. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells 2025, 14, 1207. [Google Scholar] [CrossRef] [PubMed]
- Tomuleasa, C.; Tigu, A.-B.; Munteanu, R.; Moldovan, C.-S.; Kegyes, D.; Onaciu, A.; Gulei, D.; Ghiaur, G.; Einsele, H.; Croce, C.M. Therapeutic Advances of Targeting Receptor Tyrosine Kinases in Cancer. Sig. Transduct. Target. Ther. 2024, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.; Lombardo, C.M.G.; Lo Sasso, B.; Di Fatta, E.; Ferri, R.; Trovato Salinaro, A. Microplastics as Emerging Contaminants and Human Health: Exploring Functional Nutrition in Gastric–Colon–Brain Axis Cancer. Toxics 2025, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Shiwakoti, S.; Dhakal, B.; Ok, Y.; Gong, D.-S.; Ko, J.-Y.; Kim, P.-G.; Oak, M.-H. Nanoplastics: An Emerging Environmental Concern in Age-Related Diseases. Environ. Pollut. 2025, 384, 126972. [Google Scholar] [CrossRef]
- Selvaraj, N.R.; Nandan, D.; Nair, B.G.; Nair, V.A.; Venugopal, P.; Aradhya, R. Oxidative Stress and Redox Imbalance: Common Mechanisms in Cancer Stem Cells and Neurodegenerative Diseases. Cells 2025, 14, 511. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Phuc, L.T.M.; Taniguchi, A. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis. Int. J. Mol. Sci. 2017, 18, 1301. [Google Scholar] [CrossRef]
- Dai, L.; Luo, J.; Feng, M.; Wang, M.; Zhang, J.; Cao, X.; Yang, X.; Li, J. Nanoplastics Exposure Induces Vascular Malformation by Interfering with the VEGFA/VEGFR Pathway in Zebrafish. Chemosphere 2023, 312, 137360. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Chen, Y.; Shi, X.; Li, Y.; Yu, Y.; Sun, Z.; Duan, J. Size-Dependent Toxicity of Polystyrene Microplastics on the Gastrointestinal Tract: Oxidative Stress Related-DNA Damage and Potential Carcinogenicity. Sci. Total Environ. 2024, 912, 169514. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, Q.; Wang, Y.; Jin, J.; Wei, W.; Zhang, Y.; Yang, H. Polyester Microplastic Fibers Induce Mitochondrial Damage, Apoptosis and Oxidative Stress in Daphnia carinata, Accompanied by Changes in Apoptotic and Ferroptosis Pathway. Aquat. Toxicol. 2023, 263, 106690. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guan, J.; Feng, Y.; Liu, S.; Zhao, Y.; Xu, Y.; Xu, H.; Fu, F. Polystyrene Microplastics Induced Ovarian Toxicity in Juvenile Rats Associated with Oxidative Stress and Activation of the PERK-eIF2α-ATF4-CHOP Signaling Pathway. Toxics 2023, 11, 225. [Google Scholar] [CrossRef]
- Ballesteros, S.; Domenech, J.; Barguilla, I.; Cortés, C.; Marcos, R.; Hernández, A. Genotoxic and Immunomodulatory Effects in Human White Blood Cells after Ex Vivo Exposure to Polystyrene Nanoplastics. Environ. Sci. Nano 2020, 7, 3431–3446. [Google Scholar] [CrossRef]
- Møller, P.; Roursgaard, M. Exposure to Nanoplastic Particles and DNA Damage in Mammalian Cells. Mutat. Res. Rev. Mutat. Res. 2023, 792, 108468. [Google Scholar] [CrossRef]
- Barnes, J.L.; Zubair, M.; John, K.; Poirier, M.C.; Martin, F.L. Carcinogens and DNA Damage. Biochem. Soc. Trans. 2018, 46, 1213–1224. [Google Scholar] [CrossRef]
- Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA Repair Targeted Therapy: The Past or Future of Cancer Treatment? Pharmacol. Ther. 2016, 160, 65–83. [Google Scholar] [CrossRef]
- Maddela, N.R.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Additives of Plastics: Entry into the Environment and Potential Risks to Human and Ecological Health. J. Environ. Manag. 2023, 348, 119364. [Google Scholar] [CrossRef]
- Santovito, A.; Lambertini, M.; Nota, A. In Vitro and in Vivo Genotoxicity of Polystyrene Microplastics: Evaluation of a Possible Synergistic Action with Bisphenol A. J. Xenobiotics 2024, 14, 1415–1431. [Google Scholar] [CrossRef]
- Shilkin, E.S.; Boldinova, E.O.; Stolyarenko, A.D.; Goncharova, R.I.; Chuprov-Netochin, R.N.; Khairullin, R.F.; Smal, M.P.; Makarova, A.V. Translesion DNA Synthesis and Carcinogenesis. Biochem. Mosc. 2020, 85, 425–435. [Google Scholar] [CrossRef]
- Yun, B.H.; Guo, J.; Bellamri, M.; Turesky, R.J. DNA Adducts: Formation, Biological Effects, and New Biospecimens for Mass Spectrometric Measurements in Humans. Mass Spectrom. Rev. 2020, 39, 55–82. [Google Scholar] [CrossRef]
- Potapova, T.A.; Zhu, J.; Li, R. Aneuploidy and Chromosomal Instability: A Vicious Cycle Driving Cellular Evolution and Cancer Genome Chaos. Cancer Metastasis Rev. 2013, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Genotoxicity of Microplastics on Living Organisms: Effects on Chromosomes, DNA and Gene Expression. Environments 2025, 12, 10. [Google Scholar] [CrossRef]
- Malinowska, K.; Bukowska, B.; Piwoński, I.; Foksiński, M.; Kisielewska, A.; Zarakowska, E.; Gackowski, D.; Sicińska, P. Polystyrene Nanoparticles: The Mechanism of Their Genotoxicity in Human Peripheral Blood Mononuclear Cells. Nanotoxicology 2022, 16, 791–811. [Google Scholar] [CrossRef]
- Farag, A.A.; Youssef, H.S.; Sliem, R.E.; El Gazzar, W.B.; Nabil, N.; Mokhtar, M.M.; Marei, Y.M.; Ismail, N.S.; Radwaan, S.E.; Badr, A.M.; et al. Hematological Consequences of Polyethylene Microplastics Toxicity in Male Rats: Oxidative Stress, Genetic, and Epigenetic Links. Toxicology 2023, 492, 153545. [Google Scholar] [CrossRef]
- Mai, N.T.Q.; Batjargal, U.; Kim, W.-S.; Kim, J.-H.; Park, J.-W.; Kwak, I.-S.; Moon, B.-S. Microplastic Induces Mitochondrial Pathway Mediated Cellular Apoptosis in Mussel (Mytilus galloprovincialis) via Inhibition of the AKT and ERK Signaling Pathway. Cell Death Discov. 2023, 9, 442. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms and Consequences. Immunity 2019, 51, 27. [Google Scholar] [CrossRef]
- Yang, W.; Jannatun, N.; Zeng, Y.; Liu, T.; Zhang, G.; Chen, C.; Li, Y. Impacts of Microplastics on Immunity. Front. Toxicol. 2022, 4, 956885. [Google Scholar] [CrossRef]
- Zhi, L.; Li, Z.; Su, Z.; Wang, J. Immunotoxicity of Microplastics: Carrying Pathogens and Destroying the Immune System. TrAC Trends Anal. Chem. 2024, 177, 117817. [Google Scholar] [CrossRef]
- Alijagic, A.; Hedbrant, A.; Persson, A.; Larsson, M.; Engwall, M.; Särndahl, E. NLRP3 Inflammasome as a Sensor of Micro- and Nanoplastics Immunotoxicity. Front. Immunol. 2023, 14, 1178434. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-Induced DNA Damage, Mutations and Cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef] [PubMed]
- Sawant, D.V.; Yano, H.; Chikina, M.; Zhang, Q.; Liao, M.; Liu, C.; Callahan, D.J.; Sun, Z.; Sun, T.; Tabib, T.; et al. Adaptive Plasticity of IL-10+ and IL-35+ Treg Cells Cooperatively Promotes Tumor T Cell Exhaustion. Nat. Immunol. 2019, 20, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Zimarino, C.; Moody, W.; Davidson, S.E.; Munir, H.; Shields, J.D. Disruption of CD47-SIRPα Signaling Restores Inflammatory Function in Tumor-Associated Myeloid-Derived Suppressor Cells. Iscience 2024, 27, 109546. [Google Scholar] [CrossRef]
- Yang, Q.; Dai, H.; Wang, B.; Xu, J.; Zhang, Y.; Chen, Y.; Ma, Q.; Xu, F.; Cheng, H.; Sun, D.; et al. Nanoplastics Shape Adaptive Anticancer Immunity in the Colon in Mice. Nano Lett. 2023, 23, 3516–3523. [Google Scholar] [CrossRef]
- Cha, J.-H.; Chan, L.-C.; Li, C.-W.; Hsu, J.L.; Hung, M.-C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef]
- Kim, H.; Zaheer, J.; Choi, E.-J.; Kim, J.S. Enhanced ASGR2 by Microplastic Exposure Leads to Resistance to Therapy in Gastric Cancer. Theranostics 2022, 12, 3217. [Google Scholar] [CrossRef]
- Gu, M.; Ren, B.; Fang, Y.; Ren, J.; Liu, X.; Wang, X.; Zhou, F.; Xiao, R.; Luo, X.; You, L.; et al. Epigenetic Regulation in Cancer. MedComm 2024, 5, e495. [Google Scholar] [CrossRef]
- Subramanian, D.; Ponnusamy Manogaran, G.; Dharmadurai, D. A Systematic Review on the Impact of Micro-Nanoplastics on Human Health: Potential Modulation of Epigenetic Mechanisms and Identification of Biomarkers. Chemosphere 2024, 363, 142986. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lin, Z.-J.; Li, C.-C.; Lin, X.; Shan, S.-K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z. Epigenetic Regulation in Metabolic Diseases: Mechanisms and Advances in Clinical Study. Sig. Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- D’Cruz, S.C.; Hao, C.; Labussiere, M.; Mustieles, V.; Freire, C.; Legoff, L.; Magnaghi-Jaulin, L.; Olivas-Martinez, A.; Rodriguez-Carrillo, A.; Jaulin, C.; et al. Genome-Wide Distribution of Histone Trimethylation Reveals a Global Impact of Bisphenol A on Telomeric Binding Proteins and Histone Acetyltransferase Factors: A Pilot Study with Human and in Vitro Data. Clin. Epigenetics 2022, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Sungalee, S.; Liu, Y.; Lambuta, R.A.; Katanayeva, N.; Donaldson Collier, M.; Tavernari, D.; Roulland, S.; Ciriello, G.; Oricchio, E. Histone Acetylation Dynamics Modulates Chromatin Conformation and Allele-Specific Interactions at Oncogenic Loci. Nat. Genet. 2021, 53, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Palić, D. Micro- and Nano-Plastics Activation of Oxidative and Inflammatory Adverse Outcome Pathways. Redox Biol. 2020, 37, 101620. [Google Scholar] [CrossRef] [PubMed]
- Maku, A.M.; Buba, A.B.; Oyewole, O.A.; Alhassan, A.M.; Isibor, P.O. Oxidative stress and inflammation induced by nanoparticles. In Environmental Nanotoxicology: Combatting the Minute Contaminants; Isibor, P.O., Devi, G., Enuneku, A.A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 121–133. ISBN 978-3-031-54154-4. [Google Scholar]
- Zhang, X.; Zhang, X.-X.; Ma, L. New Horizons in Micro/Nanoplastic-Induced Oxidative Stress: Overlooked Free Radical Contributions and Microbial Metabolic Dysregulations in Anaerobic Digestion. Environ. Sci. Technol. 2024, 58, 21251–21264. [Google Scholar] [CrossRef]
- Wade, M.J.; Bucci, K.; Rochman, C.M.; Meek, M.H. Microplastic Exposure Is Associated with Epigenomic Effects in the Model Organism Pimephales promelas (Fathead Minnow). J. Hered. 2025, 116, 113–125. [Google Scholar] [CrossRef]
- Pedersen, A.F.; Meyer, D.N.; Petriv, A.-M.V.; Soto, A.L.; Shields, J.N.; Akemann, C.; Baker, B.B.; Tsou, W.-L.; Zhang, Y.; Baker, T.R. Nanoplastics Impact the Zebrafish (Danio rerio) Transcriptome: Associated Developmental and Neurobehavioral Consequences. Environ. Pollut. 2020, 266, 115090. [Google Scholar] [CrossRef]
- Kumar, R.; Manna, C.; Padha, S.; Verma, A.; Sharma, P.; Dhar, A.; Ghosh, A.; Bhattacharya, P. Micro (Nano) Plastics Pollution and Human Health: How Plastics Can Induce Carcinogenesis to Humans? Chemosphere 2022, 298, 134267. [Google Scholar] [CrossRef]
- Ren, H.; Yin, K.; Lu, X.; Liu, J.; Li, D.; Liu, Z.; Zhou, H.; Xu, S.; Li, H. Synergy between Nanoplastics and Benzo [a] Pyrene Promotes Senescence by Aggravating Ferroptosis and Impairing Mitochondria Integrity in Caenorhabditis elegans. Sci. Total Environ. 2024, 946, 174418. [Google Scholar] [CrossRef]
- Shafei, A.; Ramzy, M.M.; Hegazy, A.I.; Husseny, A.K.; El-Hadary, U.G.; Taha, M.M.; Mosa, A.A. The Molecular Mechanisms of Action of the Endocrine Disrupting Chemical Bisphenol A in the Development of Cancer. Gene 2018, 647, 235–243. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, S.; Zhang, M.; Hou, J. A Critical Review of Presence, Removal and Potential Impacts of Endocrine Disruptors Bisphenol A. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 254, 109275. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Y.; Tang, S.; Yin, H.; Yu, X.; Yu, Y.; Wei, K. The Combined Toxicity of Polystyrene Nano/Micro-Plastics and Triphenyl Phosphate (TPHP) on HepG2 Cells. Ecotoxicol. Environ. Saf. 2024, 279, 116489. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Liu, Y.; Sun, P.; Wu, B.; Chen, L. Combined Effects of Polyvinyl Chloride or Polypropylene Microplastics with Cadmium on the Intestine of Zebrafish at Environmentally Relevant Concentrations. Sci. Total Environ. 2024, 954, 176289. [Google Scholar] [CrossRef]
- Tanushree, P. Synergistic Human Health Risks of Microplastics and Co-Contaminants: A Quantitative Risk Assessment in Water. J. Hazard. Mater. 2025, 491, 137809. [Google Scholar] [CrossRef]
- Vincoff, S.; Schleupner, B.; Santos, J.; Morrison, M.; Zhang, N.; Dunphy-Daly, M.M.; Eward, W.C.; Armstrong, A.J.; Diana, Z.; Somarelli, J.A. The Known and Unknown: Investigating the Carcinogenic Potential of Plastic Additives. Environ. Sci. Technol. 2024, 58, 10445–10457. [Google Scholar] [CrossRef]
- Stillwater, B.J.; Bull, A.C.; Romagnolo, D.F.; Neumayer, L.A.; Donovan, M.G.; Selmin, O.I. Bisphenols and Risk of Breast Cancer: A Narrative Review of the Impact of Diet and Bioactive Food Components. Front. Nutr. 2020, 7, 581388. [Google Scholar] [CrossRef] [PubMed]
- Corti, M.; Lorenzetti, S.; Ubaldi, A.; Zilli, R.; Marcoccia, D. Endocrine Disruptors and Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 1216. [Google Scholar] [CrossRef] [PubMed]
- Mughees, M.; Chugh, H.; Wajid, S. Mechanism of Phthalate Esters in the Progression and Development of Breast Cancer. Drug Chem. Toxicol. 2022, 45, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Ahern, T.P.; Broe, A.; Lash, T.L.; Cronin-Fenton, D.P.; Ulrichsen, S.P.; Christiansen, P.M.; Cole, B.F.; Tamimi, R.M.; Sørensen, H.T.; Damkier, P. Phthalate Exposure and Breast Cancer Incidence: A Danish Nationwide Cohort Study. J. Clin. Oncol. 2019, 37, 1800–1809. [Google Scholar] [CrossRef]
- Mileva, G.; Baker, S.L.; Konkle, A.T.M.; Bielajew, C. Bisphenol-A: Epigenetic Reprogramming and Effects on Reproduction and Behavior. Int. J. Environ. Res. Public Health 2014, 11, 7537–7561. [Google Scholar] [CrossRef]
- da Silva Brito, W.A.; Mutter, F.; Wende, K.; Cecchini, A.L.; Schmidt, A.; Bekeschus, S. Consequences of Nano and Microplastic Exposure in Rodent Models: The Known and Unknown. Part. Fibre. Toxicol. 2022, 19, 28. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the Effects of Polystyrene Microplastics Exposure on Reproduction and Fertility in Male and Female Mice. Toxicology 2022, 465, 153059. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, X.; Jiang, G. Microplastics Exposure Promotes the Proliferation of Skin Cancer Cells but Inhibits the Growth of Normal Skin Cells by Regulating the Inflammatory Process. Ecotoxicol. Environ. Saf. 2023, 267, 115636. [Google Scholar] [CrossRef] [PubMed]
- Rafazi, P.; Bagheri, Z.; Haghi-Aminjan, H.; Rahimifard, M.; Ahvaraki, A. Long-Term Exposure of Human U87 Glioblastoma Cells to Polyethylene Microplastics: Investigating the Potential Cancer Progression. Toxicol. Rep. 2024, 13, 101757. [Google Scholar] [CrossRef] [PubMed]
- Rafazi, P.; Haghi-Aminjan, H.; Bagheri, Z.; Rahimifard, M. Microplastics and Cancer Progression: A Comparative Study of 2D and 3D Gastric Cancer Models Using ISO-Compliant Protocols. Results Eng. 2024, 24, 103329. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef]
- Brynzak-Schreiber, E.; Schögl, E.; Bapp, C.; Cseh, K.; Kopatz, V.; Jakupec, M.A.; Weber, A.; Lange, T.; Toca-Herrera, J.L.; Del Favero, G. Microplastics Role in Cell Migration and Distribution during Cancer Cell Division. Chemosphere 2024, 353, 141463. [Google Scholar] [CrossRef]
- Schnee, M.; Sieler, M.; Dörnen, J.; Dittmar, T. Effects of Polystyrene Nano-and Microplastics on Human Breast Epithelial Cells and Human Breast Cancer Cells. Heliyon 2024, 10, e38686. [Google Scholar]
- Park, J.H.; Hong, S.; Kim, O.-H.; Kim, C.-H.; Kim, J.; Kim, J.-W.; Hong, S.; Lee, H.J. Polypropylene Microplastics Promote Metastatic Features in Human Breast Cancer. Sci. Rep. 2023, 13, 6252. [Google Scholar] [CrossRef]
- Baspakova, A.; Zare, A.; Suleimenova, R.; Berdygaliev, A.B.; Karimsakova, B.; Tussupkaliyeva, K.; Mussin, N.M.; Zhilisbayeva, K.R.; Tanideh, N.; Tamadon, A. An Updated Systematic Review about Various Effects of Microplastics on Cancer: A Pharmacological and in-Silico Based Analysis. Mol. Asp. Med. 2025, 101, 101336. [Google Scholar] [CrossRef]
- Chen, G.; Shan, H.; Xiong, S.; Zhao, Y.; van Gestel, C.A.; Qiu, H.; Wang, Y. Polystyrene Nanoparticle Exposure Accelerates Ovarian Cancer Development in Mice by Altering the Tumor Microenvironment. Sci. Total Environ. 2024, 906, 167592. [Google Scholar]
- Halimu, G.; Zhang, Q.; Liu, L.; Zhang, Z.; Wang, X.; Gu, W.; Zhang, B.; Dai, Y.; Zhang, H.; Zhang, C. Toxic Effects of Nanoplastics with Different Sizes and Surface Charges on Epithelial-to-Mesenchymal Transition in A549 Cells and the Potential Toxicological Mechanism. J. Hazard. Mater. 2022, 430, 128485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shen, M.; Wu, L.; Yang, H.; Yao, Y.; Yang, Q.; Du, J.; Liu, L.; Li, Y.; Bai, Y. Stromal Cells in the Tumor Microenvironment: Accomplices of Tumor Progression? Cell Death Dis. 2023, 14, 587. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Z.; Ji, K.; Zhang, Q.; Qian, L.; Yang, C. Role of Microplastics in the Tumor Microenvironment (Review). Oncol. Lett. 2025, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Herrala, M.; Huovinen, M.; Järvelä, E.; Hellman, J.; Tolonen, P.; Lahtela-Kakkonen, M.; Rysä, J. Micro-Sized Polyethylene Particles Affect Cell Viability and Oxidative Stress Responses in Human Colorectal Adenocarcinoma Caco-2 and HT-29 Cells. Sci. Total Environ. 2023, 867, 161512. [Google Scholar] [CrossRef]
- Boran, T.; Zengin, O.S.; Seker, Z.; Akyildiz, A.G.; Kara, M.; Oztas, E.; Özhan, G. An Evaluation of a Hepatotoxicity Risk Induced by the Microplastic Polymethyl Methacrylate (PMMA) Using HepG2/THP-1 Co-Culture Model. Environ. Sci. Pollut. Res. 2024, 31, 28890–28904. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, D.; Liu, P.; Ouyang, Z.; Jia, H.; Guo, X. The Characteristics of Dissolved Organic Matter Release from UV-Aged Microplastics and Its Cytotoxicity on Human Colonic Adenocarcinoma Cells. Sci. Total Environ. 2022, 826, 154177. [Google Scholar]
- Khan, F.A.; Akhtar, S.; Almohazey, D.; Alomari, M.; Almofty, S.A.; Badr, I.; Elaissari, A. Targeted Delivery of Poly (Methyl Methacrylate) Particles in Colon Cancer Cells Selectively Attenuates Cancer Cell Proliferation. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1533–1542. [Google Scholar] [CrossRef]
- Sadeghinia, H.; Hanachi, P.; Ramezani, R.; Karbalaei, S. Toxic Effects of Polystyrene Nanoplastics on MDA-MB-231 Breast Cancer and HFF-2 Normal Fibroblast Cells: Viability, Cell Death, Cell Cycle and Antioxidant Enzyme Activity. Environ. Sci. Eur. 2025, 37, 1. [Google Scholar] [CrossRef]
- Weis, J.S.; Palmquist, K.H. Reality Check: Experimental Studies on Microplastics Lack Realism. Appl. Sci. 2021, 11, 8529. [Google Scholar] [CrossRef]
- Mi, Y.; Smith, C.C.; Yang, F.; Qi, Y.; Roche, K.C.; Serody, J.S.; Vincent, B.G.; Wang, A.Z. A Dual Immunotherapy Nanoparticle Improves T-Cell Activation and Cancer Immunotherapy. Adv. Mater. 2018, 30, 1706098. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, Z.; Jin, Y.; Liang, X.; Yang, X.; Dai, Z.; Tian, J. SM5-1-Conjugated PLA Nanoparticles Loaded with 5-Fluorouracil for Targeted Hepatocellular Carcinoma Imaging and Therapy. Biomaterials 2014, 35, 2878–2889. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, S.; Lamichhane, G.; Pandey, J.; Khadka, D. Micro(Nano)plastics in Human Carcinogenesis: Emerging Evidence and Mechanistic Insights. Microplastics 2025, 4, 78. https://doi.org/10.3390/microplastics4040078
Giri S, Lamichhane G, Pandey J, Khadka D. Micro(Nano)plastics in Human Carcinogenesis: Emerging Evidence and Mechanistic Insights. Microplastics. 2025; 4(4):78. https://doi.org/10.3390/microplastics4040078
Chicago/Turabian StyleGiri, Suman, Gopal Lamichhane, Jitendra Pandey, and Dipendra Khadka. 2025. "Micro(Nano)plastics in Human Carcinogenesis: Emerging Evidence and Mechanistic Insights" Microplastics 4, no. 4: 78. https://doi.org/10.3390/microplastics4040078
APA StyleGiri, S., Lamichhane, G., Pandey, J., & Khadka, D. (2025). Micro(Nano)plastics in Human Carcinogenesis: Emerging Evidence and Mechanistic Insights. Microplastics, 4(4), 78. https://doi.org/10.3390/microplastics4040078

