Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Vegetation Cover
3.2. Decomposition Processes
3.3. Microbiome
- Changes in the physicochemical properties of the soil (aeration, water-holding capacity, etc.). Soil microorganisms play a key role in maintaining soil structure, detoxifying pollutants, and regulating SOC turnover. Microorganisms are capable of not only converting dissolved organic matter into soil organic carbon, but also transforming labile substances into microbial biomass and its metabolites. Furthermore, most of the metabolites and residues of dead microorganisms can persist in the soil for a long period, constituting a stable pool of soil carbon;
- The direct toxic effect of substances contained within MPs, such as plasticizers, or pollutants adsorbed onto their surface (absorption of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxin-like chemicals, polybrominated diphenyl ethers, heavy metals, hydrophilic organic compounds like ciprofloxacin, and pharmaceuticals has been confirmed [36,37,38]);
- The “priming” effect upon the addition of certain types of MPs—enhancing microbial activity and subsequent potential changes in nutrient availability and dissolved organic carbon. However, the high C:N ratio of most MP types may cause nutrient immobilization and, conversely, reduce microbial activity [18].
4. Discussion
4.1. Distribution by Soil Type
4.2. Distribution in Particle Size Fractions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MPs | Microplastics |
OC | Organic carbon |
SOC | Soil organic carbon |
SOM | Soil organic matter |
OC | Organic carbon |
DOM | Dissolved organic matter |
CRFs | Controlled-release fertilizers |
CSPs | Capsule suspensions |
LDPE | Low-density polyethylene |
PE | Polyethylene |
PLA | Polylactic acid |
PBAT | PBAT |
PBS | Polybutylene succinate |
PP | Polypropylene |
PET | Polyethylene terephthalate |
HBC | Hydrochar |
References
- Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso sea surface. Science 1972, 175, 1240–1241. [Google Scholar] [CrossRef]
- Wong, C.S.; Green, D.R.; Cretney, W.J. Quantitative tar and plastic waste distributions in the Pacific Ocean. Nature 1974, 247, 30–32. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Kühn, S.; van Franeker, J.A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 2020, 151, 110858. [Google Scholar] [CrossRef]
- Meaza, I.; Toyoda, J.; Wise, J. Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front. Environ. Sci. 2021, 8, 575614. [Google Scholar] [CrossRef]
- Pilapitiya, P.G.C.N.T.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Morachevskaya, E.V.; Voronina, L.P. Sources and ways of translocation of microplastic in soil and plants. Probl. Agrokhim. Ekol. 2022, 1, 41–50. [Google Scholar] [CrossRef]
- Isakov, V. Analysis of Slow-Released Fertilisers as a Source of Microplastics. Land 2024, 13, 38. [Google Scholar] [CrossRef]
- Nosova, A.O.; Uspenskaya, M.V. Microplastics in soil: Impact on ecosystems, potential sources and analytical research methods (review). Yuzhno-Sib. Nauchnyi Vestn. 2022, 4, 19–37. [Google Scholar] [CrossRef]
- Kukharchik, T.I.; Ivleva, N.P.; Koptikova, O.V.; Barnakova, O.Y.; Zubkova, E.V.; Li, L.; Danilova, A.A.; Syrykh, L.A.; Zaytsev, A.A.; Morgun, E.G. Microplastics in soils of the Tala hills, East Antarctica. Pochvovedenie 2024, 3, 493–505. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.Y.; Jang, J.; Kim, H.; Kwon, K.D. Soil health and microplastics: A review of the impacts of microplastic contamination on soil properties. J. Soils Sediments 2022, 22, 2690–2705. [Google Scholar] [CrossRef]
- Lal, R.; Lorenz, K.; Hüttl, R.F.; Schneider, B.U.; von Braun, J. Terrestrial Biosphere as a Source and Sink of Atmospheric Carbon Dioxide. In Recarbonization of the biosphere; Springer: Dordrecht, The Netherlands, 2012; pp. 1–15. [Google Scholar] [CrossRef]
- Brown, H.C.A.; Obeng, G.Y.; Amisigo, B.A.; Poku-Marboah, G.; Quainoo, E.; Essandoh, H.M.K.; Tagoe, C.A.; Appiah, D.O.; Zhao, Y. Soil carbon and bio-physicochemical properties dynamics under forest restoration sites in southern Ghana. Geoderma Reg. 2024, 38, e00838. [Google Scholar] [CrossRef]
- Balesdent, J.; Basile-Doelsch, I.; Brun, J.J.; Chéron, C.; Christensen, B.T.; Guenet, B.; Abiven, S. Atmosphere–soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef]
- Li, T.; Yang, X.; Zhang, J.; Chen, L.; Wang, G. Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China. Ecol. Process. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A.; Horton, A.A. Microplastic effects on carbon cycling processes in soils. PLoS Biol. 2021, 19, e3001130. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liang, C.; Li, Y.; Qiao, L.; Ai, Z.; Xue, S.; Liu, G. Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil. Catena 2019, 182, 104177. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, J.; Zhang, Y.; Chen, Y.; Zhou, W.; Chen, C. Microplastic effects on carbon cycling in terrestrial soil ecosystems: Storage, formation, mineralization, and microbial mechanisms. Sci. Total Environ. 2024, 954, 176658. [Google Scholar] [CrossRef]
- Iqbal, S.; Su, H.; Zhang, H.; Zhang, W.; Wu, D. Could soil microplastic pollution exacerbate climate change? A meta-analysis of greenhouse gas emissions and global warming potential. Environ. Res. 2024, 252, 118945. [Google Scholar] [CrossRef]
- Adomako, M.O.; Rathinasabapathi, B.; Agoramoorthy, V.; Kumar, M.; Chivenge, P. Mechanisms underpinning microplastic effects on the natural climate solutions of wetland ecosystems. Sci. Total Environ. 2024, 954, 176491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, J.; Wu, H.; Li, Y.; Liu, S.; Wang, J.; Zhang, D. The effect of polyvinyl chloride microplastics on soil properties, greenhouse gas emission, and element cycling-related genes: Roles of soil bacterial communities and correlation analysis. J. Hazard. Mater. 2024, 480, 136248. [Google Scholar] [CrossRef] [PubMed]
- Barili, S.; Biganzoli, F.; Pietramellara, G.; Cristani, C.; Teggi, S. Impact of PVC microplastics on soil chemical and microbiological parameter. Environ. Res. 2023, 229, 115891. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Jiao, X.; Zhang, S.; Wang, X.; Li, Q.; Liang, X. Effect of microplastics on soil greenhouse gas emissions in agroecosystems: Does it depend upon microplastic shape and soil type? Sci. Total Environ. 2024, 912, 169278. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Zhou, B.; Liu, W.; Wang, X. Unveiling the hidden impact: How biodegradable microplastics influence CO2 and CH4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. J. Hazard. Mater. 2024, 471, 134294. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, X.; Liu, H.; He, S.; Zheng, H. Effects of microplastics on carbon release and microbial community in mangrove soil systems. J. Hazard. Mater. 2024, 465, 133152. [Google Scholar] [CrossRef]
- Ren, X.; Chen, H.; Zhou, Q.; Wu, C.; Wang, X. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. J. Hazard. Mater. 2022, 425, 129030. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, A.; Bachetti, B.M.; Falandysz, J.; Oliveira, J.A.A.; Brennholt, N.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Plants People Planet 2019, 3, 10071. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Simmler, M.; Hildebrandt, H.; Finnveden, G.; van Gestel, C.A.M.; Vijver, M.G. Microplastic shape, concentration and polymer type affect soil properties and plant biomass. Front. Plant Sci. 2021. [Google Scholar] [CrossRef]
- Kleunen, M.; Altermatt, F.; Knauer, K.; Schmidt, A. Microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet 2020, 2, 157–166. [Google Scholar] [CrossRef]
- Averill, C.; Waring, B. Nitrogen limitation of decomposition and decay: How can it occur? Glob. Chang. Biol. 2018, 24. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, I.V.; Kustikova, M.A. Optimization of the global biogeochemical carbon cycle model. Obshch. Biol. 2020. [Google Scholar] [CrossRef]
- Büks, F.; Klinger, M.; Schlicke-Steckel, S.; Schlechtriem, C. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? Soil 2020, 6, 245–258. [Google Scholar] [CrossRef]
- Li, H.-X.; Zhou, Q.; Tian, Y.; Zhang, H.-B.; Chen, J.-S.; Lam, P.K.S. Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus amphitrite. Environ. Sci. Technol. 2016, 50, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Brennecke, D.; Duarte, B.; Pauly, D.; Worm, B. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Lorena, M.; Lusher, A.; Briege Rohde, S.; Hammer, J.; Gerdts, G.; Thompson, R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environ. Chem. 2015, 12, 611–617. [Google Scholar] [CrossRef]
- Xiao, M.; Sun, L.; Ma, F.; Hu, D.; Li, J. Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study. J. Hazard. Mater. 2021, 416, 126221. [Google Scholar] [CrossRef]
- Wang, J.; Gan, H.; Gao, M.; Zhou, B.; Xu, X.; Wang, X. Insights into effects of conventional and biodegradable microplastics on organic carbon decomposition in different soil aggregates. Environ. Pollut. 2024, 359, 124751. [Google Scholar] [CrossRef]
- Han, L.; Wang, J.; Zhou, N.; Jiang, X.; Chai, Y.; Chen, Y. Co-occurrence of microplastics and hydrochar stimulated the methane emission but suppressed nitrous oxide emission from a rice paddy soil. J. Clean. Prod. 2022, 337, 130504. [Google Scholar] [CrossRef]
- Han, L.; Wang, J.; Zhou, N.; Jiang, X.; Chai, Y.; Chen, Y. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environ. Pollut. 2022, 292, 118386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Z.; Li, Z.; Wu, L.; Chen, C.; Zhang, D. Microplastic contamination accelerates soil carbon loss through positive priming. Sci. Total Environ. 2024, 954, 176273. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ma, J.; Chai, X.; Wang, P.; Zhao, X.; Christie, P.; Sheng, H. Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environ. Pollut. 2021, 288, 117733. [Google Scholar] [CrossRef]
- Su, P.; Wu, D.; Huang, W.; Zhang, D.; Zhou, J.; Chen, C. Stimulated soil CO2 and CH4 emissions by microplastics: A hierarchical perspective. Soil Biol. Biochem. 2024, 194, 109425. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Lehmann, A.; Zhao, J.; Christensen, B.T.; Müller, T.; Tebbe, C.C.; Schloter, M.; Gleixner, G.; Rillig, M.C.; Schaeffer, A.; et al. Microplastics in agricultural soils: A comprehensive perspective on occurrence, environmental behaviors and effects. Chem. Eng. J. 2024, 489, 151328. [Google Scholar] [CrossRef]
- Shi, J.; Chen, Y.; Xu, M.; Liang, X.; Jiao, X.; Wang, X. Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Sci. Total Environ. 2022, 838, 156471. [Google Scholar] [CrossRef]
- Rauscher, A.; Knief, C.; Leifheit, E.F. Biodegradable microplastic increases CO2 emission and alters microbial biomass and bacterial community composition in different soil types. Appl. Soil Ecol. 2023, 182, 104714. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Y.; Wang, Q.; Zhang, C.; Brookes, P.C.; Wu, D. Effects of biodegradable microplastics and straw addition on soil greenhouse gas emissions. Environ. Pollut. 2024, 356, 124315. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, N.; Wang, J.; Han, L.; Chai, Y.; Chen, Y. Tracking microplastics biodegradation through CO2 emission: Role of photoaging and mineral addition. J. Hazard. Mater. 2022, 439, 129615. [Google Scholar] [CrossRef]
- Li, S.; Xiao, M.; Luo, Y.; Zhang, W.; Ma, F.; Wang, X.; Zhou, X.; Xu, X.; Hu, D.; Li, J. Microplastics induced the differential responses of microbial-driven soil carbon and nitrogen cycles under warming. J. Hazard. Mater. 2024, 465, 132952. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, P.; Li, S.; Guo, Z.; Wang, J.; Zhao, J.; Li, F. Possible hazards from biodegradation of soil plastic mulch: Increases in microplastics and CO2 emissions. J. Hazard. Mater. 2024, 467, 133680. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.Y.; Rizwan, M.; Bibi, I.; Ali, S.; Zia-ur-Rehman, M.; Shahzad, S.M.; Adrees, M.; Hassan, M.U.; Waris, A.; Bharwana, S.K.; et al. Effects of degradable and non-degradable microplastics and oxytetracycline co-exposure on soil N2O and CO2 emissions. Appl. Soil Ecol. 2024, 197, 105331. [Google Scholar] [CrossRef]
- Chen, X.; He, C.; Yu, H.; Guo, J.; Chen, H.; Pan, J.; Shen, M.; Huang, Q.; Zhao, B. Presence of different microplastics promotes greenhouse gas emissions and alters the microbial community composition of farmland soil. Sci. Total Environ. 2023, 879, 162967. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, J.; Chen, Y.; Jiao, X.; Zhou, G.; Wang, X. Elucidating the impacts of microplastics on soil greenhouse gas emissions through automatic machine learning frameworks. Sci. Total Environ. 2024, 916, 170308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, D.; Wang, H.; Chen, C.; Zhou, J. Comparative evaluation of the impacts of different microplastics on greenhouse gas emissions, microbial community structure, and ecosystem multifunctionality in paddy soil. J. Hazard. Mater. 2024, 480, 135958. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Guo, X.; Liu, H.; Li, Z.; Zhang, Y.; Wang, Z.; Yang, Y.; Li, H.; Li, B.; et al. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil. Sci. Total Environ. 2023, 896, 166332. [Google Scholar] [CrossRef]
- Wang, X.; Yang, F.; Tang, S.; Zhou, X.; Xu, X.; Yang, J.; Zhou, D. Recent advances on the effects of microplastics on elements cycling in the environment. Sci. Total Environ. 2022, 849, 157884. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Chen, Y.; Zhang, Y.; Zhou, W.; Li, J. Differential impacts of microplastics on carbon and nitrogen cycling in plant-soil systems: A meta-analysis. Sci. Total Environ. 2024, 948, 174655. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wang, Y.; Liu, W.; He, Y.; Zhou, B. Polyethylene microplastic and biochar interactively affect the global warming potential of soil greenhouse gas emissions. Environ. Pollut. 2022, 315, 120433. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, X.; Wu, J.; Zhou, J.; Chen, C.; Zhang, D. The impacts of microplastics on the cycling of carbon and nitrogen in terrestrial soil ecosystems: Progress and prospects. Sci. Total Environ. 2024, 915, 169977. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Xu, H.; Li, J.; Wang, Y.; Zhou, W.; Li, X.; Chen, C. Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil. Sci. Total Environ. 2022, 806, 150714. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, S.; Yang, W.; Wang, X.; Zhang, W. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. Glob. Change Biol. 2024, 30, e17415. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Li, X.; Zhou, Y.; Berger, T.W.; Pistocchi, A.; Shen, H.; Gao, H. Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. Environ. Toxicol. Chem. 2021, 40, 449–459. [Google Scholar] [CrossRef]
- Kim, S.W.; An, J.Y.; Jeon, W.T.; Oh, J.E. Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere 2021, 276, 130178. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Y.; Chen, Y.; Li, Y.; Zhou, N.; Jiao, X.; Wang, X. Effects of Microplastics on Soil Carbon Mineralization: The Crucial Role of Oxygen Dynamics and Electron Transfer. Environ. Sci. Technol. 2023, 57, 13703–13711. [Google Scholar] [CrossRef]
- Khan, I.; Ferrante, A.; Shahzad, S.M.; Almansoory, A.K.; Alkhazmi, S.A.M.; Ahmed, M.; Hakeem, K.R. Soil microplastics: Impacts on greenhouse gasses emissions, carbon cycling, microbial diversity, and soil characteristics. Appl. Soil Ecol. 2024, 197, 105343. [Google Scholar] [CrossRef]
- Chia, R.W. Role of soil microplastic pollution in climate change. Sci. Total Environ. 2023, 887, 164112. [Google Scholar] [CrossRef]
- Chang, S.; Ge, Y.; Han, X.; Li, X.; Zhang, H.; Wang, X.; Zhou, B. Microplastics alter soil carbon cycling: Effects on carbon storage, CO2 and CH4 emission and microbial community. Plant Soil 2024, 2, e5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vainberg, A.; Abakumov, E.; Nizamutdinov, T. Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review. Microplastics 2025, 4, 18. https://doi.org/10.3390/microplastics4020018
Vainberg A, Abakumov E, Nizamutdinov T. Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review. Microplastics. 2025; 4(2):18. https://doi.org/10.3390/microplastics4020018
Chicago/Turabian StyleVainberg, Anastasia, Evgeny Abakumov, and Timur Nizamutdinov. 2025. "Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review" Microplastics 4, no. 2: 18. https://doi.org/10.3390/microplastics4020018
APA StyleVainberg, A., Abakumov, E., & Nizamutdinov, T. (2025). Recent Insights into Microplastic Pollution and Its Effects on Soil Carbon: A Five-Year Ecosystem Review. Microplastics, 4(2), 18. https://doi.org/10.3390/microplastics4020018