CRISPR-Based Transcriptional Regulation: Technologies, Applications, and Future Directions
Abstract
1. Introduction
2. CRISPRa
2.1. Transcriptional Activation: Benefits and Limitations
2.2. CRISPRa Formulations
2.3. CRISPRa Therapeutic Applications
2.3.1. Obesity
2.3.2. Neurological Disorders
2.3.3. Musculoskeletal Disorders
3. CRISPRi
3.1. Transcriptional Repression: Benefits and Limitations
3.2. CRISPRi Formulations
3.3. CRISPRi Therapeutic Applications
3.3.1. Cancer
3.3.2. Neurodegenerative Disorders
3.3.3. Ocular Conditions
4. CRISPR Epigenetic Regulation in Clinical Trials
4.1. Tune Therapeutics and Hepatitis B
4.2. Epic Bio and Muscular Dystrophy
5. CRISPRa/i: Current Limitations and Future Outlooks
5.1. Delivery Methods
5.1.1. Viral Vectors
5.1.2. Nonviral Vectors
5.2. Off-Target Effects
5.3. Immunogenicity
5.4. The Future of CRISPR Epigenetic Editing
5.4.1. Genome-Wide Functional Screens
5.4.2. Software Technology in CRISPR-Based Regulation
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| Cas | CRISPR/CRISPR-associated nuclease |
| crRNA | CRISPR RNA |
| tracrRNA | Transactivating crRNA |
| sgRNA | Single guide RNA (also gRNA) |
| PAM | Protospacer adjacent motif |
| DSB | Double-stranded break |
| SpCas9 | Streptococcus pyogenes Cas9 |
| dCas | Nuclease-deactivated Cas |
| nCas | Nickase Cas |
| CBE | Cytosine base editor |
| ABE | Adenine base editor |
| CPS1 | Carbamoyl-phosphate synthetase I |
| CRISPRa | CRISPR activation |
| CRISPRi | CRISPR interference |
| CALD | Cerebral adrenoleukodystrophy |
| HSPC | Hematopoietic stem and progenitor cell |
| ABCD1 | ATP-binding cassette domain 1 |
| VPR | VP64-p65-Rta |
| SAM | Synergistic activator mediator |
| HSF-1 | Heat shock protein 1 |
| NAT-10 | N-acetyltransferase 10 |
| ALKBH5 | m6A demethylase AlkB homolog 5 |
| ADAR | Adenosine deaminase acting on RNA |
| BAT | Brown adipose tissue |
| WAT | White adipose tissue |
| Fgf21 | Fibroblast growth factor 21 |
| Fndc5 | Fibronectin type III domain-containing protein 5 |
| UCP1 | Uncoupling protein 1 |
| Sim1 | Single-minded family bHLH transcription factor 1 |
| KCC2 | K-Cl cotransporter isoform 2 |
| DMD | Duchenne muscular dystrophy |
| UTRN | Utrophin |
| MDC1A | Merosin-deficient congenital muscular dystrophy type 1A |
| ASO | Anti-sense oligonucleotide |
| RNAi | RNA interference |
| RISC | RNA-induced silencing complex |
| siRNA | Small interfering RNA |
| KRAB | Krüppel-Associated Box proteins |
| MeCP2 | Methyl-CpG binding protein 2 |
| HDAC | Histone deacetylase |
| 4EHP | Eukaryotic translation initiation factor 4E homologous protein |
| m5C | Methylation of carbon 5 in cytosine |
| CXCR1/2 | CXC chemokine receptor 1/2 |
| hiPSC | Human induced pluripotent stem cell |
| POAG | Primary open-angle glaucoma |
| TGFβ2 | Transforming growth factor-β2 |
| HBV | Hepatitis B virus |
| LNP | Lipid nanoparticle |
| FSHD | Facioscapulohumeral muscular dystrophy |
| LV | Lentivirus |
| AdV | Adenovirus |
| AAV | Adeno-associated virus |
| Dox | Doxycycline |
| 4OHT | 4-hydroxy-tamoxifen |
| IGVF | Impact of Genomic Variation on Function |
References
- Pacesa, M.; Pelea, O.; Jinek, M. Past, Present, and Future of CRISPR Genome Editing Technologies. Cell 2024, 187, 1076–1100. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.; Yu, T. CRISPR/Cas9 Therapeutics: Progress and Prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef]
- Wang, J.Y.; Doudna, J.A. CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome Engineering Using the CRISPR-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9–crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Scerbo, M.; Kramer, G. A Review of Blood Substitutes: Examining the History, Clinical Trial Results, and Ethics of Hemoglobin-Based Oxygen Carriers. Clinics 2009, 64, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef]
- Chang, N.; Sun, C.; Gao, L.; Zhu, D.; Xu, X.; Zhu, X.; Xiong, J.-W.; Xi, J.J. Genome Editing with RNA-Guided Cas9 Nuclease in Zebrafish Embryos. Cell Res. 2013, 23, 465–472. [Google Scholar] [CrossRef]
- Li, P.; Zhang, L.; Li, Z.; Xu, C.; Du, X.; Wu, S. Cas12a Mediates Efficient and Precise Endogenous Gene Tagging via MITI: Microhomology-Dependent Targeted Integrations. Cell Mol. Life Sci. 2019, 77, 3875–3884. [Google Scholar] [CrossRef] [PubMed]
- Bharathkumar, N.; Sunil, A.; Meera, P.; Aksah, S.; Kannan, M.; Saravanan, K.M.; Anand, T. CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Mol. Biotechnol. 2022, 64, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Z.; Lo, C.-H.; Wang, Q.; Ning, K.; Zhang, Q.; Zhao, J.; Shen, Y.; Sun, Y. Gene Therapy for Ocular Hypertension Using hfCas13d-Mediated mRNA Targeting. PNAS Nexus 2025, 4, pgaf168. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, J.; Zhou, M.; Gong, Z.; Xiang, T. CRISPR-Cas13: A New Technology for the Rapid Detection of Pathogenic Microorganisms. Front. Microbiol. 2022, 13, 1011399. [Google Scholar] [CrossRef]
- Tan, Y.; Chu, A.H.Y.; Bao, S.; Hoang, D.A.; Kebede, F.T.; Xiong, W.; Ji, M.; Shi, J.; Zheng, Z. Rationally Engineered Staphylococcus aureus Cas9 Nucleases with High Genome-Wide Specificity. Proc. Natl. Acad. Sci. USA 2019, 116, 20969–20976. [Google Scholar] [CrossRef]
- Kim, E.; Koo, T.; Park, S.W.; Kim, D.; Kim, K.; Cho, H.-Y.; Song, D.W.; Lee, K.J.; Jung, M.H.; Kim, S.; et al. In Vivo Genome Editing with a Small Cas9 Orthologue Derived from Campylobacter jejuni. Nat. Commun. 2017, 8, 14500. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Lee, C.M.; Gasiunas, G.; Davis, T.H.; Cradick, T.J.; Siksnys, V.; Bao, G.; Cathomen, T.; Mussolino, C. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol. Ther. 2016, 24, 636–644. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, J.-K.; Jin, W. A Catalog of Gene Editing Sites and Genetic Variations in Editing Sites in Model Organisms. BMC Genom. 2024, 25, 1153. [Google Scholar] [CrossRef]
- Guo, M.; Ren, K.; Zhu, Y.; Tang, Z.; Wang, Y.; Zhang, B.; Huang, Z. Structural Insights into a High Fidelity Variant of SpCas9. Cell Res. 2019, 29, 183–192. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-Fidelity CRISPR–Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary Classification of CRISPR–Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lin, Q.; Jin, S.; Gao, C. The CRISPR-Cas Toolbox and Gene Editing Technologies. Mol. Cell 2022, 82, 333–347. [Google Scholar] [CrossRef]
- Escobar, M.; Li, J.; Patel, A.; Liu, S.; Xu, Q.; Hilton, I.B. Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells. ACS Synth. Biol. 2022, 11, 3239–3250. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Irfan, H.; Fatima, E.; Nazir, Z.; Verma, A.; Akilimali, A. Revolutionary Breakthrough: FDA Approves CASGEVY, the First CRISPR/Cas9 Gene Therapy for Sickle Cell Disease. Ann. Med. Surg. 2024, 86, 4555–4559. [Google Scholar] [CrossRef]
- Vor Biopharma. A First-In-Human, Open-Label, Multicenter Study of VOR33 in Patients with Acute Myeloid Leukemia Who Are at High-Risk for Leukemia Relapse Following Hematopoietic Cell Transplantation; Clinical Trial Registration NCT04849910. 2025. Available online: https://clinicaltrials.gov/study/NCT04849910 (accessed on 13 June 2025).
- Wave Life Sciences Ltd. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase 1b/2a Study of WVE-004 Administered Intrathecally to Patients with C9orf72-Associated Amyotrophic Lateral Sclerosis (ALS) or Frontotemporal Dementia (FTD); Clinical Trial Registration NCT04931862. 2023. Available online: https://clinicaltrials.gov/study/NCT04931862 (accessed on 13 June 2025).
- Wave Life Sciences Ltd. A Multicenter, Randomized, Double-Blind, Placebo Controlled, Phase 1b/2a Study of WVE-003 Administered Intrathecally in Patients with Huntington’s Disease (SELECT-HD); Clinical Trial Registration NCT05032196. 2025. Available online: https://clinicaltrials.gov/study/NCT05032196 (accessed on 25 August 2025).
- Vertex Pharmaceuticals Incorporated. A Phase 1/2/3 Study of the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) in Subjects with Transfusion-Dependent β-Thalassemia; Clinical Trial Registration NCT03655678. 2025. Available online: https://clinicaltrials.gov/study/NCT03655678 (accessed on 13 June 2025).
- CRISPR Therapeutics AG. An Open-Label, First-in-Human Study Evaluating the Safety, Tolerability, and Efficacy of VCTX211 Combination Product in Subjects with Type 1 Diabetes Mellitus (T1D); Clinical Trial Registration NCT05565248. 2024. Available online: https://clinicaltrials.gov/study/NCT05565248 (accessed on 13 June 2025).
- Intellia Therapeutics. HAELO: A Phase 3, Multinational, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of NTLA-2002 in Participants with Hereditary Angioedema (HAE); Clinical Trial Registration NCT06634420. 2025. Available online: https://clinicaltrials.gov/study/NCT06634420 (accessed on 13 June 2025).
- Spuler, S. Phase 1/2a First-in-Human Trial Evaluating Autologous Gene-Edited Muscle Stem Cells in Limb Girdle Muscular Dystrophies (GenPHSats-bASKet); Clinical Trial Registration NCT05588401. 2023. Available online: https://clinicaltrials.gov/study/NCT05588401 (accessed on 13 June 2025).
- Cetin, B.; Erendor, F.; Eksi, Y.E.; Sanlioglu, A.D.; Sanlioglu, S. Advancing CRISPR Genome Editing into Gene Therapy Clinical Trials: Progress and Future Prospects. Expert. Rev. Mol. Med. 2025, 27, e16. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Grandinette, S.A.; Wang, X.; Hudson, T.R.; Briseno, K.; Berry, A.M.; Hacker, J.L.; Hsu, A.; Silverstein, R.A.; Hille, L.T.; et al. Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease. New Engl. J. Med. 2025, 392, 2235–2243. [Google Scholar] [CrossRef]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J.; et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. New Engl. J. Med. 2023, 389, 899–910. [Google Scholar] [CrossRef]
- Beam Therapeutics Inc. A Phase 1/2 Dose-Exploration and Dose-Expansion Study to Evaluate the Safety and Efficacy of BEAM-302 in Adult Patients with Alpha-1 Antitrypsin Deficiency (AATD)-Associated Lung Disease and/or Liver Disease; Clinical Trial Registration NCT06389877. 2025. Available online: https://clinicaltrials.gov/study/NCT06389877 (accessed on 4 July 2025).
- A Phase 1 Study of Allogeneic Anti-CD7 CAR-T Cells (BEAM-201) in Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia (T-ALL) or T-Cell Lymphoblastic Lymphoma (T-LLy); Clinical Trial Registration NCT06934382. 2025. Available online: https://clinicaltrials.gov/study/NCT06934382 (accessed on 4 July 2025).
- Vafai, S.; Karsten, V.; Jensen, C.; Falzone, R.; Lister, T.; Stolz, L.; Khera, A.; Kathiresan, S.; Bellinger, A.; Fiedorek, F. Abstract 4139206: Design of Heart-2: A Phase 1b Clinical Trial of VERVE-102, an in Vivo Base Editing Medicine Delivered by a GalNAc-LNP and Targeting PCSK9 to Durably Lower LDL Cholesterol. Circulation 2024, 150, A4139206. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef]
- Maeder, M.L.; Linder, S.J.; Cascio, V.M.; Fu, Y.; Ho, Q.H.; Joung, J.K. CRISPR RNA–Guided Activation of Endogenous Human Genes. Nat. Methods 2013, 10, 977–979. [Google Scholar] [CrossRef]
- Perez-Pinera, P.; Kocak, D.D.; Vockley, C.M.; Adler, A.F.; Kabadi, A.M.; Polstein, L.R.; Thakore, P.I.; Glass, K.A.; Ousterout, D.G.; Leong, K.W.; et al. RNA-Guided Gene Activation by CRISPR-Cas9–Based Transcription Factors. Nat. Methods 2013, 10, 973–976. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Cai, S.; Song, K.; Hu, S. Identification of Novel Risk Genes for Alzheimer’s Disease by Integrating Genetics from Hippocampus. Sci. Rep. 2024, 14, 27484. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhao, Y.; Yin, H.; Shu, L.; Ma, Y.; Tao, Y. Identification of Immune-Related Hub Genes and Potential Molecular Mechanisms Involved in COVID-19 via Integrated Bioinformatics Analysis. Sci. Rep. 2024, 14, 29964. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G.L.; Copple, I.M. Modulating the Expression of Tumor Suppressor Genes Using Activating Oligonucleotide Technologies as a Therapeutic Approach in Cancer. Mol. Ther. Nucleic Acids 2023, 31, 211–223. [Google Scholar] [CrossRef]
- Solomon, M.; Muro, S. Lysosomal Enzyme Replacement Therapies: Historical Development, Clinical Outcomes, and Future Perspectives. Adv. Drug Deliv. Rev. 2017, 118, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Prondzynski, M.; Krämer, E.; Laufer, S.D.; Shibamiya, A.; Pless, O.; Flenner, F.; Müller, O.J.; Münch, J.; Redwood, C.; Hansen, A.; et al. Evaluation of MYBPC3 Trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Mol. Ther. Nucleic Acids 2017, 7, 475–486. [Google Scholar] [CrossRef]
- Eichler, F.; Duncan, C.N.; Musolino, P.L.; Lund, T.C.; Gupta, A.O.; Oliveira, S.D.; Thrasher, A.J.; Aubourg, P.; Kühl, J.-S.; Loes, D.J.; et al. Lentiviral Gene Therapy for Cerebral Adrenoleukodystrophy. New Engl. J. Med. 2024, 391, 1302–1312. [Google Scholar] [CrossRef]
- Bluebird Bio. A Phase 3 Study of Lenti-D Drug Product After Myeloablative Conditioning Using Busulfan and Fludarabine in Subjects ≤17 Years of Age with Cerebral Adrenoleukodystrophy (CALD); Clinical Trial Registration NCT03852498. 2024. Available online: https://clinicaltrials.gov/study/NCT03852498 (accessed on 14 June 2025).
- Yang, J.; Rajan, S.S.; Friedrich, M.J.; Lan, G.; Zou, X.; Ponstingl, H.; Garyfallos, D.A.; Liu, P.; Bradley, A.; Metzakopian, E. Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Rep. 2019, 12, 757–771. [Google Scholar] [CrossRef]
- Tanenbaum, M.E.; Gilbert, L.A.; Qi, L.S.; Weissman, J.S.; Vale, R.D. A Protein Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell 2014, 159, 635–646. [Google Scholar] [CrossRef]
- Cheng, A.W.; Wang, H.; Yang, H.; Shi, L.; Katz, Y.; Theunissen, T.W.; Rangarajan, S.; Shivalila, C.S.; Dadon, D.B.; Jaenisch, R. Multiplexed Activation of Endogenous Genes by CRISPR-on, an RNA-Guided Transcriptional Activator System. Cell Res. 2013, 23, 1163–1171. [Google Scholar] [CrossRef]
- Chavez, A.; Scheiman, J.; Vora, S.; Pruitt, B.W.; Tuttle, M.; Iyer, E.P.R.; Lin, S.; Kiani, S.; Guzman, C.D.; Wiegand, D.J.; et al. Highly Efficient Cas9-Mediated Transcriptional Programming. Nat. Methods 2015, 12, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Hilton, I.B.; D’Ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome Editing by a CRISPR-Cas9-Based Acetyltransferase Activates Genes from Promoters and Enhancers. Nat. Biotechnol. 2015, 33, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Lin-Shiao, E.; Trinidad, M.; Saffari Doost, M.; Colognori, D.; Doudna, J.A. Decorating Chromatin for Enhanced Genome Editing Using CRISPR-Cas9. Proc. Natl. Acad. Sci. USA 2022, 119, e2204259119. [Google Scholar] [CrossRef]
- Cano-Rodriguez, D.; Gjaltema, R.A.F.; Jilderda, L.J.; Jellema, P.; Dokter-Fokkens, J.; Ruiters, M.H.J.; Rots, M.G. Writing of H3K4Me3 Overcomes Epigenetic Silencing in a Sustained but Context-Dependent Manner. Nat. Commun. 2016, 7, 12284. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Wu, H.; Ji, X.; Stelzer, Y.; Wu, X.; Czauderna, S.; Shu, J.; Dadon, D.; Young, R.A.; Jaenisch, R. Editing DNA Methylation in the Mammalian Genome. Cell 2016, 167, 233–247.e17. [Google Scholar] [CrossRef]
- Xu, X.; Tan, X.; Tampe, B.; Wilhelmi, T.; Hulshoff, M.; Saito, S.; Moser, T.; Kalluri, R.; Hasenfuss, G.; Zeisberg, E.; et al. High-Fidelity CRISPR/Cas9- Based Gene-Specific Hydroxymethylation Rescues Gene Expression and Attenuates Renal Fibrosis. Nat. Commun. 2018, 9, 3509. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ji, H.; Kabadi, A.M.; Gersbach, C.A.; Christoforou, N.; Leong, K.W. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification. Stem Cell Rep. 2014, 3, 940–947. [Google Scholar] [CrossRef]
- Omachi, K.; Miner, J.H. Comparative Analysis of dCas9-VP64 Variants and Multiplexed Guide RNAs Mediating CRISPR Activation. PLoS ONE 2022, 17, e0270008. [Google Scholar] [CrossRef] [PubMed]
- Konermann, S.; Brigham, M.D.; Trevino, A.E.; Joung, J.; Abudayyeh, O.O.; Barcena, C.; Hsu, P.D.; Habib, N.; Gootenberg, J.S.; Nishimasu, H.; et al. Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex. Nature 2015, 517, 583–588. [Google Scholar] [CrossRef]
- Griffith, A.L.; Zheng, F.; McGee, A.V.; Miller, N.W.; Szegletes, Z.M.; Reint, G.; Gademann, F.; Nwolah, I.; Hegde, M.; Liu, Y.V.; et al. Optimization of Cas12a for Multiplexed Genome-Scale Transcriptional Activation. Cell Genom. 2023, 3, 100387. [Google Scholar] [CrossRef]
- Campa, C.C.; Weisbach, N.R.; Santinha, A.J.; Incarnato, D.; Platt, R.J. Multiplexed Genome Engineering by Cas12a and CRISPR Arrays Encoded on Single Transcripts. Nat. Methods 2019, 16, 887–893. [Google Scholar] [CrossRef]
- Tak, Y.E.; Kleinstiver, B.P.; Nuñez, J.K.; Hsu, J.Y.; Horng, J.E.; Gong, J.; Weissman, J.S.; Joung, J.K. Inducible and Multiplex Gene Regulation Using CRISPR-Cpf1-Based Transcription Factors. Nat. Methods 2017, 14, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.P.; Rios, A.R.; Wu, L.; Qi, L.S. Enhanced Cas12a Multi-Gene Regulation Using a CRISPR Array Separator. eLife 2021, 10, e66406. [Google Scholar] [CrossRef]
- Cao, C.; Li, A.; Xu, C.; Wu, B.; Liu, J.; Liu, Y. Enhancement of Protein Translation by CRISPR/dCasRx Coupled with SINEB2 Repeat of Noncoding RNAs. Nucleic Acids Res. 2023, 51, e33. [Google Scholar] [CrossRef]
- Montagud-Martínez, R.; Márquez-Costa, R.; Heras-Hernández, M.; Dolcemascolo, R.; Rodrigo, G. On the Ever-growing Functional Versatility of the CRISPR-Cas13 System. Microb. Biotechnol. 2024, 17, e14418. [Google Scholar] [CrossRef]
- He, Z.; Song, C.; Li, S.; Dong, C.; Liao, W.; Xiong, Y.; Yang, S.; Liu, Y. Development and Application of the CRISPR-Dcas13d-eIF4G Translational Regulatory System to Inhibit Ferroptosis in Calcium Oxalate Crystal-Induced Kidney Injury. Adv. Sci. 2024, 11, 2309234. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Chen, F.; Xie, G.; Ling, Y.; Peng, Y.; Lin, Y.; Luo, N.; Chiang, C.-M.; Wang, H. Targeted mRNA Demethylation Using an Engineered dCas13b-ALKBH5 Fusion Protein. Nucleic Acids Res. 2020, 48, 5684–5694. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jin, J.; Kwon, E.; Jang, H.; Choi, S.-K.; Kim, D.; Kim, C.; Son, S.; Yoon, K.-J.; Heo, W.D. Programmable RNA Acetylation with CRISPR-Cas13. Nat. Chem. Biol. 2025. [Google Scholar] [CrossRef]
- Torkzaban, B.; Kawalerski, R.; Coller, J. Development of a Tethered mRNA Amplifier to Increase Protein Expression. Biotechnol. J. 2022, 17, 2200214. [Google Scholar] [CrossRef]
- Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA Editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Zhou, C.; Gao, N.; Rao, Z.; Li, H.; Hu, X.; Li, C.; Yao, X.; Shen, X.; et al. In Vivo Simultaneous Transcriptional Activation of Multiple Genes in the Brain Using CRISPR–dCas9-Activator Transgenic Mice. Nat. Neurosci. 2018, 21, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Mahata, B.; Cabrera, A.; Brenner, D.A.; Guerra-Resendez, R.S.; Li, J.; Goell, J.; Wang, K.; Guo, Y.; Escobar, M.; Parthasarathy, A.K.; et al. Compact Engineered Human Mechanosensitive Transactivation Modules Enable Potent and Versatile Synthetic Transcriptional Control. Nat. Methods 2023, 20, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, D.; Sui, M.; Zhou, M.; Wang, B.; Qi, Q.; Wang, T.; Zhang, G.; Wan, F.; Zhang, B. CRISPRa-based Activation of Fgf21 and Fndc5 Ameliorates Obesity by Promoting Adipocytes Browning. Clin. Transl. Med. 2023, 13, e1326. [Google Scholar] [CrossRef]
- Guerreiro, V.A.; Carvalho, D.; Freitas, P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J. Obes. 2022, 2022, 2252516. [Google Scholar] [CrossRef]
- Wang, C.-H.; Lundh, M.; Fu, A.; Kriszt, R.; Huang, T.L.; Lynes, M.D.; Leiria, L.O.; Shamsi, F.; Darcy, J.; Greenwood, B.P.; et al. CRISPR-Engineered Human Brown-like Adipocytes Prevent Diet-Induced Obesity and Ameliorate Metabolic Syndrome in Mice. Sci. Transl. Med. 2020, 12, eaaz8664. [Google Scholar] [CrossRef] [PubMed]
- Matharu, N.; Rattanasopha, S.; Tamura, S.; Maliskova, L.; Wang, Y.; Bernard, A.; Hardin, A.; Eckalbar, W.L.; Vaisse, C.; Ahituv, N. CRISPR-Mediated Activation of a Promoter or Enhancer Rescues Obesity Caused by Haploinsufficiency. Science 2019, 363, eaau0629. [Google Scholar] [CrossRef]
- Narváez-Pérez, L.F.; Paz-Bermúdez, F.; Avalos-Fuentes, J.A.; Campos-Romo, A.; Florán-Garduño, B.; Segovia, J. CRISPR/sgRNA-Directed Synergistic Activation Mediator (SAM) as a Therapeutic Tool for Parkinson´s Disease. Gene Ther. 2024, 31, 31–44. [Google Scholar] [CrossRef]
- Giehrl-Schwab, J.; Giesert, F.; Rauser, B.; Lao, C.L.; Hembach, S.; Lefort, S.; Ibarra, I.L.; Koupourtidou, C.; Luecken, M.D.; Truong, D.J.; et al. Parkinson’s Disease Motor Symptoms Rescue by CRISPRa-reprogramming Astrocytes into GABAergic Neurons. EMBO Mol. Med. 2022, 14, e14797. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hwang, Y.; Kim, J. Transcriptional Activation with Cas9 Activator Nanocomplexes Rescues Alzheimer’s Disease Pathology. Biomaterials 2021, 279, 121229. [Google Scholar] [CrossRef]
- Postina, R.; Schroeder, A.; Dewachter, I.; Bohl, J.; Schmitt, U.; Kojro, E.; Prinzen, C.; Endres, K.; Hiemke, C.; Blessing, M.; et al. A Disintegrin-Metalloproteinase Prevents Amyloid Plaque Formation and Hippocampal Defects in an Alzheimer Disease Mouse Model. J. Clin. Investig. 2004, 113, 1456–1464. [Google Scholar] [CrossRef]
- Park, H.; Kim, J. Activation of Melatonin Receptor 1 by CRISPR-Cas9 Activator Ameliorates Cognitive Deficits in an Alzheimer’s Disease Mouse Model. J. Pineal Res. 2022, 72, e12787. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xin, H.; Shao, Y.; Dai, S.; Tan, N.; Li, Z.; Fei, F.; Wu, D.; Wang, Y.; Ping, Y.; et al. CRISPR-Based KCC2 Upregulation Attenuates Drug-Resistant Seizure in Mouse Models of Epilepsy. Ann. Neurol. 2023, 94, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Colasante, G.; Qiu, Y.; Massimino, L.; Di Berardino, C.; Cornford, J.H.; Snowball, A.; Weston, M.; Jones, S.P.; Giannelli, S.; Lieb, A.; et al. In Vivo CRISPRa Decreases Seizures and Rescues Cognitive Deficits in a Rodent Model of Epilepsy. Brain 2020, 143, 891–905. [Google Scholar] [CrossRef]
- Bohnsack, J.P.; Zhang, H.; Wandling, G.M.; He, D.; Kyzar, E.J.; Lasek, A.W.; Pandey, S.C. Targeted Epigenomic Editing Ameliorates Adult Anxiety and Excessive Drinking after Adolescent Alcohol Exposure. Sci. Adv. 2022, 8, eabn2748. [Google Scholar] [CrossRef]
- Capelletti, S.; García Soto, S.C.; Gonçalves, M.A.F.V. On RNA-Programmable Gene Modulation as a Versatile Set of Principles Targeting Muscular Dystrophies. Mol. Ther. 2024, 32, 3793–3807. [Google Scholar] [CrossRef]
- Wu, R.; Li, P.; Xiao, P.; Zhang, S.; Wang, X.; Liu, J.; Sun, W.; Chang, Y.; Ai, X.; Chen, L.; et al. Activation of Endogenous Full-Length Utrophin by MyoAAV-UA as a Therapeutic Approach for Duchenne Muscular Dystrophy. Nat. Commun. 2025, 16, 2398. [Google Scholar] [CrossRef]
- Lek, A.; Wong, B.; Keeler, A.; Blackwood, M.; Ma, K.; Huang, S.; Sylvia, K.; Batista, A.R.; Artinian, R.; Kokoski, D.; et al. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne’s Muscular Dystrophy. New Engl. J. Med. 2023, 389, 1203–1210. [Google Scholar] [CrossRef]
- Kemaladewi, D.U.; Bassi, P.S.; Erwood, S.; Al-Basha, D.; Gawlik, K.I.; Lindsay, K.; Hyatt, E.; Kember, R.; Place, K.M.; Marks, R.M.; et al. A Mutation-Independent Approach for Muscular Dystrophy via Upregulation of a Modifier Gene. Nature 2019, 572, 125–130. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, D.; Ma, K.; Luo, H.; Mao, J.; Luo, J.; Shen, Q.; Xu, L.; Yang, S.; Ge, L.; et al. Lama1 Upregulation Prolongs the Lifespan of the dyH/dyH Mouse Model of LAMA2-Related Congenital Muscular Dystrophy. J. Genet. Genom. 2024, 51, 1066–1078. [Google Scholar] [CrossRef]
- Bhati, V.; Prasad, S.; Kabra, A. RNA-Based Therapies for Neurodegenerative Disease: Targeting Molecular Mechanisms for Disease Modification. Mol. Cell Neurosci. 2025, 133, 104010. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. siRNA-Based Delivery Systems: Technologies, Carriers, Applications, and Approved Products. Eur. J. Pharmacol. 2025, 996, 177441. [Google Scholar] [CrossRef]
- Singh, J.; Saeedan, A.S.; Kaithwas, G.; Ansari, M.N. Small Interfering RNA: From Designing to Therapeutic in Cancer. J. Genet. Eng. Biotechnol. 2025, 23, 100484. [Google Scholar] [CrossRef] [PubMed]
- Martín-Acosta, P.; Xiao, X. PROTACs to Address the Challenges Facing Small Molecule Inhibitors. Eur. J. Med. Chem. 2021, 210, 112993. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The Current Landscape of Nucleic Acid Therapeutics. Nat. Nanotechnol. 2021, 16, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J. Clin. Med. 2020, 9, 2004. [Google Scholar] [CrossRef]
- Collotta, D.; Bertocchi, I.; Chiapello, E.; Collino, M. Antisense Oligonucleotides: A Novel Frontier in Pharmacological Strategy. Front. Pharmacol. 2023, 14, 1304342. [Google Scholar] [CrossRef] [PubMed]
- Padda, I.S.; Mahtani, A.U.; Patel, P.; Parmar, M. Small Interfering RNA (siRNA) Therapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK580472/ (accessed on 7 July 2025).
- Stojic, L.; Lun, A.T.L.; Mangei, J.; Mascalchi, P.; Quarantotti, V.; Barr, A.R.; Bakal, C.; Marioni, J.C.; Gergely, F.; Odom, D.T. Specificity of RNAi, LNA and CRISPRi as Loss-of-Function Methods in Transcriptional Analysis. Nucleic Acids Res. 2018, 46, 5950–5966. [Google Scholar] [CrossRef]
- Thakore, P.I.; D’Ippolito, A.M.; Song, L.; Safi, A.; Shivakumar, N.K.; Kabadi, A.M.; Reddy, T.E.; Crawford, G.E.; Gersbach, C.A. Highly Specific Epigenome Editing by CRISPR-Cas9 Repressors for Silencing of Distal Regulatory Elements. Nat. Methods 2015, 12, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Nott, A.; Cheng, J.; Gao, F.; Lin, Y.-T.; Gjoneska, E.; Ko, T.; Minhas, P.; Zamudio, A.V.; Meng, J.; Zhang, F.; et al. Histone Deacetylase 3 Associates with MeCP2 to Regulate FOXO and Social Behavior. Nat. Neurosci. 2016, 19, 1497–1505. [Google Scholar] [CrossRef]
- Yeo, N.C.; Chavez, A.; Lance-Byrne, A.; Chan, Y.; Menn, D.; Milanova, D.; Kuo, C.-C.; Guo, X.; Sharma, S.; Tung, A.; et al. An Enhanced CRISPR Repressor for Targeted Mammalian Gene Regulation. Nat. Methods 2018, 15, 611–616. [Google Scholar] [CrossRef]
- Alerasool, N.; Segal, D.; Lee, H.; Taipale, M. An Efficient KRAB Domain for CRISPRi Applications in Human Cells. Nat. Methods 2020, 17, 1093–1096. [Google Scholar] [CrossRef]
- Kristof, A.; Karunakaran, K.; Allen, C.; Mizote, P.; Briggs, S.; Jian, Z.; Nash, P.; Blazeck, J. Engineering Novel CRISPRi Repressors for Highly Efficient Mammalian Gene Regulation. Genome Biol. 2025, 26, 164. [Google Scholar] [CrossRef]
- Nuñez, J.K.; Chen, J.; Pommier, G.C.; Cogan, J.Z.; Replogle, J.M.; Adriaens, C.; Ramadoss, G.N.; Shi, Q.; Hung, K.L.; Samelson, A.J.; et al. Genome-Wide Programmable Transcriptional Memory by CRISPR-Based Epigenome Editing. Cell 2021, 184, 2503–2519.e17. [Google Scholar] [CrossRef]
- Vojta, A.; Dobrinić, P.; Tadić, V.; Bočkor, L.; Korać, P.; Julg, B.; Klasić, M.; Zoldoš, V. Repurposing the CRISPR-Cas9 System for Targeted DNA Methylation. Nucleic Acids Res. 2016, 44, 5615–5628. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, Y.; Xu, F.; Huang, J.; Daugaard, T.F.; Petersen, T.S.; Hansen, B.; Ye, L.; Zhou, Q.; Fang, F.; et al. Genome-Wide Determination of on-Target and off-Target Characteristics for RNA-Guided DNA Methylation by dCas9 Methyltransferases. Gigascience 2018, 7, giy011. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Wang, J.; Sun, W.; Huang, W.; Cai, Z.; Zhao, G.; Wang, J. Reprogrammable CRISPR/dCas9-Based Recruitment of DNMT1 for Site-Specific DNA Demethylation and Gene Regulation. Cell Discov. 2019, 5, 22. [Google Scholar] [CrossRef]
- Shi, L.; Li, S.; Zhu, R.; Lu, C.; Xu, X.; Li, C.; Huang, X.; Zhao, X.; Mao, F.; Li, K. CRISPRepi: A Multi-Omic Atlas for CRISPR-Based Epigenome Editing. Nucleic Acids Res. 2025, 53, D901–D913. [Google Scholar] [CrossRef]
- Ciurkot, K.; Gorochowski, T.E.; Roubos, J.A.; Verwaal, R. Efficient Multiplexed Gene Regulation in Saccharomyces Cerevisiae Using dCas12a. Nucleic Acids Res. 2021, 49, 7775–7790. [Google Scholar] [CrossRef] [PubMed]
- Hsiung, C.C.-S.; Wilson, C.M.; Sambold, N.A.; Dai, R.; Chen, Q.; Teyssier, N.; Misiukiewicz, S.; Arab, A.; O’Loughlin, T.; Cofsky, J.C.; et al. Engineered CRISPR-Cas12a for Higher-Order Combinatorial Chromatin Perturbations. Nat. Biotechnol. 2025, 43, 369–383. [Google Scholar] [CrossRef]
- Otoupal, P.B.; Cress, B.F.; Doudna, J.A.; Schoeniger, J.S. CRISPR-RNAa: Targeted Activation of Translation Using dCas13 Fusions to Translation Initiation Factors. Nucleic Acids Res. 2022, 50, 8986–8998. [Google Scholar] [CrossRef]
- Shi, P.; Wu, X. Programmable RNA Targeting with CRISPR-Cas13. RNA Biol. 2024, 21, 575–583. [Google Scholar] [CrossRef]
- Apostolopoulos, A.; Kawamoto, N.; Chow, S.Y.A.; Tsuiji, H.; Ikeuchi, Y.; Shichino, Y.; Iwasaki, S. dCas13-Mediated Translational Repression for Accurate Gene Silencing in Mammalian Cells. Nat. Commun. 2024, 15, 2205. [Google Scholar] [CrossRef]
- Li, M.; Li, D.; Lin, L.; Wang, P.; Zhao, W. Precise Interference of RNA–Protein Interaction by CRISPR-Cas13-Mediated Peptide Competition. ACS Synth. Biol. 2023, 12, 2827–2833. [Google Scholar] [CrossRef]
- Cardiff, R.A.L.; Faulkner, I.D.; Beall, J.G.; Carothers, J.M.; Zalatan, J.G. CRISPR-Cas Tools for Simultaneous Transcription & Translation Control in Bacteria. Nucleic Acids Res. 2024, 52, 5406–5419. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, F.; Li, J.; Sun, X.; Zhang, X.; Wang, H.; Fan, P.; Lai, L.; Li, Z.; Sui, T. Programmable RNA 5-Methylcytosine (m5C) Modification of Cellular RNAs by dCasRx Conjugated Methyltransferase and Demethylase. Nucleic Acids Res. 2024, 52, 2776–2791. [Google Scholar] [CrossRef]
- Zhang, J.; You, Y. CRISPR-Cas13a System: A Novel Approach to Precision Oncology. Cancer Biol. Med. 2020, 17, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Carleton, J.B.; Berrett, K.C.; Gertz, J. Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers. Cell Syst. 2017, 5, 333–344.e5. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.I.; Celik, H.; Rois, L.E.; Fishberger, G.; Fowler, T.; Rees, R.; Kramer, A.; Martens, A.; Edwards, J.R.; Challen, G.A. Reprogrammable CRISPR/Cas9-Based System for Inducing Site-Specific DNA Methylation. Biol. Open 2016, 5, 866–874. [Google Scholar] [CrossRef]
- Stepper, P.; Kungulovski, G.; Jurkowska, R.Z.; Chandra, T.; Krueger, F.; Reinhardt, R.; Reik, W.; Jeltsch, A.; Jurkowski, T.P. Efficient Targeted DNA Methylation with Chimeric dCas9–Dnmt3a–Dnmt3L Methyltransferase. Nucleic Acids Res. 2017, 45, 1703–1713. [Google Scholar] [CrossRef]
- Đorđević, M.; Stepper, P.; Feuerstein-Akgoz, C.; Gerhauser, C.; Paunović, V.; Tolić, A.; Rajić, J.; Dinić, S.; Uskoković, A.; Grdović, N.; et al. EpiCRISPR Targeted Methylation of Arx Gene Initiates Transient Switch of Mouse Pancreatic Alpha to Insulin-Producing Cells. Front. Endocrinol. 2023, 14, 1134478. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Y.; Bian, J.; Davis, A.E.; Liu, P.; Kempton, H.R.; Zhang, X.; Chemparathy, A.; Gu, B.; Lin, X.; Rane, D.A.; et al. Multiplexed Genome Regulation in Vivo with Hyper-Efficient Cas12a. Nat. Cell Biol. 2022, 24, 590–600. [Google Scholar] [CrossRef]
- Mo, Y.; Leung, L.L.; Mak, C.S.L.; Wang, X.; Chan, W.-S.; Hui, L.M.N.; Tang, H.W.M.; Siu, M.K.Y.; Sharma, R.; Xu, D.; et al. Tumor-Secreted Exosomal miR-141 Activates Tumor-Stroma Interactions and Controls Premetastatic Niche Formation in Ovarian Cancer Metastasis. Mol. Cancer 2023, 22, 4. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Zhu, M.; Liang, M.; Zhang, L.; Zong, Y.; Wan, M. High-Performance Delivery of a CRISPR Interference System via Lipid-Polymer Hybrid Nanoparticles Combined with Ultrasound-Mediated Microbubble Destruction for Tumor-Specific Gene Repression. Adv. Healthc. Mater. 2023, 12, 2203082. [Google Scholar] [CrossRef]
- Ma, L.; Reinhardt, F.; Pan, E.; Soutschek, J.; Bhat, B.; Marcusson, E.G.; Teruya-Feldstein, J.; Bell, G.W.; Weinberg, R.A. Therapeutic Silencing of miR-10b Inhibits Metastasis in a Mouse Mammary Tumor Model. Nat. Biotechnol. 2010, 28, 341–347. [Google Scholar] [CrossRef]
- Halim, A.; Al-Qadi, N.; Kenyon, E.; Conner, K.N.; Mondal, S.K.; Medarova, Z.; Moore, A. Inhibition of miR-10b Treats Metastatic Breast Cancer by Targeting Stem Cell-like Properties. Oncotarget 2024, 15, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Al-Qadi, N.; Halim, A.; Mackie, H.; Sempere, L.; Moore, A. Exploring the Effects of Inhibiting miR-10b on Breast Cancer Stemness and Metastasis. J. Clin. Oncol. 2023, 41 (Suppl. S16), e13084. [Google Scholar] [CrossRef]
- Yoo, B.; Kavishwar, A.; Ross, A.; Wang, P.; Tabassum, D.P.; Polyak, K.; Barteneva, N.; Petkova, V.; Pantazopoulos, P.; Tena, A.; et al. Combining miR-10b–Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res. 2015, 75, 4407–4415. [Google Scholar] [CrossRef]
- Gu, P.; Zhao, J.; Zhang, W.; Ruan, X.; Hu, L.; Zeng, Y.; Hou, X.; Zheng, X.; Gao, M.; Chi, J. An Inducible CRISPR-dCas9-Based Transcriptional Repression System for Cancer Therapy. Small Methods 2024, 8, 2301310. [Google Scholar] [CrossRef]
- Sastre, D.; Zafar, F.; Torres, C.A.M.; Piper, D.; Kirik, D.; Sanders, L.H.; Qi, L.S.; Schüle, B. Inactive S. Aureus Cas9 Downregulates Alpha-Synuclein and Reduces mtDNA Damage and Oxidative Stress Levels in Human Stem Cell Model of Parkinson’s Disease. Sci. Rep. 2023, 13, 17796. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Guo, X.; Sun, Y.; Chai, W.; Chang, Y.; Huang, Q.; Wang, P.; Wang, X. Ultrasound-Assisted CRISPRi-Exosome for Epigenetic Modification of α-Synuclein Gene in a Mouse Model of Parkinson’s Disease. ACS Nano 2024, 18, 7837–7851. [Google Scholar] [CrossRef]
- Kantor, B.; Tagliafierro, L.; Gu, J.; Zamora, M.E.; Ilich, E.; Grenier, C.; Huang, Z.Y.; Murphy, S.; Chiba-Falek, O. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD. Mol. Ther. 2018, 26, 2638–2649. [Google Scholar] [CrossRef]
- Seo, J.H.; Shin, J.H.; Lee, J.; Kim, D.; Hwang, H.-Y.; Nam, B.-G.; Lee, J.; Kim, H.H.; Cho, S.-R. DNA Double-Strand Break-Free CRISPR Interference Delays Huntington’s Disease Progression in Mice. Commun. Biol. 2023, 6, 466. [Google Scholar] [CrossRef]
- Kantor, B.; O’Donovan, B.; Rittiner, J.; Hodgson, D.; Lindner, N.; Guerrero, S.; Dong, W.; Zhang, A.; Chiba-Falek, O. The Therapeutic Implications of All-in-One AAV-Delivered Epigenome-Editing Platform in Neurodegenerative Disorders. Nat. Commun. 2024, 15, 7259. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, T.B.; Tripathy, K.; Luther, E.E. Retinitis Pigmentosa. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Moreno, A.M.; Fu, X.; Zhu, J.; Katrekar, D.; Shih, Y.-R.V.; Marlett, J.; Cabotaje, J.; Tat, J.; Naughton, J.; Lisowski, L.; et al. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Mol. Ther. 2018, 26, 1818–1827. [Google Scholar] [CrossRef] [PubMed]
- Burnight, E.R.; Wiley, L.A.; Mullin, N.K.; Adur, M.K.; Lang, M.J.; Cranston, C.M.; Jiao, C.; Russell, S.R.; Sohn, E.H.; Han, I.C.; et al. CRISPRi-Mediated Treatment of Dominant Rhodopsin-Associated Retinitis Pigmentosa. Cris. J. 2023, 6, 502–513. [Google Scholar] [CrossRef]
- Rayana, N.P.; Sugali, C.K.; Dai, J.; Peng, M.; Liu, S.; Zhang, Y.; Wan, J.; Mao, W. Using CRISPR Interference as a Therapeutic Approach to Treat TGFβ2-Induced Ocular Hypertension and Glaucoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 7. [Google Scholar] [CrossRef]
- Gedde, S.J.; Vinod, K.; Wright, M.M.; Muir, K.W.; Lind, J.T.; Chen, P.P.; Li, T.; Mansberger, S.L. Primary Open-Angle Glaucoma Preferred Practice Pattern®. Ophthalmology 2021, 128, P71–P150. [Google Scholar] [CrossRef]
- Bermudez, J.Y.; Webber, H.C.; Patel, G.C.; Liu, X.; Cheng, Y.-Q.; Clark, A.F.; Mao, W. HDAC Inhibitor-Mediated Epigenetic Regulation of Glaucoma-Associated TGFβ2 in the Trabecular Meshwork. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3698–3707. [Google Scholar] [CrossRef]
- Approved Cellular and Gene Therapy Products; U.S. Food and Drug Administration. 2025. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (accessed on 23 June 2025).
- Tune Therapeutics Moves into Clinical Spotlight with TUNE-401: A First-in-Class Epigenetic Silencer for Hepatitis B—Tune Therapeutics. Available online: https://tunetx.com/tune-therapeutics-moves-into-clinical-spotlight-with-tune-401-a-first-in-class-epigenetic-silencer-for-hepatitis-b/ (accessed on 23 June 2025).
- Cosgrove, B. Epigenetic Editing for the Treatment of HBV. 2023. Available online: https://tunetx.com/wp-content/uploads/2023/12/HEPDART_Dec5_Web.pdf (accessed on 23 June 2025).
- Cosgrove, B.; Jones, A.; Burcham, L.; Seki, A.; Wolpert, M.; Riley, L.; An, S.; Sundseth, S.; Czerwinski, M.; Winters, H.; et al. TUNE-401 Is a Novel First-in-Class Epigenetic Silencer Developed for Treatment of Chronic Hepatitis B, with Preclinical Data Showing Strong, Durable, and Precise Transcriptional Repression of HBV DNA. In The Liver Meeting: 2024 Abstracts; S1; American Association for the Study of Liver Diseases: San Diego, CA, USA, 2024; Volume 80, p. 178. [Google Scholar]
- Tune Therapeutics, Inc. Phase 1b Multicenter, Open-Label Study to Assess the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Tune-401 in Participants with Chronic Hepatitis B Infection; Clinical Trial Registration NCT06671093. 2025. Available online: https://clinicaltrials.gov/study/NCT06671093 (accessed on 23 June 2025).
- nChroma Bio Raises $75M to Advance Epigenetic Editing for Hepatitis B and D Cure. Atlas Infectious Disease Practice. Available online: https://atlasidp.com/nchroma-bio-raises-75m-to-advance-epigenetic-editing-for-hepatitis-b-and-d-cure/ (accessed on 23 June 2025).
- Chroma Medicine and Nvelop Therapeutics Unite to Form nChroma Bio, Securing $75 Million to Accelerate Genetic Medicines. Available online: https://www.nchromabio.com/news/chroma-medicine-and-nvelop-therapeutics-unite-to-form-nchroma-bio-securing-75-million-to-accelerate-genetic-medicines (accessed on 23 June 2025).
- Durrani, J. Epigenetic Editors Enter Clinical Trials. Chemistry World. Available online: https://www.chemistryworld.com/news/epigenetic-editors-enter-clinical-trials/4021267.article (accessed on 23 June 2025).
- Platform. Epicrispr Biotechnologies. Available online: https://epicrispr.com/platform/ (accessed on 23 June 2025).
- Xu, X.; Chemparathy, A.; Zeng, L.; Kempton, H.R.; Shang, S.; Nakamura, M.; Qi, L.S. Engineered Miniature CRISPR-Cas System for Mammalian Genome Regulation and Editing. Mol. Cell 2021, 81, 4333–4345.e4. [Google Scholar] [CrossRef]
- Adhikari, A.; Boregowda, S.V.; Zheng, H.; Agarwal, V.; Norton, A.; Silvis, M.; Wasala, N.; Collin de l’Hortet, A. EPI-321: A Novel Epigenetic Gene Therapy for FSHD Targeting D4Z4 Epigenome. In Proceedings of the ASGCT 2024, Baltimore, MD, USA, 7 May 2024; Available online: https://epicrispr.com/wp-content/uploads/2024/05/EPI-321-A-Novel-Epigenetic-Gene-Therapy-for-FSHD-Targeting-D4Z4-Epigenome.pdf (accessed on 23 October 2025).
- Epicrispr Biotechnologies, Inc. A Phase 1/2 Open-Label Dose-Escalation Study to Evaluate the Safety, Tolerability, and Biological Activity of EPI-321, an AAVrh74-Delivered Epigenetic Editing Therapy in Adult FSHD Patients; Clinical Trial Registration NCT06907875. 2025. Available online: https://clinicaltrials.gov/study/NCT06907875 (accessed on 23 June 2025).
- Yang, X.; Bui, T.A.; Mei, H.; Aksoy, Y.A.; Deng, F.; Hutvagner, G.; Deng, W. Exploring the Potential and Challenges of CRISPR Delivery and Therapeutics for Genetic Disease Treatment. Adv. Funct. Mater. 2024, 34, 2402630. [Google Scholar] [CrossRef]
- Xu, C.L.; Ruan, M.Z.C.; Mahajan, V.B.; Tsang, S.H. Viral Delivery Systems for CRISPR. Viruses 2019, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Rittiner, J.; Cumaran, M.; Malhotra, S.; Kantor, B. Therapeutic Modulation of Gene Expression in the Disease State: Treatment Strategies and Approaches for the Development of next-Generation of the Epigenetic Drugs. Front. Bioeng. Biotechnol. 2022, 10, 1035543. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Kantor, B. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses 2021, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.E.; Soleymani, M.; Shahriyary, F.; Amirzargar, M.R.; Ofoghi, M.; Fattahi, M.D.; Safa, M. Viral Vectors and Extracellular Vesicles: Innate Delivery Systems Utilized in CRISPR/Cas-Mediated Cancer Therapy. Cancer Gene Ther. 2023, 30, 936–954. [Google Scholar] [CrossRef]
- Fujimoto, G.R.; Wooley, D.P.; Byers, K.B.; Yang, O.O.; Behrman, A.J.; Winters, T.H.; Hudson, T.W. Update on Managing the Risks of Exposure to Lentiviral and Retroviral Vectors. J. Occup. Environ. Med. 2024, 66, 818. [Google Scholar] [CrossRef]
- Guangxun, G. A Safety Study of Autologous T Cells Engineered to Target CD19 and CRISPR Gene Edited to Eliminate Endogenous HPK1 (XYF19 CAR-T Cells) for Relapsed or Refractory Haematopoietic Malignancies.; Clinical Trial Registration NCT04037566. 2019. Available online: https://clinicaltrials.gov/study/NCT04037566 (accessed on 24 June 2025).
- Vor Biopharma. Phase 1/2 Study of Donor-Derived Anti-CD33 Chimeric Antigen Receptor Expressing T Cells (VCAR33) in Patients with Relapsed or Refractory Acute Myeloid Leukemia After Allogeneic Hematopoietic Cell Transplantation; Clinical Trial Registration NCT05984199. 2025. Available online: https://clinicaltrials.gov/study/NCT05984199 (accessed on 24 June 2025).
- Great Ormond Street Hospital for Children NHS Foundation Trust. Phase 1 Study of Base Edited CAR T Cells Against AML: Deep Conditioning Ahead of Allogeneic Stem Cell Transplantation; Clinical Trial Registration NCT05942599. 2023. Available online: https://clinicaltrials.gov/study/NCT05942599 (accessed on 24 June 2025).
- Ginn, S.L.; Mandwie, M.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene Therapy Clinical Trials Worldwide to 2023—An Update. J. Gene Med. 2024, 26, e3721. [Google Scholar] [CrossRef]
- Leikas, A.J.; Ylä-Herttuala, S.; Hartikainen, J.E.K. Adenoviral Gene Therapy Vectors in Clinical Use—Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int. J. Mol. Sci. 2023, 24, 16519. [Google Scholar] [CrossRef]
- Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral Vector-based Gene Therapies in the Clinic. Bioeng. Transl. Med. 2021, 7, e10258. [Google Scholar] [CrossRef] [PubMed]
- Yudaeva, A.; Kostyusheva, A.; Kachanov, A.; Brezgin, S.; Ponomareva, N.; Parodi, A.; Pokrovsky, V.S.; Lukashev, A.; Chulanov, V.; Kostyushev, D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.H.; Muir, T.W. Split Inteins: Nature’s Protein Ligases. Isr. J. Chem. 2011, 51, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, M.; Frias, S.; Andrews, L.; Nanjaraj, A.; Darst, R.; Wist, S.; Sajuthi, S.; Bendaña, Y.; Tran, H.; Mueller, S.; et al. Identification and Characterization of STAC-BBB, an Engineered AAV Capsid That Exhibits Widespread Transduction of the Central Nervous System in Cynomolgus Macaques. 2024. Available online: https://www.sangamo.com/wp-content/uploads/2024/05/ASGCT-Oral-Presentation-May-8_SGMO_Tiffany_-STAC-BBB-FINAL.pdf (accessed on 4 July 2025).
- Liang, S.-Q.; Navia, A.W.; Ramseier, M.; Zhou, X.; Martinez, M.; Lee, C.; Zhou, C.; Wu, J.; Xie, J.; Su, Q.; et al. AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys. Human. Gene Ther. 2024, 35, 814–824. [Google Scholar] [CrossRef]
- Allogeneic TRAC Locus-Inserted CD19-Targeting Synthetic T-Cell Receptor Antigen Receptor (STAR) T Cells for Relapsed/Refractory B-Cell Non-Hodgkin’s Lymphoma; Clinical Trial Registration NCT06321289. 2024. Available online: https://clinicaltrials.gov/study/NCT06321289 (accessed on 24 June 2025).
- HuidaGene Therapeutics Co., Ltd. A Trial to Evaluate the Safety, Tolerability, and Efficacy of CRISPR-Cas13 RNA-Editing Therapy Targeting Knockdown of Vascular Endothelial Growth Factor a (HG202) in the Treatment of Neovascular Age-Related Macular Degeneration (nAMD); Clinical Trial Registration NCT06031727. 2025. Available online: https://clinicaltrials.gov/study/NCT06031727 (accessed on 24 June 2025).
- Cure Rare Disease, Inc. Treatment of a Single Patient with CRD-TMH-001; Clinical Trial Registration NCT05514249. 2022. Available online: https://clinicaltrials.gov/study/NCT05514249 (accessed on 24 June 2025).
- Peking University Third Hospital. A Single-Arm, Open-Label Exploratory Clinical Study to Assess the Preliminary Safety of the Gene Editing Drug ZVS203e for the Management of Retinitis Pigmentosa Caused by Mutations in the RHO Gene; Clinical Trial Registration NCT05805007. 2023. Available online: https://clinicaltrials.gov/study/NCT05805007 (accessed on 24 June 2025).
- Excision BioTherapeutics. Long-Term Follow-Up Study of HIV-1 Infected Adults Exiting a Parent Study Where EBT-101 Was Administered; Clinical Trial Registration NCT05143307. 2024. Available online: https://clinicaltrials.gov/study/NCT05143307 (accessed on 24 June 2025).
- HuidaGene Therapeutics Co., Ltd. An Investigator-Initiated Clinical Study Evaluating the CRISPR-hfCas12Max Gene Editing Therapy in the Treatment of Duchenne Muscular Dystrophy (DMD); Clinical Trial Registration NCT06594094. 2024. Available online: https://clinicaltrials.gov/study/NCT06594094 (accessed on 24 June 2025).
- HuidaGene Therapeutics Co., Ltd. An Open-Label, Multiple-Dose Clinical Study to Evaluating the Safety, Tolerability and Preliminary Efficacy of a Single Intracerebroventricular Injection of HG204 for the Treatment of MECP2 Duplication Syndrome; Clinical Trial Registration NCT06615206. 2024. Available online: https://clinicaltrials.gov/study/NCT06615206 (accessed on 24 June 2025).
- Hanlon, K.S.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Volak, A.; Spirig, S.E.; Muller, A.; Sousa, A.A.; Tsai, S.Q.; Bengtsson, N.E.; et al. High Levels of AAV Vector Integration into CRISPR-Induced DNA Breaks. Nat. Commun. 2019, 10, 4439. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.; Tao, Y.; Zhou, H.; Ding, D. Nucleic Acid Drug and Delivery Techniques for Disease Therapy: Present Situation and Future Prospect. Interdiscip. Med. 2024, 2, e20230041. [Google Scholar] [CrossRef]
- Haldrup, J.; Andersen, S.; Labial, A.R.L.; Wolff, J.H.; Frandsen, F.P.; Skov, T.W.; Rovsing, A.B.; Nielsen, I.; Jakobsen, T.S.; Askou, A.L.; et al. Engineered Lentivirus-Derived Nanoparticles (LVNPs) for Delivery of CRISPR/Cas Ribonucleoprotein Complexes Supporting Base Editing, Prime Editing and in Vivo Gene Modification. Nucleic Acids Res. 2023, 51, 10059–10074. [Google Scholar] [CrossRef]
- Kenjo, E.; Hozumi, H.; Makita, Y.; Iwabuchi, K.A.; Fujimoto, N.; Matsumoto, S.; Kimura, M.; Amano, Y.; Ifuku, M.; Naoe, Y.; et al. Low Immunogenicity of LNP Allows Repeated Administrations of CRISPR-Cas9 mRNA into Skeletal Muscle in Mice. Nat. Commun. 2021, 12, 7101. [Google Scholar] [CrossRef]
- Wang, C.; Xue, Y.; Markovic, T.; Li, H.; Wang, S.; Zhong, Y.; Du, S.; Zhang, Y.; Hou, X.; Yu, Y.; et al. Blood–Brain-Barrier-Crossing Lipid Nanoparticles for mRNA Delivery to the Central Nervous System. Nat. Mater. 2025, 24, 1653–1663. [Google Scholar] [CrossRef]
- Lian, X.; Chatterjee, S.; Sun, Y.; Dilliard, S.A.; Moore, S.; Xiao, Y.; Bian, X.; Yamada, K.; Sung, Y.-C.; Levine, R.M.; et al. Bone-Marrow-Homing Lipid Nanoparticles for Genome Editing in Diseased and Malignant Haematopoietic Stem Cells. Nat. Nanotechnol. 2024, 19, 1409–1417. [Google Scholar] [CrossRef]
- Swingle, K.L.; Hamilton, A.G.; Safford, H.C.; Geisler, H.C.; Thatte, A.S.; Palanki, R.; Murray, A.M.; Han, E.L.; Mukalel, A.J.; Han, X.; et al. Placenta-Tropic VEGF mRNA Lipid Nanoparticles Ameliorate Murine Pre-Eclampsia. Nature 2025, 637, 412–421. [Google Scholar] [CrossRef]
- Isaac, I.; Patel, L.; Tran, N.; Singam, A.; Yun, D.; Guha, P.; Park, S.; Bhattacharya, C. Reengineering Endogenous Targeting Lipid Nanoparticles (ENDO) for Systemic Delivery of mRNA to Pancreas. Adv. Mater. 2025, 37, e2507657. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Xiao, H.; Li, H.; Zhang, Z.; Ge, J. Precision Treatment of Ventilator-Induced Lung Injury through Alveolar Epithelial Cell Targeted Lipid Nanoparticle Delivery. Theranostics 2025, 15, 6534–6552. [Google Scholar] [CrossRef] [PubMed]
- Regeneron Pharmaceuticals. A Two-Part Open-Label Study of REGV131-LNP1265, A CRISPR/Cas9 Based Coagulation Factor IX Gene Insertion Therapy in Participants with Hemophilia B; Clinical Trial Registration NCT06379789. 2025. Available online: https://clinicaltrials.gov/study/NCT06379789 (accessed on 24 June 2025).
- Intellia Therapeutics. Phase 1 Two-Part (Open-Label, Single Ascending Dose (Part 1) and Open-Label, Single Dose Expansion (Part 2)) Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of NTLA-2001 in Patients with Hereditary Transthyretin Amyloidosis with Polyneuropathy (ATTRv-PN) and Patients with Transthyretin Amyloidosis-Related Cardiomyopathy (ATTR-CM); Clinical Trial Registration NCT04601051. 2025. Available online: https://clinicaltrials.gov/study/NCT04601051 (accessed on 24 June 2025).
- Cheng, K.; Kalluri, R. Guidelines for Clinical Translation and Commercialization of Extracellular Vesicles and Exosomes Based Therapeutics. Extracell. Vesicle 2023, 2, 100029. [Google Scholar] [CrossRef]
- Wan, T.; Zhong, J.; Pan, Q.; Zhou, T.; Ping, Y.; Liu, X. Exosome-Mediated Delivery of Cas9 Ribonucleoprotein Complexes for Tissue-Specific Gene Therapy of Liver Diseases. Sci. Adv. 2022, 8, eabp9435. [Google Scholar] [CrossRef]
- Han, J.; Sul, J.H.; Lee, J.; Kim, E.; Kim, H.K.; Chae, M.; Lim, J.; Kim, J.; Kim, C.; Kim, J.-S.; et al. Engineered Exosomes with a Photoinducible Protein Delivery System Enable CRISPR-Cas–Based Epigenome Editing in Alzheimer’s Disease. Sci. Transl. Med. 2024, 16, eadi4830. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, Y.; Liu, Y.; Liu, Q.; Deng, S.; Liu, Y.; Cui, X.; Liang, J.; Zhang, X.; Fan, Y.; et al. Injectable Microgels with Hybrid Exosomes of Chondrocyte-Targeted FGF18 Gene-Editing and Self-Renewable Lubrication for Osteoarthritis Therapy. Adv. Mater. 2024, 36, 2312559. [Google Scholar] [CrossRef]
- Saha, T.; Saha, R.P.; Singh, M.K.; Priya, K.; Singh, S.; Rajeev, M.; Bhattacharya, D.; Nag, M.; Lahiri, D. An Overview on In-Vivo Generation of CAR-T Cells Using CRISPR-Loaded Functionalized Nanocarriers for Treating B-Cell Lineage Acute Lymphoblastic Leukemia. Mol. Biol. Rep. 2025, 52, 596. [Google Scholar] [CrossRef]
- Hu, H.; Li, S.; Zhou, Y.; Lv, H.; Dong, Z.; Wang, Y.; Sheng, J.; Wang, X.; Fan, W.; Xu, W. A ‘Two-Missile’ Nanoplatform for Targeting Triple-Negative Breast Cancer: Prodrug Activation and Immune Enhancement. Mater. Today Bio 2025, 32, 101891. [Google Scholar] [CrossRef]
- Rauch, B.J.; DeLoughery, A.; Sper, R.; Chen, S.; Yunanda, S.; Masnaghetti, M.; Chai, N.; Lin, J.C.; Neckelmann, A.; Bjornson, Y.; et al. Single-AAV CRISPR Editing of Skeletal Muscle in Non-Human Primates with NanoCas, an Ultracompact Nuclease. BioRxiv 2025. [Google Scholar] [CrossRef]
- Kuscu, C.; Arslan, S.; Singh, R.; Thorpe, J.; Adli, M. Genome-Wide Analysis Reveals Characteristics of off-Target Sites Bound by the Cas9 Endonuclease. Nat. Biotechnol. 2014, 32, 677–683. [Google Scholar] [CrossRef]
- Wu, X.; Scott, D.A.; Kriz, A.J.; Chiu, A.C.; Hsu, P.D.; Dadon, D.B.; Cheng, A.W.; Trevino, A.E.; Konermann, S.; Chen, S.; et al. Genome-Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells. Nat. Biotechnol. 2014, 32, 670–676. [Google Scholar] [CrossRef]
- Guo, J.; Ma, D.; Huang, R.; Ming, J.; Ye, M.; Kee, K.; Xie, Z.; Na, J. An Inducible CRISPR-ON System for Controllable Gene Activation in Human Pluripotent Stem Cells. Protein Cell 2017, 8, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Li, R.; Hou, Y.; Li, Q.; Zhao, K.; Li, T.; Li, M.J.; Wu, X. Inducible CRISPRa Screen Identifies Putative Enhancers. J. Genet. Genom. 2021, 48, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Petazzi, P.; Gutierrez-Agüera, F.; Roca-Ho, H.; Castaño, J.; Bueno, C.; Alvarez, N.; Forrester, L.M.; Sevilla, A.; Fidanza, A.; Menendez, P. Generation of an Inducible dCas9-SAM Human PSC Line for Endogenous Gene Activation. Front. Cell Dev. Biol. 2024, 12, 1484955. [Google Scholar] [CrossRef]
- Böhm, S.; Splith, V.; Riedmayr, L.M.; Rötzer, R.D.; Gasparoni, G.; Nordström, K.J.V.; Wagner, J.E.; Hinrichsmeyer, K.S.; Walter, J.; Wahl-Schott, C.; et al. A Gene Therapy for Inherited Blindness Using dCas9-VPR–Mediated Transcriptional Activation. Sci. Adv. 2020, 6, eaba5614. [Google Scholar] [CrossRef]
- Zetche, B.; Volz, S.E.; Zhang, F. A Split Cas9 Architecture for Inducible Genome Editing and Transcription Modulation. Nat. Biotechnol. 2015, 33, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Qiu, L.; Mao, S.; Sheng, J.; Chen, L.; Khan, U.; Upputuri, P.K.; Zakharov, Y.N.; Coughlan, M.F.; et al. Near-Infrared Light Activatable Chemically Induced CRISPR System. Light. Sci. Appl. 2025, 14, 229. [Google Scholar] [CrossRef]
- Sui, M.; Zhou, M.; Cui, M.; Liu, H.; Zhang, X.; Hu, N.; Li, Y.; Wang, B.; Yang, G.; Gui, P.; et al. Novel Drug-Inducible CRISPRa/i Systems for Rapid and Reversible Manipulation of Gene Transcription. Cell. Mol. Life Sci. 2025, 82, 249. [Google Scholar] [CrossRef]
- Gamboa, L.; Phung, E.V.; Li, H.; Meyers, J.P.; Hart, A.C.; Miller, I.C.; Kwong, G.A. Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation. ACS Chem. Biol. 2020, 15, 533–542. [Google Scholar] [CrossRef]
- Bubeck, F.; Hoffmann, M.D.; Harteveld, Z.; Aschenbrenner, S.; Bietz, A.; Waldhauer, M.C.; Börner, K.; Fakhiri, J.; Schmelas, C.; Dietz, L.; et al. Engineered Anti-CRISPR Proteins for Optogenetic Control of CRISPR-Cas9. Nat. Methods 2018, 15, 924–927. [Google Scholar] [CrossRef]
- Wu, P.; Chen, Y.; Liu, M.; Xiao, G.; Yuan, J. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production. ACS Synth. Biol. 2021, 10, 125–131. [Google Scholar] [CrossRef]
- Zhao, J.; Li, B.; Ma, J.; Jin, W.; Ma, X. Photoactivatable RNA N6-Methyladenosine Editing with CRISPR-Cas13. Small 2020, 16, 1907301. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-N.; Ma, B.-G. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range. ACS Synth. Biol. 2023, 12, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-C.; Wu, L.-F.; Liu, K.; Ma, B.-G. Opto-CRISPR: New Prospects for Gene Editing and Regulation. Trends Biotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-R.; Wu, L.-Y.; Huang, H.-Y.; Xiong, W.; Liu, J.; Wei, L.; Yin, P.; Tian, T.; Zhou, X. Conditional Control of RNA-Guided Nucleic Acid Cleavage and Gene Editing. Nat. Commun. 2020, 11, 91. [Google Scholar] [CrossRef]
- Hoberecht, L.; Perampalam, P.; Lun, A.; Fortin, J.-P. A Comprehensive Bioconductor Ecosystem for the Design of CRISPR Guide RNAs across Nucleases and Technologies. Nat. Commun. 2022, 13, 6568. [Google Scholar] [CrossRef]
- Simhadri, V.L.; McGill, J.; McMahon, S.; Wang, J.; Jiang, H.; Sauna, Z.E. Prevalence of Pre-Existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol. Ther. Methods Clin. Dev. 2018, 10, 105–112. [Google Scholar] [CrossRef]
- Charlesworth, C.T.; Deshpande, P.S.; Dever, D.P.; Camarena, J.; Lemgart, V.T.; Cromer, M.K.; Vakulskas, C.A.; Collingwood, M.A.; Zhang, L.; Bode, N.M.; et al. Identification of Preexisting Adaptive Immunity to Cas9 Proteins in Humans. Nat. Med. 2019, 25, 249–254. [Google Scholar] [CrossRef]
- Wagner, D.L.; Amini, L.; Wendering, D.J.; Burkhardt, L.-M.; Akyüz, L.; Reinke, P.; Volk, H.-D.; Schmueck-Henneresse, M. High Prevalence of Streptococcus pyogenes Cas9-Reactive T Cells within the Adult Human Population. Nat. Med. 2019, 25, 242–248. [Google Scholar] [CrossRef]
- Adhikari, A.; Boregowda, S.; Zheng, H.; Aguirre, O.; Norton, A.; Yang, X.; Luong, T.; Ko, D.; Smith, L.; Swan, R.; et al. P309 EPI-321: A Promising Gene Therapy for Facioscapulohumeral Muscular Dystrophy (FSHD) Targeting D4Z4 Epigenome. Neuromuscul. Disord. 2023, 33, S120–S121. [Google Scholar] [CrossRef]
- Santinha, A.J.; Strano, A.; Platt, R.J. Methods and Applications of in Vivo CRISPR Screening. Nat. Rev. Genet. 2025, 26, 702–718. [Google Scholar] [CrossRef]
- Clark, T.; Waller, M.A.; Loo, L.; Moreno, C.L.; Denes, C.E.; Neely, G.G. CRISPR Activation Screens: Navigating Technologies and Applications. Trends Biotechnol. 2024, 42, 1017–1034. [Google Scholar] [CrossRef]
- Kampmann, M. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chem. Biol. 2018, 13, 406–416. [Google Scholar] [CrossRef]
- McCutcheon, S.R.; Swartz, A.M.; Brown, M.C.; Barrera, A.; McRoberts Amador, C.; Siklenka, K.; Humayun, L.; ter Weele, M.A.; Isaacs, J.M.; Reddy, T.E.; et al. Transcriptional and Epigenetic Regulators of Human CD8+ T Cell Function Identified through Orthogonal CRISPR Screens. Nat. Genet. 2023, 55, 2211–2223. [Google Scholar] [CrossRef]
- Schmidt, R.; Steinhart, Z.; Layeghi, M.; Freimer, J.W.; Bueno, R.; Nguyen, V.Q.; Blaeschke, F.; Ye, C.J.; Marson, A. CRISPR Activation and Interference Screens Decode Stimulation Responses in Primary Human T Cells. Science 2022, 375, eabj4008. [Google Scholar] [CrossRef] [PubMed]
- IGVF Consortium. Deciphering the Impact of Genomic Variation on Function. Nature 2024, 633, 47–57. [Google Scholar] [CrossRef]
- Yao, D.; Tycko, J.; Oh, J.W.; Bounds, L.R.; Gosai, S.J.; Lataniotis, L.; Mackay-Smith, A.; Doughty, B.R.; Gabdank, I.; Schmidt, H.; et al. Multicenter Integrated Analysis of Noncoding CRISPRi Screens. Nat. Methods 2024, 21, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Yan, J.; Oh, J.W.; Xi, W.; Shigaki, D.; Wong, W.; Cho, H.; Murphy, D.; Cutler, R.; Rosen, B.P.; et al. Dynamic-Network-Guided CRISPRi Screen Identifies CTCF-Loop-Constrained Nonlinear Enhancer-Gene Regulatory Activity during Cell State Transitions. Nat. Genet. 2023, 55, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, A.R.; Mualim, K.S.; Karbalayghareh, A.; Sheth, M.U.; Dey, K.K.; Jagoda, E.; Nurtdinov, R.N.; Xi, W.; Tan, A.S.; Jones, H.; et al. An Encyclopedia of Enhancer-Gene Regulatory Interactions in the Human Genome. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, A.K.; Mishra, M.K.; Lillard, J.W.; Singh, R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics 2025, 17, 555. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.M.D.R.; Ramu Krishnan, N. Advancing Genome Editing with Artificial Intelligence: Opportunities, Challenges, and Future Directions. Front. Bioeng. Biotechnol. 2024, 11, 1335901. [Google Scholar] [CrossRef] [PubMed]
| Activation System | Reference |
|---|---|
| dCas9-VP64 | Gilbert et al., 2013 [40] Maeder et al., 2013 [41] Perez-Pinera et al., 2013 [42] |
| dCas9-p65 | Gilbert et al., 2013 [40] |
| dCas9-Rta | Chavez et al., 2015 [54] |
| dCas9-p300 | Hilton et al., 2015 [55] |
| PRDM9-dCas9 | Cano-Rodriguez, 2016 [57] |
| dCas9-Tet1 | Liu et al., 2016 [58] |
| dCas9-Tet3 | Xu et al., 2018 [59] |
| VP64-dCas9-VP64 | Chakraborty et al., 2014 [60] |
| dCas9-VP64-p65-Rta (VPR) | Chavez et al., 2015 [54] |
| dCas9-VP64 + MS2-p65-HSF1 (SAM) | Konermann et al., 2015 [62] |
| dCas9-SunTag-VP64 | Tanenbaum et al., 2014 [52] |
| dCas9-SunTag-p65-HSF1 (SPH) | Zhou et al., 2018 [74] |
| dCas9 + MS2-MRTFA-STAT1-eNRF2 (DREAM) | Mahata et al., 2023 [75] |
| dCas12a-VPR | Tak et al., 2017 [65] |
| dCas12a-p65 | Tak et al., 2017 [65] |
| dCas13b-PABPC1 | Torkzaban et al., 2022 [72] |
| dCas13b–eNAT10 | Yu et al., 2025 [71] |
| dCas13b-ALKBH5 | Li et al., 2020 [70] |
| dRfxCas13d-sgRNA-SINEB2 | Cao et al., 2023 [67] |
| dCas13b-ADAR | Cox et al., 2017 [73] |
| Repression System | Reference |
|---|---|
| dCas9-KRAB | Gilbert et al., 2013 [40] |
| SID4X-dCas9-KRAB | Carleton et al., 2017 [121] |
| dCas9-DNMT3A | Vojta et al., 2016 [108] McDonald et al., 2016 [122] |
| dCas9-DNMT3B | Lin et al., 2018 [109] |
| dCas9-DNMT3A-DNMT3L | Stepper et al., 2017 [123] |
| KRAB-dCas9-DNMT3A3L | Nuñez et al., 2021 [107] |
| dCas9-KRAB-DNMT3A3L | Đorđević et al., 2023 [124] |
| dCas9-MeCP2 | Yeo et al., 2018 [104] |
| dCas9-KRABZIM3 | Alerasool et al., 2020 [105] |
| dCas9-KRABZIM3-MeCP2 | Kristof et al., 2025 [106] |
| dCas12a-KRAB | Ciurkot et al., 2021 [112] |
| hyperdCas12a-KRAB | Guo et al., 2022 [125] |
| dPspCas13b | Apostolopoulos et al., 2024 [116] |
| dPspCas13b-4EHP | Apostolopoulos et al., 2024 [116] |
| dRfxCas13d-Tet2 | Zhang et al., 2024 [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasa, M.A.; Escobar, M. CRISPR-Based Transcriptional Regulation: Technologies, Applications, and Future Directions. DNA 2025, 5, 57. https://doi.org/10.3390/dna5040057
Srinivasa MA, Escobar M. CRISPR-Based Transcriptional Regulation: Technologies, Applications, and Future Directions. DNA. 2025; 5(4):57. https://doi.org/10.3390/dna5040057
Chicago/Turabian StyleSrinivasa, Mira A., and Mario Escobar. 2025. "CRISPR-Based Transcriptional Regulation: Technologies, Applications, and Future Directions" DNA 5, no. 4: 57. https://doi.org/10.3390/dna5040057
APA StyleSrinivasa, M. A., & Escobar, M. (2025). CRISPR-Based Transcriptional Regulation: Technologies, Applications, and Future Directions. DNA, 5(4), 57. https://doi.org/10.3390/dna5040057

