Pijolavirus UFJF_PfSW6 Infection in Pseudomonas fluorescens Induces a Prophage Belonging to a Novel Genus in Peduoviridae Family
Abstract
1. Introduction
2. Materials and Methods
2.1. Pijolavirus UFJF_PfSW6 Infection Sequencing Data and Prophage Screening
2.2. Prophage Genome Annotation and Taxonomic Assignment
2.3. Validation of the Prophage Integration into Host Bacterium
2.4. Assessment of the Prophage Induction and Lytic Conversion
3. Results
3.1. Unveiling a Novel Prophage of the Peduoviridae Family
3.2. The UFJF_PfPro Is Integrated into P. fluorescens UFV 041 Genome
3.3. Mitomycin Treatment Did Not Induce the UFJF_PfPro on Its Host Bacterium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef]
- Makky, S.; Dawoud, A.; Safwat, A.; Abdelsattar, A.S.; Rezk, N.; El-Shibiny, A. The Bacteriophage Decides Own Tracks: When They Are with or against the Bacteria. Curr. Res. Microb. Sci. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Koskella, B.; Hernandez, C.A.; Wheatley, R.M. Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu. Rev. Virol. 2022, 9, 57–78. [Google Scholar] [CrossRef]
- Casjens, S. Prophages and Bacterial Genomics: What Have We Learned so Far? Mol. Microbiol. 2003, 49, 277–300. [Google Scholar] [CrossRef]
- Dulbecco, R. Mutual Exclusion Between Related Phages. J. Bacteriol. 1952, 63, 209–217. [Google Scholar] [CrossRef]
- Weigle, J.J.; Delbruck, M. Mutual Exclusion Between an Infecting Phage and a Carried Phage. J. Bacteriol. 1951, 62, 301–318. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Bailey, Z.M.; Igler, C.; Wendling, C.C. Prophage Maintenance Is Determined by Environment-Dependent Selective Sweeps Rather than Mutational Availability. Curr. Biol. 2024, 34, 1739–1749.e7. [Google Scholar] [CrossRef]
- Ramisetty, B.C.M.; Sudhakari, P.A. Bacterial “grounded” Prophages: Hotspots for Genetic Renovation and Innovation. Front. Genet. 2019, 10, 421493. [Google Scholar] [CrossRef]
- Bobay, L.M.; Touchon, M.; Rocha, E.P.C. Pervasive Domestication of Defective Prophages by Bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 12127–12132. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef]
- López-Leal, G.; Camelo-Valera, L.C.; Hurtado-Ramírez, J.M.; Verleyen, J.; Castillo-Ramírez, S.; Reyes-Muñoz, A. Mining of Thousands of Prokaryotic Genomes Reveals High Abundance of Prophages with a Strictly Narrow Host Range. mSystems 2022, 7, e00326-22. [Google Scholar] [CrossRef]
- Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining Viral Signal from Microbial Genomic Data. PeerJ 2015, 2015, e985. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Xie, X.; Hu, Y.; Wang, J.; Sun, Q.; Feng, X.; Lin, W.; Tong, S.; Yan, W.; et al. Mining Bacterial NGS Data Vastly Expands the Complete Genomes of Temperate Phages. NAR Genom. Bioinform. 2022, 4, lqac057. [Google Scholar] [CrossRef]
- Chene, F.; Wang, K.; Stewart, J.; Belas, R. Induction of Multiple Prophages from a Marine Bacterium: A Genomic Approach. Appl. Environ. Microbiol. 2006, 72, 4995–5001. [Google Scholar] [CrossRef]
- Fortier, L.C.; Sekulovic, O. Importance of Prophages to Evolution and Virulence of Bacterial Pathogens. Virulence 2013, 4, 354–365. [Google Scholar] [CrossRef]
- Bondy-Denomy, J.; Qian, J.; Westra, E.R.; Buckling, A.; Guttman, D.S.; Davidson, A.R.; Maxwell, K.L. Prophages Mediate Defense against Phage Infection Through Diverse Mechanisms. ISME J. 2016, 10, 2854–2866. [Google Scholar] [CrossRef]
- Hu, J.; Ye, H.; Wang, S.; Wang, J.; Han, D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front. Microbiol. 2021, 12, 785634. [Google Scholar] [CrossRef]
- Lakshminarasimhan, A. Prophage Induction Therapy: Activation of the Lytic Phase in Prophages for the Elimination of Pathogenic Bacteria. Med. Hypotheses 2022, 169, 110980. [Google Scholar] [CrossRef]
- Nanda, A.M.; Thormann, K.; Frunzke, J. Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions. J. Bacteriol. 2015, 197, 410–419. [Google Scholar] [CrossRef]
- Meessen-Pinard, M.; Sekulovic, O.; Fortier, L.C. Evidence of In Vivo Prophage Induction during Clostridium difficile Infection. Appl. Environ. Microbiol. 2012, 78, 7662–7670. [Google Scholar] [CrossRef]
- Silpe, J.E.; Duddy, O.P.; Bassler, B.L. Induction Mechanisms and Strategies Underlying Interprophage Competition during Polylysogeny. PLoS Pathog. 2023, 19, e1011363. [Google Scholar] [CrossRef]
- Endersen, L.; Coffey, A. The Use of Bacteriophages for Food Safety. Curr. Opin. Food Sci. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Jo, S.J.; Kwon, J.; Kim, S.G.; Lee, S.J. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023, 11, 2311. [Google Scholar] [CrossRef]
- Zia, S.; Alkheraije, K.A. Recent Trends in the Use of Bacteriophages as Replacement of Antimicrobials against Food-Animal Pathogens. Front. Vet. Sci. 2023, 10, 1162465. [Google Scholar] [CrossRef]
- De Jonghe, V.; Coorevits, A.; Van Hoorde, K.; Messens, W.; Van Landschoot, A.; De Vos, P.; Heyndrickx, M. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk. Appl. Environ. Microbiol. 2011, 77, 460–470. [Google Scholar] [CrossRef]
- Zarei, M.; Rahimi, S.; Saris, P.E.J.; Yousefvand, A. Pseudomonas fluorescens Group Bacterial Strains Interact Differently with Pathogens During Dual-Species Biofilm Formation on Stainless Steel Surfaces in Milk. Front. Microbiol. 2022, 13, 1053239. [Google Scholar] [CrossRef]
- Vidigal, P.M.P.; Hungaro, H.M. Genome Sequencing of Pseudomonas fluorescens Phage UFJF_PfSW6: A Novel Lytic Pijolavirus Specie with Potential for Biocontrol in the Dairy Industry. 3 Biotech 2023, 13, 67. [Google Scholar] [CrossRef]
- do Nascimento, E.C.; Sabino, M.C.; da Roza Corguinha, L.; Targino, B.N.; Lange, C.C.; de Oliveira Pinto, C.L.; de Faria Pinto, P.; Vidigal, P.M.P.; Sant’Ana, A.S.; Hungaro, H.M. Lytic Bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 Prevent Pseudomonas fluorescens Growth In Vitro and the Proteolytic-Caused Spoilage of Raw Milk during Chilled Storage. Food Microbiol. 2022, 101, 103892. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Nayfach, S.; Camargo, A.P.; Schulz, F.; Eloe-Fadrosh, E.; Roux, S.; Kyrpides, N.C. CheckV Assesses the Quality and Completeness of Metagenome-Assembled Viral Genomes. Nat. Biotechnol. 2020, 39, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, M.; Rocha, M.; Oliveira, H.; DIas, O. Predicting Promoters in Phage Genomes Using PhagePromoter. Bioinformatics 2019, 35, 5301–5302. [Google Scholar] [CrossRef]
- Lesnik, E.A.; Sampath, R.; Levene, H.B.; Henderson, T.J.; McNeil, J.A.; Ecker, D.J. Prediction of Rho-Independent Transcriptional Terminators in Escherichia coli. Nucleic Acids Res. 2001, 29, 3583–3594. [Google Scholar] [CrossRef]
- Solovyev, V.; Salamov, A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine, and Environmental Studies; Li, R.W., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 61–78. [Google Scholar]
- Turner, D.; Adriaenssens, E.M.; Tolstoy, I.; Kropinski, A.M. Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation. PHAGE Ther. Appl. Res. 2021, 2, 170–182. [Google Scholar] [CrossRef]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The Viral Proteomic Tree Server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef]
- Gilchrist, C.L.M.; Chooi, Y.H. Clinker & Clustermap.js: Automatic Generation of Gene Cluster Comparison Figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Ambroa, A.; Blasco, L.; López-Causapé, C.; Trastoy, R.; Fernandez-García, L.; Bleriot, I.; Ponce-Alonso, M.; Pacios, O.; López, M.; Cantón, R.; et al. Temperate Bacteriophages (Prophages) in Pseudomonas aeruginosa Isolates Belonging to the International Cystic Fibrosis Clone (CC274). Front. Microbiol. 2020, 11, 556706. [Google Scholar] [CrossRef]
- Adams, M.H. Bacteriophages; Inter-Science Publishers: New York, NY, USA; London, UK, 1959. [Google Scholar]
- Miller-Ensminger, T.; Johnson, G.; Banerjee, S.; Putonti, C. When Plaquing Is Not Possible: Computational Methods for Detecting Induced Phages. Viruses 2023, 15, 420. [Google Scholar] [CrossRef]
- Waller, A.S.; Yamada, T.; Kristensen, D.M.; Kultima, J.R.; Sunagawa, S.; Koonin, E.V.; Bork, P. Classification and Quantification of Bacteriophage Taxa in Human Gut Metagenomes. ISME J. 2014, 8, 1391–1402. [Google Scholar] [CrossRef]
- Espeland, E.M.; Lipp, E.K.; Huq, A.; Colwell, R.R. Polylysogeny and Prophage Induction by Secondary Infection in Vibrio cholerae. Environ. Microbiol. 2004, 6, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Zinke, M.; Schröder, G.F.; Lange, A. Major Tail Proteins of Bacteriophages of the Order Caudovirales. J. Biol. Chem. 2022, 298, 101472. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Retallack, D.M.; Stelman, S.J.; Douglas Hershberger, C.; Ramseier, T. Characterization of the SOS Response of Pseudomonas fluorescens Strain DC206 Using Whole-Genome Transcript Analysis. FEMS Microbiol. Lett. 2007, 269, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Mavrodi, D.V.; Loper, J.E.; Paulsen, I.T.; Thomashow, L.S. Mobile Genetic Elements in the Genome of the Beneficial Rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 2009, 9, 8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidigal, P.M.P.; Brum, J.M.; Lopez, M.E.S.; Mantovani, H.C.; Hungaro, H.M. Pijolavirus UFJF_PfSW6 Infection in Pseudomonas fluorescens Induces a Prophage Belonging to a Novel Genus in Peduoviridae Family. DNA 2024, 4, 519-529. https://doi.org/10.3390/dna4040035
Vidigal PMP, Brum JM, Lopez MES, Mantovani HC, Hungaro HM. Pijolavirus UFJF_PfSW6 Infection in Pseudomonas fluorescens Induces a Prophage Belonging to a Novel Genus in Peduoviridae Family. DNA. 2024; 4(4):519-529. https://doi.org/10.3390/dna4040035
Chicago/Turabian StyleVidigal, Pedro Marcus Pereira, João Mattos Brum, Maryoris Elisa Soto Lopez, Hilário Cuquetto Mantovani, and Humberto Moreira Hungaro. 2024. "Pijolavirus UFJF_PfSW6 Infection in Pseudomonas fluorescens Induces a Prophage Belonging to a Novel Genus in Peduoviridae Family" DNA 4, no. 4: 519-529. https://doi.org/10.3390/dna4040035
APA StyleVidigal, P. M. P., Brum, J. M., Lopez, M. E. S., Mantovani, H. C., & Hungaro, H. M. (2024). Pijolavirus UFJF_PfSW6 Infection in Pseudomonas fluorescens Induces a Prophage Belonging to a Novel Genus in Peduoviridae Family. DNA, 4(4), 519-529. https://doi.org/10.3390/dna4040035