Molecular Identification of Mosquitoes (Diptera: Culicidae) Using COI Barcode and D2 Expansion of 28S Gene
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Collections and Species Identification
2.2. DNA Extraction and Amplification
2.3. Sequencing and Alignment
2.4. Phylogenetic Analysis
2.5. Interspecific Genetic Distances and Species Delimitation Analyses
3. Results
3.1. Phylogenetic Analysis
3.2. Interspecific Genetic Distances and Species Delimitation Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harbach, R.E. Culicidae. Mosquito Taxonomic Inventory, 2024. Available online: https://mosquito-taxonomic-inventory.myspecies.info/simpletaxonomy/term/6045 (accessed on 9 April 2024).
- Guedes, M.L.P. Culicidae (Diptera) no Brasil: Relações entre enfermidades, distribuição e enfermidades. Oecol. Aust. 2012, 16, 283–296. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasit Vectors 2012, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Abreu, F.V.S.; Ribeiro, I.P.; Ferreira-de-Brito, A.; Santos, A.A.C.D.; Miranda, R.M.; Bonelly, I.S.; Neves, M.S.A.S.; Bersot, M.I.; Santos, T.P.D.; Gomes, M.Q.; et al. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg. Microbes Infect. 2019, 8, 218–231. [Google Scholar] [CrossRef]
- Godfray, H.C. Mosquito ecology and control of malaria. J. Anim. Ecol. 2013, 82, 15–25. [Google Scholar] [CrossRef]
- Jones, R.T.; Ant, T.H.; Cameron, M.M.; Logan, J.G. Novel control strategies for mosquito-borne diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20190802. [Google Scholar] [CrossRef]
- Shaw, W.R.; Catteruccia, F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat. Microbiol. 2019, 4, 20–34. [Google Scholar] [CrossRef]
- Bourke, B.P.; Oliveira, T.P.; Suesdek, L.; Bergo, E.S.; Sallum, M.A.M. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasit Vectors 2013, 6, 111. [Google Scholar] [CrossRef]
- Foster, P.G.; de Oliveira, T.M.P.; Bergo, E.S.; Conn, J.E.; Sant’Ana, D.C.; Nagaki, S.S.; Nihei, S.; Lamas, C.E.; González, C.; Moreira, C.C.; et al. Phylogeny of Anophelinae using mitochondrial protein coding genes. R. Soc. Open Sci. 2017, 4, 170758. [Google Scholar] [CrossRef]
- Pedro, P.M.; Amorim, J.; Rojas, M.V.R.; Sá, I.L.; Galardo, A.K.R.; Santos Neto, N.F.; Pires de Carvalho, D.; Nabas Ribeiro, K.A.; Razzolini, M.T.P.; Sallum, M.A.M. Culicidae-centric metabarcoding through targeted use of D2 ribosomal DNA primers. PeerJ 2020, 8, e9057. [Google Scholar] [CrossRef]
- Silva-do-Nascimento, T.F.; Sánchez-Ribas, J.; Oliveira, T.M.P.; Bourke, B.P.; Oliveira-Ferreira, J.; Rosa-Freitas, M.G.; Lourenço-de-Oliveira, R.; Marinho-E-Silva, M.; Neves, M.S.A.S.; Conn, J.E.; et al. Molecular Analysis Reveals a High Diversity of Anopheline Mosquitoes in Yanomami Lands and the Pantanal Region of Brazil. Genes 2021, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Laurito, M.; Oliveira, T.M.; Almirón, W.R.; Sallum, M.A. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: A case study using samples from Argentina and Brazil. Mem. Inst. Oswaldo Cruz 2013, 108, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Sallum, M.; Schultz, T.; Foster, P.; Aronstein, K.; Wirtz, R.; Wilkerson, R. Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst. Entomol. 2002, 27, 361–382. [Google Scholar] [CrossRef]
- Adeniran, A.A.; Hernández-Triana, L.M.; Ortega-Morales, A.I.; Garza-Hernández, J.A.; Cruz-Ramos, J.; Chan-Chable, R.J.; Vázquez-Marroquín, R.; Huerta-Jiménez, H.; Nikolova, N.I.; Fooks, A.R.; et al. Identification of mosquitoes (Diptera: Culicidae) from Mexico State, Mexico using morphology and COI DNA barcoding. Acta Trop. 2021, 213, 105730. [Google Scholar] [CrossRef]
- Muñoz-Gamba, A.S.; Laiton-Donato, K.; Perdomo-Balaguera, E.; Castro, L.R.; Usme-Ciro, J.A.; Parra-Henao, G. Molecular characterization of mosquitoes (Diptera: Culicidae) from the Colombian rainforest. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e24. [Google Scholar] [CrossRef]
- Guerra, A.L.; Alevi, K.C.; Banho, C.A.; de Oliveira, J.; da Rosa, J.A.; Vilela de Azeredo-Oliveira, M.T. D2 Region of the 28S RNA Gene: A Too-Conserved Fragment for Inferences on Phylogeny of South American Triatomines. Am. J. Trop. Med. Hyg. 2016, 95, 610–613. [Google Scholar] [CrossRef]
- Wang, X.W.; Han, P.J.; Bai, F.Y.; Luo, A.; Bensch, K.; Meijer, M.; Kraak, B.; Han, D.Y.; Sun, B.D.; Crous, P.W.; et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud. Mycol. 2022, 101, 121–243. [Google Scholar] [CrossRef]
- Porter, C.H.; Collins, F.H. Phylogeny of nearctic members of the Anopheles maculipennis species group derived from the D2 variable region of 28S ribosomal RNA. Mol. Phylogenet. Evol. 1996, 6, 178–188. [Google Scholar] [CrossRef]
- Souza de Lopes, O.; Abreu de Sacchetta, L.; Francy, D.B.; Jakob, W.L.; Calisher, C.H. Emergence of a new arbovirus disease in Brazil. III. Isolation of Rocio virus from Psorophora Ferox (Humboldt, 1819). Am. J. Epidemiol. 1981, 113, 122–125. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How much is left and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Forattini, O.P.; Gomes, A.d.C.; Natal, D.; Santos, J.L. Observações sobre atividade de mosquitos Culicidae em matas primitivas da planície e perfís epidemiológicos de vários ambientes no Vale do Ribeira, São Paulo, Brasil [The activity of Culicidae mosquitoes in plain forests and an epidemiological profile of several environments in the Ribeira Valley, São Paulo, Brazil]. Rev. Saude Publica 1986, 20, 178–203. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.S.; Laporta, G.Z.; Sallum, M.A. Effectiveness of mosquito magnet in preserved area on the coastal Atlantic rainforest: Implication for entomological surveillance. J. Med. Entomol. 2014, 51, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, D.C.; Sá, I.L.; Sallum, M.A. Effectiveness of Mosquito Magnet®® trap in rural areas in the southeastern tropical Atlantic Forest. Mem. Inst. Oswaldo Cruz 2014, 109, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.D.A.; Latorre, M.R.D.O.; Di Santi, S.; Natal, D. Malária autóctone notificada no estado de São Paulo: Aspectos clínicos e epidemiológicos de 1980 a 2007. Rev. Soc. Bras. Med. Trop. 2010, 43, 52–58. [Google Scholar] [CrossRef]
- Cunha, M.D.P.; Duarte-Neto, A.N.; Pour, S.Z.; Pereira, B.B.D.S.; Ho, Y.L.; Perondi, B.; Sztajnbok, J.; Alves, V.A.F.; da Silva, L.F.F.; Dolhnikoff, M.; et al. Phylogeographic patterns of the yellow fever virus around the metropolitan region of São Paulo, Brazil, 2016–2019. PLoS Negl. Trop. Dis. 2022, 16, e0010705. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Forattini, O.P. Experimental transmission of Rocio encephalitis virus by Aedes scapularis (Diptera: Culicidae) from the epidemic zone in Brazil. J. Med. Entomol. 1984, 21, 34–37. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Forattini, O.P.; Miller, B.R. Vector competence experiments with Rocio virus and three mosquito species from the epidemic zone in Brazil. Rev. Saude Publica 1986, 20, 171–177. [Google Scholar] [CrossRef]
- Saivish, M.V.; Gomes da Costa, V.; de Lima Menezes, G.; Alves da Silva, R.; Dutra da Silva, G.C.; Moreli, M.L.; Sacchetto, L.; Pacca, C.C.; Vasilakis, N.; Nogueira, M.L. Rocio Virus: An Updated View on an Elusive Flavivirus. Viruses 2021, 13, 2293. [Google Scholar] [CrossRef]
- Romano-Lieber, N.S.; Iversson, L.B. Inquérito soroepidemiológico para pesquisa de infecções por arbovírus em moradores de reserva ecológica [Serological survey on arbovirus infection in residents of an ecological reserve]. Rev. Saude Publica 2000, 34, 236–242. [Google Scholar] [CrossRef]
- Forattini, O.P. Culicidologia Médica; EDUSP: São Paulo, Brazil, 2002; Volume 2, p. 864. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Torres-Gutierrez, C.; de Oliveira, T.M.; Emerson, K.J.; Sterlino Bergo, E.; Mureb Sallum, M.A. Molecular phylogeny of Culex subgenus Melanoconion (Diptera: Culicidae) based on nuclear and mitochondrial protein-coding genes. R. Soc. Open Sci. 2018, 5, 171900. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kimura, M.A. Simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Müller, P.; Pflüger, V.; Wittwer, M.; Ziegler, D.; Chandre, F.; Simard, F.; Lengeler, C. Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS ONE 2013, 8, e57486. [Google Scholar] [CrossRef]
- Bourke, B.P.; Conn, J.E.; de Oliveira, T.M.P.; Chaves, L.S.M.; Bergo, E.S.; Laporta, G.Z.; Sallum, M.A.M. Exploring malaria vector diversity on the Amazon Frontier. Malaria J. 2018, 17, 342. [Google Scholar] [CrossRef]
- Bourke, B.P.; Wilkerson, R.C.; Ruiz-Lopez, F.; Justi, S.A.; Pecor, D.B.; Quinones, M.L.; Navarro, J.-C.; Ormaza, J.A.; Ormaza, J.A., Jr.; González, R.; et al. High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses. Genes 2023, 14, 344. [Google Scholar] [CrossRef]
- de Pina-Costa, A.; Brasil, P.; Di Santi, S.M.; de Araujo, M.P.; Suárez-Mutis, M.C.; Santelli, A.C.; Oliveira-Ferreira, J.; Lourenço-de-Oliveira, R.; Daniel-Ribeiro, C.T. Malaria in Brazil: What happens outside the Amazonian endemic region. Mem. Inst. Oswaldo Cruz 2014, 109, 618–633. [Google Scholar] [CrossRef] [PubMed]
- Multini, L.C.; Wilke, A.B.B.; Marrelli, M.T. Neotropical Anopheles (Kerteszia) mosquitoes associated with bromeliad-malaria transmission in a changing world. Acta Trop. 2020, 205, 105413. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, C.C.; Dessen, E.M. Chromosomal evidence for sibling species of the malaria vector Anopheles cruzii. Genome 2000, 43, 143–151. [Google Scholar] [CrossRef]
- Ramírez, C.C.; Dessen, E.M. Chromosome differentiated populations of Anopheles cruzii: Evidence for a third sibling species. Genetica 2000, 108, 73–80. [Google Scholar] [CrossRef]
- Calado, D.C.; Navarro-Silva, M.A.; Sallum, M.A.M. Pcr-rapd and pcr-rflp polymorphisms detected in Anopheles cruzii (diptera, culicidae). Rev. Bras. Entomol. 2006, 50, 423–430. [Google Scholar] [CrossRef]
- Rona, L.D.; Carvalho-Pinto, C.J.; Mazzoni, C.J.; Peixoto, A.A. Estimation of divergence time between two sibling species of the Anopheles (Kerteszia) cruzii complex using a multilocus approach. BMC Evol. Biol. 2010, 10, 91. [Google Scholar] [CrossRef]
- Rona, L.D.; Carvalho-Pinto, C.J.; Peixoto, A.A. Evidence for the occurrence of two sympatric sibling species within the Anopheles (Kerteszia) cruzii complex in southeast Brazil and the detection of asymmetric introgression between them using a multilocus analysis. BMC Evol. Biol. 2013, 13, 207. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Foster, P.G.; Bergo, E.S.; Nagaki, S.S.; Sanabani, S.S.; Marinotti, O.; Marinotti, P.N.; Sallum, M.A. Mitochondrial Genomes of Anopheles (Kerteszia) (Diptera: Culicidae) From the Atlantic Forest, Brazil. J. Med. Entomol. 2016, 53, 790–797. [Google Scholar] [CrossRef]
- Marcondes, C.B.; Alencar, J. Revisión de los mosquitos del género Haemagogus Williston (Diptera: Culicidae) de Brasil. Rev. Biomed. 2010, 21, 221–238. [Google Scholar]
- Cardoso, J.d.C.; de Almeida, M.A.; dos Santos, E.; da Fonseca, D.F.; Sallum, M.A.; Noll, C.A.; Monteiro, H.A.; Cruz, A.C.; Carvalho, V.L.; Pinto, E.V.; et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 2010, 16, 1918–1924. [Google Scholar] [CrossRef]
- Alencar, J.; Silva, J.S.; Serra-Freire, N.M.; Guimarães, A.E. Dispersion and Ecological Plasticity Patterns of Haemagogus capricornii and H. janthinomys (Diptera: Culicidae) Populations in Different Regions of Brazil. Entomol. News 2009, 120, 53–60. [Google Scholar] [CrossRef]
- Silva, S.O.F.; Fuente, A.L.C.; Mello, C.F.; Alencar, J. Morphological differentiation between seven Brazilian populations of Haemagogus capricornii and Hg. janthinomys (Diptera: Culicidae) using geometric morphometry of the wings. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180106. [Google Scholar] [CrossRef] [PubMed]
- Telles-de-Deus, J.; Guimarães, L.O.; Rocha, E.C.; Helfstein, V.C.; Reginato, S.L.; Mucci, L.F.; Bergo, E.S.; de Camargo-Neves, V.L.F.; Kirchgatter, K. COI DNA barcoding to differentiate Haemagogus janthinomys and Haemagogus capricornii (Diptera: Culicidae) mosquitoes. Acta Trop. 2024, 259, 107377. [Google Scholar] [CrossRef] [PubMed]
- Walter Reed Biosystematics Unit. Psorophora ferox Species Page. Walter Reed Biosystematics Unit Website, 2023. Available online: http://wrbu.si.edu/vectorspecies/mosquitoes/ferox (accessed on 2 June 2023).
- Moreno, E.S.; Barata, R.C.B. Municipalities of higher vulnerability to Sylvatic Yellow Fever occurrence in the São Paulo State, Brazil. Rev. Inst. Med. Trop. São Paulo 2011, 53, 335–339. [Google Scholar] [CrossRef]
- Mello, C.F.; Santos-Mallet, J.R.; Tátila-Ferreira, A.; Alencar, J. Comparing the egg ultrastructure of three Psorophora ferox (Diptera: Culicidae) populations. Braz. J. Biol. 2018, 78, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Lourenço-de-Oliveira, R.; Silva, T.F.; Castro, M.G. On the immature stages of two mosquitoes (Diptera: Culicidae) originally described from Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 1991, 86, 209–218. [Google Scholar] [CrossRef]
- Cunha, M.S.; Tubaki, R.M.; de Menezes, R.; Pereira, M.; Caleiro, G.S.; Coelho, E.; Saad, L.D.C.; Fernandes, N.C.C.D.A.; Guerra, J.M.; Nogueira, J.S.; et al. Possible nonsylvatic transmission of yellow fever between nonhuman primates in São Paulo city, Brazil, 2017–2018. Sci. Rep. 2020, 10, 15751. [Google Scholar] [CrossRef]
- Whitman, L.; Antunes, P.C.A. Studies on the capacity of various Brazilian mosquitoes, representing the Genera Psorophora, Aedes, Mansonia, and Culex, to transmit yellow fever 1. Am. J. Trop. Med. Hyg. 1937, s1–s17, 803–823. [Google Scholar] [CrossRef]
- Cywinska, A.; Hunter, F.F.; Hebert, P.D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 2006, 20, 413–424. [Google Scholar] [CrossRef]
- Lu, L.; Dietrich, C.H.; Cao, Y.; Zhang, Y. A multigene phylogenetic analysis of the leafhopper subfamily Typhlocybinae (Hemiptera: Cicadellidae) challenges the traditional view of the evolution of wing venation. Mol. Phylogenet. Evol. 2021, 165, 107299. [Google Scholar] [CrossRef]
- Depickère, S.; Villacís, A.G.; Santillán-Guayasamín, S.; Callapa, R.J.E.; Brenière, S.F.; Revollo, Z.S. Rhodnius (Stål, 1859) (Hemiptera, Triatominae) genus in Bolivian Amazonia: A risk for human populations? Parasit Vectors 2022, 15, 307. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.M.P.; Saraiva, J.F.; da Silva, H.; Sallum, M.A.M. Molecular Identification of Mosquitoes (Diptera: Culicidae) Using COI Barcode and D2 Expansion of 28S Gene. DNA 2024, 4, 507-518. https://doi.org/10.3390/dna4040034
Oliveira TMP, Saraiva JF, da Silva H, Sallum MAM. Molecular Identification of Mosquitoes (Diptera: Culicidae) Using COI Barcode and D2 Expansion of 28S Gene. DNA. 2024; 4(4):507-518. https://doi.org/10.3390/dna4040034
Chicago/Turabian StyleOliveira, Tatiane M. P., José F. Saraiva, Herculano da Silva, and Maria Anice M. Sallum. 2024. "Molecular Identification of Mosquitoes (Diptera: Culicidae) Using COI Barcode and D2 Expansion of 28S Gene" DNA 4, no. 4: 507-518. https://doi.org/10.3390/dna4040034
APA StyleOliveira, T. M. P., Saraiva, J. F., da Silva, H., & Sallum, M. A. M. (2024). Molecular Identification of Mosquitoes (Diptera: Culicidae) Using COI Barcode and D2 Expansion of 28S Gene. DNA, 4(4), 507-518. https://doi.org/10.3390/dna4040034