Current Status and Future Prospects of Sustainable Hydrogen Production from Food Industry Waste by Aqueous Phase Reforming
Abstract
1. Introduction
2. Bibliometric Analysis
3. Reported Literature Analysis
3.1. Breweries
3.2. Dairy Industry
3.3. Corn Production and Processing
3.4. Fish Canning Process
3.5. Fruit Juice Extraction
3.6. Other Waste
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| APR | Aqueous phase reforming |
| COD | Chemical Oxygen Demand |
| TOC | Total Organic Carbon |
| SMR | Steam Methane Reforming |
| WGS | Water-Gas Shift reaction |
References
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Collis, J.; Schomäcker, R. Determining the production and transport cost for H2 on a global scale. Front. Energy Res. 2022, 10, 909298. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Bashir, B.; Iqbal, M.A.; Shah, U.H.; Ali, M.U. Environmental assessment of hydrogen utilization in various applications and alternative renewable sources for hydrogen production: A review. Energies 2023, 16, 4348. [Google Scholar] [CrossRef]
- Solorza-Feria, O. Green hydrogen, PEM fuel cells, and Li-ion batteries in a vehicular-transport prototype. J. Mex. Chem. Soc. 2023, 67, 321–328. [Google Scholar] [CrossRef]
- United Nations Climate Change. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 1 September 2025).
- Tian, Z.; Lu, Y.; Wang, J.; Shu, R.; Wang, C.; Chen, Y. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives. Fuel 2024, 357, 129691. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Du, X.; Liu, Y.; Lu, G.; Guo, Y. Hydrogen production via aqueous-phase reforming of glycerol over Ni–Co bimetallic catalysts. J. Zhejiang Univ.-Sci. A (App. Phys. Eng.) 2015, 16, 491–506. [Google Scholar] [CrossRef]
- Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, L.; Lehtonen, J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. Int. J. Hydrog. Energy 2016, 41, 11003–11032. [Google Scholar] [CrossRef]
- Dietrich, P.J.; Lobo-Lapidus, R.J.; Wu, T.; Sumer, A.; Akatay, M.C.; Fingland, B.R.; Guo, N.; Dumesic, J.A.; Marshall, C.L.; Stach, E.; et al. Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: Product selectivity and structural characterization. Top Catal. 2012, 55, 53–69. [Google Scholar] [CrossRef]
- Davda, R.R.; Shabaker, J.W.; Huber, G.W.; Cortright, R.D.; Dumesic, J.A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B Environ. 2005, 56, 171–186. [Google Scholar] [CrossRef]
- García, L.; Valiente, A.; Oliva, M.; Ruiz, J.; Arauzo, J. Influence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst. Int. J. Hydrog. Energy 2018, 43, 20392–20407. [Google Scholar] [CrossRef]
- Remón, J.; Giménez, J.R.; Valiente, A.; García, L.; Arauzo, J. Production of gaseous and liquid chemicals by aqueous phase reforming of crude glycerol: Influence of operating conditions on the process. Energy Convers. Manag. 2016, 110, 90–112. [Google Scholar] [CrossRef]
- Roy, B.; Sullivan, H.; Leclerc, C.A. Effect of variable conditions on steam reforming and aqueous phase reforming of n-butanol over Ni/CeO2 and Ni/Al2O3 catalysts. J. Power Sources 2014, 267, 280–287. [Google Scholar] [CrossRef]
- Justicia, J.; Baeza, J.A.; de Oliveira, A.S.; Calvo, L.; Heras, F.; Gilarranz, M.A. Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils. Renew. Energy 2022, 199, 895–907. [Google Scholar] [CrossRef]
- Fasolini, A.; Cucciniello, R.; Paone, E.; Mauriello, F.; Tabanelli, T. A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6–C5 sugars and polyols. Catalysts 2019, 9, 917. [Google Scholar] [CrossRef]
- Pipitone, G.; Zoppi, G.; Pirone, R.; Bensaid, S. A critical review on catalyst design for aqueous phase reforming. Int. J. Hydrog. Energy 2022, 47, 151–180. [Google Scholar] [CrossRef]
- Menezes, A.O.; Rodrigues, M.T.; Zimmaro, A.; Borges, L.E.P.; Fraga, M.A. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renew. Energy 2011, 36, 595–599. [Google Scholar] [CrossRef]
- Joshi, A.; Vaidya, P.D. Hydrogen production by aqueous phase reforming of synthetic wastewater over Pt and Ru based catalysts. J. Catal. 2024, 429, 58–71. [Google Scholar]
- Nozawa, T.; Mizukoshi, Y.; Yoshida, A.; Naito, S. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts. Appl. Catal. B Environ. 2014, 146, 221–226. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Gilarranz, M.A. Aqueous phase reforming of starch wastewater over Pt and Pt-based bimetallic catalysts for green hydrogen production. Chem. Eng. J. 2023, 460, 141770. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Garcia, D.; Saenz de Miera, B.; Calvo, L.; Rodriguez, J.J.; Gilarranz, M.A. Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production. Renew. Energy 2020, 148, 889–896. [Google Scholar] [CrossRef]
- Kim, T.-W.; Kim, H.-D.; Jeong, K.-E.; Chae, H.-J.; Jeong, S.-Y.; Lee, C.-H.; Kim, C.-U. Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. Green Chem. 2011, 13, 1718–1728. [Google Scholar] [CrossRef]
- El Doukkali, M.; Iriondo, A.; Cambra, J.F.; Gandarias, I.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Arias, P.L. Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Appl. Catal. A Gen. 2014, 472, 80–91. [Google Scholar] [CrossRef]
- Mo, Y.; Li, C.; Li, H.; Estudillo-Wong, L.A.; Wu, L.; Wang, Y.; Yu, H.; Li, D.; Feng, Y. Hydrothermal stability of gamma-Al2O3 supports varied with crystal plane orientation of pseudo-boehmite precursor. Chem. Eng. Sci. 2024, 287, 119705. [Google Scholar] [CrossRef]
- Stekrova, M.; Rinta-Paavola, A.; Karinen, R. Hydrogen production via aqueous-phase reforming of methanol over nickel modified Ce, Zr and La oxide supports. Catal. Today 2018, 304, 143–152. [Google Scholar] [CrossRef]
- Wu, K.; Dou, B.; Zhang, H.; Liu, D.; Chen, H.; Xu, Y. Aqueous phase reforming of biodiesel byproduct glycerol over mesoporous Ni-Cu/CeO2 for renewable hydrogen production. Fuel 2022, 308, 122014. [Google Scholar] [CrossRef]
- Chen, A.; Guo, H.; Song, Y.; Chen, P.; Lou, H. Recyclable CeO2–ZrO2 and CeO2–TiO2 mixed oxides-based Pt catalyst for aqueous-phase reforming of the low-boiling fraction of bio-oil. Int. J. Hydrog. Energy 2017, 42, 9577–9588. [Google Scholar] [CrossRef]
- Guo, Y.; Azmat, M.U.; Liu, X.; Wang, Y.; Lu, G. Effect of support’s basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR. Appl. Energy 2012, 92, 218–223. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Alonso-Morales, N.; Heras, F.; Rodriguez, J.J.; Gilarranz, M.A. Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Appl. Catal. B Environ. 2019, 245, 367–375. [Google Scholar] [CrossRef]
- Iriondo, A.; Barrio, V.L.; Cambra, J.F.; Arias, P.L.; Güemez, M.B.; Navarro, R.M.; Sánchez-Sánchez, M.C. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top. Catal. 2008, 49, 46–58. [Google Scholar] [CrossRef]
- Shabaker, J.W.; Davda, R.R.; Huber, G.W.; Cortright, R.D.; Dumesic, J.A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. Catal. 2003, 215, 344–352. [Google Scholar] [CrossRef]
- Tang, Z.; Monroe, J.; Dong, J.; Nenoff, T.; Weinkauf, D. Platinum-loaded NaY zeolite for aqueous-phase reforming of methanol and ethanol to hydrogen. Ind. Eng. Chem. Res. 2009, 48, 2728–2733. [Google Scholar] [CrossRef]
- Justicia, J.; Baeza, J.A.; Calvo, L.; Heras, F.; Gilarranz, M.A. Valorization to hydrogen of bio-oil aqueous fractions from lignocellulosic biomass pyrolysis by aqueous phase reforming over Pt/C catalyst. Chem. Eng. J. 2023, 477, 146860. [Google Scholar] [CrossRef]
- Lozano, P.; Simon, A.I.; García, L.; Ruiz, J.; Oliva, M.; Arauzo, J. Influence of the Ni-Co/Al-Mg catalyst loading in the continuous aqueous phase reforming of the bio-oil aqueous fraction. Processes 2021, 9, 81. [Google Scholar] [CrossRef]
- Arandia, A.; Coronado, I.; Remiro, A.; Gayubo, A.G.; Reinikainen, M. Aqueous-phase reforming of bio-oil aqueous fraction over nickel-based catalysts. Int. J. Hydrog. Energy 2019, 44, 13157–13168. [Google Scholar] [CrossRef]
- Pipitone, G.; Zoppi, G.; Bocchini, S.; Rizzo, A.M.; Chiaramonti, D.; Pirone, R.; Bensaid, S. Aqueous phase reforming of the residual waters derived from lignin-rich hydrothermal liquefaction: Investigation of representative organic compounds and actual biorefinery streams. Catal. Today 2020, 345, 237–250. [Google Scholar] [CrossRef]
- Tanksale, A.; Lu, G.Q.; Beltramini, J.N. The Role of Pt and Pd in Enhancing the Conversion of Sorbitol to Hydrogen over Supported Ni-Pt and Ni-Pd Catalysts. In Proceedings of the Hydrogen and Fuel Cells 2009 International Conference and Exhibition: Partnerships for Global Energy Solutions, Vancouver, BC, Canada, 31 May–3 June 2009; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2009. Available online: https://www.osti.gov/etdeweb/biblio/21234294 (accessed on 1 September 2025).
- Murzin, D.Y.; Garcia, S.; Russo, V.; Kilpiö, T.; Godina, L.I.; Tokarev, A.V.; Kirilin, A.V.; Simakova, I.L.; Poulston, S.; Sladkovskiy, D.A.; et al. Kinetics, modeling, and process design of hydrogen production by aqueous phase reforming of xylitol. Ind. Eng. Chem. Res. 2017, 56, 13240–13253. [Google Scholar] [CrossRef]
- Kirilin, A.V.; Tokarev, A.V.; Kustov, L.M.; Salmi, T.; Mikkola, J.-P.; Murzin, J.-P. Aqueous phase reforming of xylitol and sorbitol: Comparison and influence of substrate structure. Appl. Catal. A 2012, 435–436, 172–180. [Google Scholar] [CrossRef]
- Sladkovskiy, D.A.; Godina, L.I.; Semikin, K.V.; Sladkovskaya, E.V.; Smirnova, D.A.; Murzin, D.Y. Process design and techno-economical analysis of hydrogen production by aqueous phase reforming of sorbitol. Chem. Eng. Res. Des. 2018, 134, 104–116. [Google Scholar] [CrossRef]
- Martin, M.; Grossman, I.E. Optimal simultaneous production of hydrogen and liquid fuels from glycerol: Integrating the use of biodiesel byproducts. Ind. Eng. Chem. Res. 2014, 53, 7730–7745. [Google Scholar] [CrossRef]
- González-Arias, J.; Zhang, Z.; Reina, T.R.; Odriozola, J.A. Hydrogen production by catalytic aqueous-phase reforming of waste biomass: A review. Environ. Chem. Let. 2023, 21, 3089–3104. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Gruber, H.; Weber, G.; Reichhold, A.; Pirone, R.; Bensaid, S. Aqueous phase reforming of pilot-scale Fischer-Tropsch water effluent for sustainable hydrogen production. Catal. Today 2021, 367, 239–247. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Bui, T.H.; Guo, W.S.; Ngo, H.H. Valorization of the aqueous phase from hydrothermal carbonization of different feedstocks: Challenges and perspectives. Chem. Eng. J. 2023, 472, 144802. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Sarrión, A.; Baeza, J.A.; Diaz, E.; Calvo, L.; Mohedano, A.F.; Gilarranz, M.A. Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge. Chem. Eng. J. 2022, 44, 136301. [Google Scholar] [CrossRef]
- Vispute, T.P.; Huber, G.W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem. 2009, 11, 1433–1445. [Google Scholar] [CrossRef]
- Pan, C.; Chen, A.; Liu, Z.; Chen, P.; Lou, H.; Zheng, X. Aqueous-phase reforming of the low- boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production. Bioresour. Technol. 2012, 125, 335–339. [Google Scholar] [CrossRef]
- Justicia, J.; Heras, F.; Moreno, I.; Baeza, J.A.; Calvo, L.; Fermoso, J.; Gilarranz, M.A. Understanding the relationship between catalytic pyrolysis conditions and hydrogen production by aqueous phase reforming of the water-soluble fractions of bio-oil. Energy Convers. Manag. 2024, 320, 118999. [Google Scholar] [CrossRef]
- Zakzeski, J.; Weckhuysen, B.M. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. ChemSusChem 2011, 4, 369–378. [Google Scholar] [CrossRef]
- Valenzuela, M.B.; Jones, C.W.; Agrawal, P.K. Batch aqueous-phase reforming of woody biomass. Energy Fuels 2006, 20, 1744–1752. [Google Scholar] [CrossRef]
- Meryemoglu, B.; Hesenov, A.; Irmak, S.; Atanur, O.M.; Erbatur, O. Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int. J. Hydrog. Energy 2010, 35, 12580–12587. [Google Scholar] [CrossRef]
- Torres, M.; Justicia, J.; Baeza, J.A.; Calvo, L.; Heras, F.; Gilarranz, M.A. Hydrogen production from pruning waste biomass by integration of hydrothermal treatment and aqueous phase reforming. Int. J. Hydrog. Energy 2024, 66, 142–150. [Google Scholar] [CrossRef]
- Pavlovič, I.; Knez, Ž.; Škerget, M. Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. J. Agric. Food Chem. 2013, 61, 8003–8025. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Raj, N.; Sivaprakasam, S. Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Conv. Bioref. 2023, 13, 15639–15658. [Google Scholar] [CrossRef]
- Sun, F.; Chen, J.; Sun, Z.; Zheng, X.; Tang, M.; Yang, Y. Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode. Sci. Total Environ. 2024, 929, 172418. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Products and Supplies Exchange of Venezuela. Press Room. Available online: https://www.bolpriaven.net/ (accessed on 1 September 2025).
- Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cordero-Lanzac, T.; Baeza, J.A.; Calvo, L.; Heras, F.; Rodríguez, J.J.; Gilarranz, M.A. Continuous aqueous phase reforming of a synthetic brewery wastewater with Pt/C and PtRe/C catalysts for biohydrogen production. Chemosphere 2021, 281, 130885. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cordero-Lanzac, T.; Baeza, J.A.; Calvo, L.; Rodríguez, J.J.; Gilarranz, M.A. Continuous aqueous phase reforming of wastewater streams: A catalyst deactivation study. Fuel 2021, 305, 121506. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Aho, A.; Baeza, J.A.; Calvo, L.; Simakova, I.L.; Gilarranz, M.A.; Murzin, D.Y. Enhanced H2 production in the aqueous-phase reforming of maltose by feedstock pre-hydrogenation. App. Catal. B Environ. 2021, 281, 119469. [Google Scholar] [CrossRef]
- Remón, J.; García, L.; Arauzo, J. Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Process. Technol. 2016, 154, 66–81. [Google Scholar] [CrossRef]
- Remón, J.; Ruiz, J.; Oliva, M.; García, L.; Arauzo, J. Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming. Energy Convers. Manag. 2016, 124, 453–469. [Google Scholar] [CrossRef]
- Joshi, A.N.; Vaidya, P.D. Harnessing hydrogen from the cheese whey effluent in dairy industry: Aqueous-phase reforming of the model compound lactose using Pt-Ni/Cu-Al hydrotalcite. Catalyst. Catal. Surveys Asia 2024, 28, 392–404. [Google Scholar] [CrossRef]
- Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming of dairy wastewater for hydrogen production: An experimental and energetic assessment. Sustainability 2024, 16, 1743. [Google Scholar] [CrossRef]
- Tiryaki, O.N.; Irmak, S.; Ramchandran, D.; Subbiah, J.; Morton, M. Utilization of excess corn kernels for hydrogen gas biofuel production. Int. J. Hydrog. Energy 2019, 44, 29956–29963. [Google Scholar] [CrossRef]
- Tiryaki, O.N.; Irmak, S. Evaluation of various corn variety kernels for hydrogen gas production by APR. Biomass Bioenerg. 2020, 134, 105480. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Alonso-Morales, N.; Heras, F.; Lemus, J.; Rodríguez, J.J.; Gilarranz, M.A. Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts. Environ. Sci. Water Res. Technol. 2018, 4, 1979–1987. [Google Scholar] [CrossRef]
- Saenz de Miera, B.; Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Rodriguez, J.J.; Gilarranz, M.A. Treatment and valorisation of fruit juice wastewater by aqueous phase reforming: Effect of pH, organic load and salinity. J. Clean. Prod. 2020, 252, 119849. [Google Scholar] [CrossRef]
- Godina, L.I.; Heeres, H.; Garcia, S.; Bennett, S.; Poulston, S.; Murzin, D.Y. Hydrogen production from sucrose via aqueous-phase reforming. Int. J. Hydrog. Energy 2019, 44, 14605–14623. [Google Scholar] [CrossRef]

| Substrate | Experimental | Outcomes | Reference | |
|---|---|---|---|---|
| Brewery wastewater | Synthetic | Pt on different supports 220–225 °C, batch mode | 99% TOC removal 93% CCgas, 70% H2 Best support: CB ENSACO250G (15 mmolH2/gCOD) | [29] |
| Synthetic and real | TOC removal and H2 production over 80% and 9 mmolH2/gCOD | [21] | ||
| Synthetic | Pt-Re (1:1,2:1,1:2)/AC catalyst 225 °C, continuous mode WHSV 0.03–0.48 h−1 Ar velocity 0.1–0.8 cm/s | 0.18 mmol H2/min (Pt:Re 1:1) CCgas up to 41% Best results for 0.03 h−1 and 0.8 cm/s | [58,59] | |
| Milk whey | Synthetic and real | Ni-La/Al2O3 catalyst, 220 °C Continuous (60–130 g/min·gC) | 100% lactose conversion CCgas 25–35% Up to 36.5% H2 | [61] |
| Synthetic | Ni-La/Al2O3 catalyst 220 °C 10–40 g catalyst/g lactose | 100% lactose conversion CCgas 5–41% 8–58% H2 | [62] | |
| Pt-Ni/hydrotalcite 215-245 °C, 1.5-6 h 1-5 wt% lactose | ↑ lactose conc. > ↓ H2 prod. Max. H2 selectivity: 73% ↑ T > ↓ CH4 generation | [63] | ||
| Pt/C and Ru/C catalyst 230–270 and 180–220 °C 2.5–10 wt% lactose Lactose pre-hydrogenation | ↑ lactose conc. > ↓ H2 prod. Up to 20% CCgas and H2 conc. Increased to ca. 60 and 30% by lactose pre-hydrogenation | [64] | ||
| Corn | Field | 5 wt% Pt/C catalyst 250 °C, 90 min Pretreat. subcritical cond. 2430–5670 mgTOCo/L | ↑ initial conc. > ↓ H2 prod. Up to 130 mL H2/g corn | [65] |
| Field, non-GMO, yellow, white and pop corn | 5 wt% Pt/C catalyst 250 °C, 90 min Pretreat. subcritical cond. 2430 mgTOCo/L | ca. 130 mL H2/g corn for all cases CCgas 1.5–1.9% | [66] | |
| Fish canning wastewater | Synthetic | 3 wt% Pt on Capsuper, SXPlus, Ensaco350G Batch and Semi-cont. 200 °C, 4 h | ↓ TOC/COD 45–60% ENSACO: ↑ prod. H2, ↓ stability ca. 366 µmolH2, 18% in gas | [67] |
| Fruit juice extraction wastewater | Synthetic | 3 wt% Pt/C catalyst Batch, 220 °C Initial pH 2–12 2873–11,592 mgCODo/L Low (50 mg/L) and high (300 mg/L) salinity levels | 92% max. TOC removing (↓ pH) 8 mmolH2/gCOD max. (↑ pH) ↑ salinity > ~TOC conv. ↓ H2 production | [68] |
| Others | Synthetic and real starch-rich waste | Pt, Pt-(Pd,Re,Ru,Rh)/CB Batch, 220 °C | max. H2 prod. > Pt, Pt-Ru synthetic: 51, real: 29 (mmol/gCOD) | [20] |
| Synthetic food waste | Pt and Ru/C catalysts Batch, 180–235 °C pH 5–9, pre-HTC | 60% COD removal ca. 2 mmolH2/gCOD max. Pt/C best catalyst | [18] | |
| Commercial sorbitol Sorbitol/mannitol mixture from sucrose hydrogenate | 2.5 wt% Pt/C catalyst Continuous, 225 °C, 100 h WSHV 2.5–1.1 h−1 | max. 62% H2 selectivity similar results for both substrates | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justicia, J.; Cervigón, C.; Heras, F. Current Status and Future Prospects of Sustainable Hydrogen Production from Food Industry Waste by Aqueous Phase Reforming. Biomass 2025, 5, 73. https://doi.org/10.3390/biomass5040073
Justicia J, Cervigón C, Heras F. Current Status and Future Prospects of Sustainable Hydrogen Production from Food Industry Waste by Aqueous Phase Reforming. Biomass. 2025; 5(4):73. https://doi.org/10.3390/biomass5040073
Chicago/Turabian StyleJusticia, Jéssica, Claudia Cervigón, and Francisco Heras. 2025. "Current Status and Future Prospects of Sustainable Hydrogen Production from Food Industry Waste by Aqueous Phase Reforming" Biomass 5, no. 4: 73. https://doi.org/10.3390/biomass5040073
APA StyleJusticia, J., Cervigón, C., & Heras, F. (2025). Current Status and Future Prospects of Sustainable Hydrogen Production from Food Industry Waste by Aqueous Phase Reforming. Biomass, 5(4), 73. https://doi.org/10.3390/biomass5040073

