Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii
Abstract
1. Introduction
2. Materials and Methods
2.1. Lignocellulosic Material, Reagent and Microorganism
2.2. Yeast Identification by MALDI-TOF
2.3. Characterization of Lignocellulosic Material
2.4. Acid Hydrolysis
Multi-Response Optimization of Xylose and Acetic Acid Concentration
2.5. Aromatic Volatile Compound Production
2.5.1. Inoculum
2.5.2. Fermentation in Synthetic Medium
2.5.3. Fermentation in Corn Cob Acid Hydrolysate
2.6. Analytical Methods
2.6.1. Biomass
2.6.2. Quantification of Sugars by High Performance Liquid Chromatography (HPLC)
2.6.3. Quantification of Volatile Compounds by Gas Chromatography (GC)
2.6.4. Free Amino Nitrogen and Protein Quantification
2.7. Statistical Analysis
3. Results and Discussion
3.1. Composition of Corn Residues
3.2. Optimization of Acid Pretreatment
3.3. Yeast Strain Identification by MALDI-TOF MS
3.4. Optimization of Aromatic Volatile Compound Production Using Central Composite Design (CCD)
3.4.1. Effect of Agitation and Yeast Extract Concentration on Specific Yield of Isoamyl Alcohol
3.4.2. Comparative Analysis of M. guilliermondii Fermentation in Synthetic Media and Corn Cob Acid Hydrolysate
3.4.3. Free Amino Nitrogen and Intracellular Protein Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVCs | Aromatic volatile compounds |
BBD | Box–Behnken design |
CCD | Central composite design |
BSA | Bovine serum albumin |
References
- Kılmanoğlu, H.; İşleten Hoşoğlu, M.; Güneşer, O.; Karagül Yüceer, Y. Optimization of Pretreatment and Enzymatic Hydrolysis Conditions of Tomato Pomace for Production of Alcohols and Es-Ters by Kluyveromyces marxianus. LWT 2021, 138, 110728. [Google Scholar] [CrossRef]
- Baptista, S.L.; Carvalho, L.C.; Romaní, A.; Domingues, L. Development of a Sustainable Bioprocess Based on Green Technologies for Xylitol Production from Corn Cob. Ind. Crops Prod. 2020, 156, 112867. [Google Scholar] [CrossRef]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. 14—Biofuels: Their characteristics and analysis. In Biomass, Biopolymer-Based Materials, and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 277–325. [Google Scholar] [CrossRef]
- Bhoumick, M.C.; Paul, S.; Roy, S.; Harvey, B.G.; Mitra, S. Recovery of Isoamyl Alcohol by Graphene Oxide Immobilized Membrane and Air-Sparged Membrane Distillation. Membranes 2024, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Coma, M.; Chatzifragkou, A. Chemicals from Food Supply Chain By-Products and Waste Streams. Molecules 2019, 24, 978. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- USDA. World Agricultural Supply and Demand Estimates; Interagency Commodity Estimates Committee Forecasts; United States Department of Agriculture: Washington, DC, USA, 2023. Available online: https://www.usda.gov/sites/default/files/documents/november-2023-wasde-lockup-briefing.pdf (accessed on 20 January 2025).
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Analysis of Pelletizing from Corn Cob Waste. J. Environ. Manag. 2018, 228, 303–311. [Google Scholar] [CrossRef]
- SIAP. Panorama Agroalimentario—La Ruta de La Transformación Agroalimentaria; Servicio de Información Agroalimentaria y Pesquera; Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 2024.
- Gallego-García, M.; Moreno, A.D.; Manzanares, P.; Negro, M.J.; Duque, A. Recent Advances on Physical Technologies for the Pretreatment of Food Waste and Lignocellulosic Residues. Bioresour. Technol. 2023, 369, 128397. [Google Scholar] [CrossRef]
- Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic Biomass Valorization for Bioethanol Production: A Circular Bioeconomy Approach. Bioenerg. Res. 2022, 15, 1820–1841. [Google Scholar] [CrossRef]
- Avci, A.; Saha, B.C.; Kennedy, G.J.; Cotta, M.A. High Temperature Dilute Phosphoric Acid Pretreatment of Corn Stover for Furfural and Ethanol Production. Ind. Crops Prod. 2013, 50, 478–484. [Google Scholar] [CrossRef]
- Cheng, K.-K.; Zhang, J.-A.; Ling, H.-Z.; Ping, W.-X.; Huang, W.; Ge, J.-P.; Xu, J.-M. Optimization of pH and Acetic Acid Concentration for Bioconversion of Hemicellulose from Corncobs to Xylitol by Candida tropicalis. Biochem. Eng. J. 2009, 43, 203–207. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent Updates on Different Methods of Pretreatment of Lignocellulosic Feedstocks: A Review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using Response Surface Methodology (RSM) to Optimize 2G Bioethanol Production: A Review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Gonzalez, R.; Morales, P. Wine Secondary Aroma: Understanding Yeast Production of Higher Alcohols. Microb. Biotechnol. 2017, 10, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-T.; Hsieh, C.-W.; Lo, Y.-C.; Liou, B.-K.; Lin, H.-W.; Hou, C.-Y.; Cheng, K.-C. Isolation and Identification of Aroma-Producing Non-Saccharomyces Yeast Strains and the Enological Characteristic Comparison in Wine Making. LWT 2022, 154, 112653. [Google Scholar] [CrossRef]
- Méndez-Zamora, A.; Gutiérrez-Avendaño, D.O.; Arellano-Plaza, M.; De la Torre González, F.J.; Barrera-Martínez, I.; Gschaedler Mathis, A.; Casas-Godoy, L. The Non-Saccharomyces Yeast Pichia kluyveri for the Production of Aromatic Volatile Compounds in Alcoholic Fermentation. FEMS Yeast Res. 2021, 20, foaa067. [Google Scholar] [CrossRef]
- Kong, C.-L.; Li, A.-H.; Su, J.; Wang, X.-C.; Chen, C.-Q.; Tao, Y.-S. Flavor Modification of Dry Red Wine from Chinese Spine Grape by Mixed Fermentation with Pichia fermentans and S. cerevisiae. LWT 2019, 109, 83–92. [Google Scholar] [CrossRef]
- Sampaolesi, S.; Pérez-Través, L.; Pérez, D.; Roldán-López, D.; Briand, L.E.; Pérez-Torrado, R.; Querol, A. Identification and Assessment of Non-Conventional Yeasts in Mixed Fermentations for Brewing Bioflavored Beer. Int. J. Food Microbiol. 2023, 399, 110254. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41 (Suppl. 1), S95–S128. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, Y.; Xiong, S.; Li, A.; Yang, J.; Tao, Y. Utilization Efficiency of Ehrlich Pathway-Related Amino Acid Affected Higher Alcohol Acetate Production of Non-Saccharomyces Yeasts during Alcoholic Fermentation. Food Biosci. 2024, 61, 104963. [Google Scholar] [CrossRef]
- Fairbairn, S.; McKinnon, A.; Musarurwa, H.T.; Ferreira, A.C.; Bauer, F.F. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains. Front. Microbiol. 2017, 8, 2554. [Google Scholar] [CrossRef]
- Larroque, M.N.; Carrau, F.; Fariña, L.; Boido, E.; Dellacassa, E.; Medina, K. Effect of Saccharomyces and Non-Saccharomyces Native Yeasts on Beer Aroma Compounds. Int. J. Food Microbiol. 2021, 337, 108953. [Google Scholar] [CrossRef] [PubMed]
- Fejzullahu, F.; Kiss, Z.; Kun-Farkas, G.; Kun, S. Influence of Non-Saccharomyces Strains on Chemical Characteristics and Sensory Quality of Fruit Spirit. Foods 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine Aromatic Compound Production and Fermentative Behaviour within Different Non-Saccharomyces Species and Clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Arrizon, J.; Gschaedler, A. Effects of the Addition of Different Nitrogen Sources in the Tequila Fermentation Process at High Sugar Concentration. J. Appl. Microbiol. 2007, 102, 1123–1131. [Google Scholar] [CrossRef]
- Li, J.; Yuan, M.; Meng, N.; Li, H.; Sun, J.; Sun, B. Influence of Nitrogen Status on Fermentation Performances of Non-Saccharomyces yeasts: A Review. Food Sci. Hum. Wellness 2024, 13, 556–567. [Google Scholar] [CrossRef]
- Godoy, P.; Udaondo, Z.; Duque, E.; Ramos, J.L. Biosynthesis of Fragrance 2-Phenylethanol from Sugars by Pseudomonas putida. Biotechnol. Biofuels 2024, 17, 51. [Google Scholar] [CrossRef]
- Hillman, E.T.; Li, M.; Hooker, C.A.; Englaender, J.A.; Wheeldon, I.; Solomon, K.V. Hydrolysis of Lignocellulose by Anaerobic Fungi Produces Free Sugars and Organic Acids for Two-stage Fine Chemical Production with Kluyveromyces marxianus. Biotechnol. Prog. 2021, 37, e3172. [Google Scholar] [CrossRef]
- Zang, W.; Liu, Y.; Liu, Y.; Peng, S.; Chen, X.; Wang, J. Application Potential of Native Meyerozyma guilliermondii in Pilot Production of Dry Red Wine. Food Sci. 2023, 44, 117–125. [Google Scholar] [CrossRef]
- Yan, W.; Gao, H.; Qian, X.; Jiang, Y.; Zhou, J.; Dong, W.; Xin, F.; Zhang, W.; Jiang, M. Biotechnological Applications of the Non-Conventional Yeast Meyerozyma guilliermondii. Biotechnol. Adv. 2021, 46, 107674. [Google Scholar] [CrossRef]
- Beltrán-Arredondo, L.I.; Hernández-Leyva, S.R.; Maldonado-Mendoza, I.E.; Reyes-Moreno, C.; Contreras-Andrade, I.; Castro-Martínez, C. Valorisation of Agroindustrial Residues Acid Hydrolyzates as Carbon Sources for Ethanol Production by Native Yeast Strains with Different Fermentative Capabilities. Biotecnia 2020, 22, 78–87. [Google Scholar] [CrossRef]
- De La Torre González, F.J.; Avendaño, D.O.G.; Mathis, A.C.G.; Kirchmayr, M.R. Evaluation of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry for Differentiation of Pichia kluyveri Strains Isolated from Traditional Fermentation Processes. Rapid Commun. Mass Spectrom. 2018, 32, 1514–1520. [Google Scholar] [CrossRef]
- Sinisterra-Sierra, M.C.; Campos-Valdez, A.; Pereira-Santana, A.; Zamora-Briseño, J.A.; Ramírez-Pérez, S.L.; González-Escobar, J.L.; Kirchmayr, M.R.; Barrera-Martínez, I.; Robles-Machuca, M.; Casas-Godoy, L. Microbial Diversity and Enzymatic Potential for Plastic Degradation in Contaminated Dumpsites in Mazamitla, Jalisco. Environ. Res. 2025, 283, 122170. [Google Scholar] [CrossRef]
- Sluiter, A. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: April 2008; Revision Date: July 2011 (Version 07-08-2011). Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Vallejos, M.E.; Chade, M.; Mereles, E.B.; Bengoechea, D.I.; Brizuela, J.G.; Felissia, F.E.; Area, M.C. Strategies of Detoxification and Fermentation for Biotechnological Production of Xylitol from Sugarcane Bagasse. Ind. Crops Prod. 2016, 91, 161–169. [Google Scholar] [CrossRef]
- Lange, H.; Bavouzet, J.M.; Talllandler, P.; Delorme, C. Systematic Error and Comparison of Four Methods for Assessing the Viability of Saccharomyces cerevisiae Suspensions. Biotechnol. Tech. 1993, 7, 223–228. [Google Scholar] [CrossRef]
- Campos-Valdez, A.; Kirchmayr, M.R.; Barrera-Martínez, I.; Casas-Godoy, L. Sustainable Production of Single-Cell Oil and Protein from Wastepaper Hydrolysate: Identification and Optimization of a Rhodotorula mucilaginosa Strain as a Promising Yeast. FEMS Yeast Res. 2023, 23, foad044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Damgaard, A.; Christensen, T.H. Bioethanol from Corn Stover—A Review and Technical Assessment of Alternative Biotechnologies. Prog. Energy Combust. Sci. 2018, 67, 275–291. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Y.; Hou, J.; Ni, Y.; Liu, S.; Liu, Y.; Yu, S.; Nie, S.; Wu, Q.; Wu, C. Efficient Fractionation of Corn Stover for Biorefinery Using a Sustainable Pathway. ACS Sustain. Chem. Eng. 2020, 8, 3454–3464. [Google Scholar] [CrossRef]
- Hernández, C.; Escamilla-Alvarado, C.; Sánchez, A.; Alarcón, E.; Ziarelli, F.; Musule, R.; Valdez-Vazquez, I. Wheat Straw, Corn Stover, Sugarcane, and Agave Biomasses: Chemical Properties, Availability, and Cellulosic-bioethanol Production Potential in Mexico. Biofuels Bioprod. Bioref. 2019, 13, 1143–1159. [Google Scholar] [CrossRef]
- Ma, L.; Du, L.; Cui, Y.; Song, P.; Jiang, F.; Ma, Q.; Xiao, D. Isolation and Structural Analysis of Hemicellulose from Corncobs after a Delignification Pretreatment. Anal. Methods 2016, 8, 7500–7506. [Google Scholar] [CrossRef]
- Takada, M.; Niu, R.; Minami, E.; Saka, S. Characterization of Three Tissue Fractions in Corn (Zea mays) Cob. Biomass Bioenergy 2018, 115, 130–135. [Google Scholar] [CrossRef]
- Uzoh, B.N.; Onyelucheya, O.E.; Obijiaku, J.C. Kinetic Study of Acid Hydrolysis of Corn Cob to Xylose. Int. J. Adv. Sci. Eng. 2022, 9, 2539–2555. [Google Scholar] [CrossRef]
- Carrillo-Nieves, D.; Rostro Alanís, M.J.; de la Cruz Quiroz, R.; Ruiz, H.A.; Iqbal, H.M.N.; Parra-Saldívar, R. Current Status and Future Trends of Bioethanol Production from Agro-Industrial Wastes in Mexico. Renew. Sustain. Energy Rev. 2019, 102, 63–74. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, W.; Han, L.; Huang, G. Characterization of Mechanical Pulverization/Phosphoric Acid Pretreatment of Corn Stover for Enzymatic Hydrolysis. Bioresour. Technol. 2019, 282, 69–74. [Google Scholar] [CrossRef] [PubMed]
- El-Mekkawi, S.; Abou-Elseoud, W.; Fadel, S.; Hassan, E.; Hassan, M. Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers. J. Renew. Mater. 2024, 12, 1573–1591. [Google Scholar] [CrossRef]
- Cheng, K.-K.; Wu, J.; Lin, Z.-N.; Zhang, J.-A. Aerobic and Sequential Anaerobic Fermentation to Produce Xylitol and Ethanol Using Non-Detoxified Acid Pretreated Corncob. Biotechnol. Biofuels 2014, 7, 166. [Google Scholar] [CrossRef]
- Varilla-Mazaba, A.; Raggazo-Sánchez, J.A.; Calderón-Santoyo, M.; del Moral, S.; Gómez-Rodríguez, J.; Aguilar-Uscanga, M.G. Multi-Response Optimization of Acid Hydrolysis in Sugarcane Bagasse to Obtain High Xylose Concentration. Biomass Conv. Bioref. 2024, 14, 173–181. [Google Scholar] [CrossRef]
- Drissner, D.; Freimoser, F.M. MALDI-TOF Mass Spectroscopy of Yeasts and Filamentous Fungi for Research and Diagnostics in the Agricultural Value Chain. Chem. Biol. Technol. Agric. 2017, 4, 13. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Rollero, S.; Roberts, S.; Bauer, F.F.; Divol, B. Agitation Impacts Fermentation Performance as Well as Carbon and Nitrogen Metabolism inSaccharomyces Cerevisiae under Winemaking Conditions: Influence of Agitation on Yeast Metabolism. Aust. J. Grape Wine Res. 2018, 24, 360–367. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces Cerevisiae Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Lorenz, E.; Runge, D.; Marbà-Ardébol, A.-M.; Schmacht, M.; Stahl, U.; Senz, M. Systematic Development of a Two-Stage Fed-Batch Process for Lipid Accumulation in Rhodotorula Glutinis. J. Biotechnol. 2017, 246, 4–15. [Google Scholar] [CrossRef]
- Da Silveira, F.A.; Fernandes, T.A.R.; Bragança, C.R.S.; Balbino, T.R.; Diniz, R.H.S.; Passos, F.M.L.; Da Silveira, W.B. Isolation of Xylose-Assimilating Yeasts and Optimization of Xylitol Production by a New Meyerozyma guilliermondii Strain. Int. Microbiol. 2020, 23, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Singh, E.; Shrivastava, S. Microbial Xylitol Production. Appl. Microbiol. Biotechnol. 2022, 106, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Tadioto, V.; Milani, L.M.; Barrilli, É.T.; Baptista, C.W.; Bohn, L.; Dresch, A.; Harakava, R.; Fogolari, O.; Mibielli, G.M.; Bender, J.P.; et al. Analysis of Glucose and Xylose Metabolism in New Indigenous Meyerozyma caribbica Strains Isolated from Corn Residues. World J. Microbiol. Biotechnol. 2022, 38, 35. [Google Scholar] [CrossRef] [PubMed]
- Segura-García, L.E.; Taillandier, P.; Brandam, C.; Gschaedler, A. Fermentative Capacity of Saccharomyces and Non-Saccharomyces in Agave Juice and Semi-Synthetic Medium. LWT Food Sci. Technol. 2015, 60, 284–291. [Google Scholar] [CrossRef]
- Gethins, L.; Guneser, O.; Demirkol, A.; Rea, M.C.; Stanton, C.; Ross, R.P.; Karagul Yuceer, Y.; Morrissey, J.P. Influence of Carbon and Nitrogen Source on Production of Volatile Fragrance and Flavour Metabolites by the Yeast Kluyveromyces Marxianus: Nutrient Effects on Volatiles in K. Marxianus. Yeast 2014, 32, 67–76. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and Non-Saccharomyces Strains on Alcoholic Fermentation Behavior and Aroma Profile of Yellow-Fleshed Peach Wine. LWT 2022, 155, 112993. [Google Scholar] [CrossRef]
- Sokan-Adeaga, A.A.; Salami, S.A.; Bolade, D.O.; Aledeh, M.; Sokan-Adeaga, M.A.; Amubieya, O.E.; Kehinde, S.A.; Farzadkia, M.; Ashraf, G.M.; Hoseinzadeh, E. Utilization of Local Corn (Zea mays) Wastes for Bioethanol Production by Separate Hydrolysis and Fermentation. J. Hazard. Mater. Adv. 2024, 15, 100447. [Google Scholar] [CrossRef]
- Bolzico, B.C.; Racca, S.; Khawam, J.N.; Leonardi, R.J.; Tomassi, A.H.; Benzzo, M.T.; Comelli, R.N. Exploring Xylose Metabolism in Non-Conventional Yeasts: Kinetic Characterization and Product Accumulation under Different Aeration Conditions. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae023. [Google Scholar] [CrossRef]
- Perna, M.D.S.C.; Bastos, R.G.; Ceccato-Antonini, S.R. Single and Combined Effects of Acetic Acid, Furfural, and Sugars on the Growth of the Pentose-Fermenting Yeast Meyerozyma guilliermondii. 3 Biotech 2018, 8, 119. [Google Scholar] [CrossRef]
- Prior, K.J.; Bauer, F.F.; Divol, B. The Utilisation of Nitrogenous Compounds by Commercial Non-Saccharomyces Yeasts Associated with Wine. Food Microbiol. 2019, 79, 75–84. [Google Scholar] [CrossRef]
- Jin, Y.-S.; Cate, J.H. Metabolic Engineering of Yeast for Lignocellulosic Biofuel Production. Curr. Opin. Chem. Biol. 2017, 41, 99–106. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef]
- Muñoz-Miranda, L.A.; Zepeda-Peña, A.C.; Casas-Godoy, L.; Pereira-Santana, A.; Méndez-Zamora, A.; Barrera-Martínez, I.; Rodríguez-Zapata, L.; Gschaedler-Mathis, A.; Figueroa-Yañez, L.J. CRISPRi-Induced Transcriptional Regulation of IAH1 Gene and Its Influence on Volatile Compounds Profile in Kluyveromyces Marxianus DU3. World J. Microbiol. Biotechnol. 2024, 40, 121. [Google Scholar] [CrossRef]
- Gobert, A.; Tourdot-Maréchal, R.; Sparrow, C.; Morge, C.; Alexandre, H. Influence of Nitrogen Status in Wine Alcoholic Fermentation. Food Microbiol. 2019, 83, 71–85. [Google Scholar] [CrossRef]
Corn Residues | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Authors |
---|---|---|---|---|
Corn stover | 33.48 | 27 | 19.9 | This study |
36.2 | 22.7 | 18.5 | [40] | |
34.7 | 22 | 17.9 | [41] | |
18–27 | 37–44 | 20–22 | [42] | |
Corn cob | 30.92 | 45.9 | 15.68 | This study |
35.3 | 34.3 | 15.8 | [43] | |
33.54 | 45.6 | 16.38 | [44] | |
28–30 | 49–56 | 3–8 | [42] | |
31.36 | 42.36 | 12.25 | [45] |
Run | Factor | Response Variable | ||||||
---|---|---|---|---|---|---|---|---|
H3PO4 Concentration (% v·v−1) | Temperature (°C) | Reaction Time (min) | Particle Size (mm) | Xylose (g·L−1) | Acetic Acid (g·L−1) | |||
Predicted | Observed | Predicted | Observed | |||||
1 | 0.5 | 130 | 75 | 4 | 9.9 | 10.96 | 1.25 | 1.36 |
2 | 2.75 | 130 | 30 | 1 | 14.11 | 16.67 | 2.13 | 2.36 |
3 | 2.75 | 80 | 120 | 1 | 5.55 | 4.68 | 0.71 | 0.57 |
4 | 0.5 | 130 | 75 | 1 | 10.42 | 10.29 | 1.51 | 1.59 |
5 | 2.75 | 105 | 75 | 4 | 4.91 | 5.61 | 1.45 | 1.63 |
6 | 0.5 | 80 | 75 | 1 | 0 | 0.32 | 0 | 0.11 |
7 | 2.75 | 80 | 30 | 1 | 0 | 0.23 | 0.03 | 0.13 |
8 | 2.75 | 130 | 30 | 4 | 13.62 | 14.64 | 1.85 | 2.03 |
9 | 2.75 | 130 | 120 | 1 | 20.43 | 19.89 | 2.73 | 2.64 |
10 | 5 | 105 | 120 | 4 | 11.3 | 12.75 | 1.91 | 2.22 |
11 | 5 | 130 | 75 | 1 | 20.22 | 18.80 | 2.96 | 2.76 |
12 | 2.75 | 105 | 75 | 4 | 4.91 | 5.56 | 1.45 | 1.44 |
13 | 0.5 | 80 | 75 | 4 | 0 | 0.42 | 0 | 0.11 |
14 | 5 | 105 | 30 | 1 | 2.71 | 2.22 | 0.99 | 0.97 |
15 | 2.75 | 105 | 75 | 4 | 4.91 | 4.07 | 1.45 | 1.25 |
16 | 2.75 | 105 | 75 | 1 | 6.24 | 5.78 | 1.64 | 1.65 |
17 | 0.5 | 105 | 30 | 1 | 2.02 | 0.41 | 0.52 | 0.21 |
18 | 5 | 80 | 75 | 1 | 2.6 | 1.23 | 0.47 | 0.31 |
19 | 2.75 | 80 | 120 | 4 | 3.37 | 0.67 | 0.62 | 0.35 |
20 | 2.75 | 130 | 120 | 4 | 17.31 | 16.76 | 2.37 | 2.30 |
21 | 0.5 | 105 | 120 | 1 | 1.97 | 1.62 | 0.61 | 0.55 |
22 | 5 | 105 | 30 | 4 | 1.42 | 1.75 | 0.79 | 0.84 |
23 | 2.75 | 105 | 75 | 1 | 6.24 | 5.45 | 1.64 | 1.59 |
24 | 0.5 | 105 | 120 | 4 | 0.600 | 1.12 | 0.44 | 0.48 |
25 | 5 | 130 | 75 | 4 | 17.14 | 15.15 | 2.59 | 2.35 |
26 | 5 | 80 | 75 | 4 | 0.460 | 0.91 | 0.37 | 0.32 |
27 | 2.75 | 105 | 75 | 1 | 6.24 | 5.97 | 1.64 | 1.71 |
28 | 2.75 | 80 | 30 | 4 | 0 | 0.11 | 0.03 | 0.10 |
29 | 0.5 | 105 | 30 | 4 | 3.29 | 0.40 | 0.44 | 0.14 |
30 | 5 | 105 | 120 | 1 | 15.23 | 18.28 | 2.18 | 2.48 |
Run | Factor | Response Variable | ||
---|---|---|---|---|
Agitation (rpm) | Yeast Extract (g·L−1) | Specific Yield of Isoamyl Alcohol (mg·g−1) | ||
Predicted | Observed | |||
1 | 150 | 5 | 7.42 | 7.37 |
2 | 200 | 2.5 | 6.3 | 6.62 |
3 | 200 | 5 | 4.56 | 4.6 |
4 | 150 | 2.5 | 8.61 | 7.75 |
5 | 150 | 2.5 | 8.61 | 8.56 |
6 | 150 | 0 | 6.88 | 7.62 |
7 | 200 | 0 | 5.13 | 4.78 |
8 | 100 | 5 | 11.25 | 11.26 |
9 | 100 | 2.5 | 11.88 | 12.24 |
10 | 150 | 2.5 | 8.61 | 8.82 |
11 | 100 | 0 | 9.6 | 9.22 |
Kinetic Parameters | Synthetic Medium | Corn Cob Acid Hydrolysate |
---|---|---|
Glucose consumption (g·L−1) | 9.78 | 7.8 |
Xylose consumption (g·L−1) | 8.35 | 3.0 |
Biomass (g·L−1) | 6.69 | 2.71 |
Specific growth rate µmax (h−1) | 0.044 | 0.067 |
Isoamyl alcohol production (mg·L−1) | 55.14 | 32.7 |
Isoamyl alcohol specific yield YIAA/x (mg·g−1) | 8.27 | 12.08 |
Volumetric productivity of isoamyl alcohol QIAA (mg·L−1·h) | 1.15 | 0.68 |
Ethanol production (g·L−1) | 4.41 | 10.18 |
Ethanol specific yield YEtOH/x (g·g−1) | 0.66 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Fernández, N.E.; Casas-Godoy, L.; Astorga-Trejo, R.; Reyes-Moreno, C.; Castro-Martínez, C. Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii. Biomass 2025, 5, 51. https://doi.org/10.3390/biomass5030051
Ponce-Fernández NE, Casas-Godoy L, Astorga-Trejo R, Reyes-Moreno C, Castro-Martínez C. Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii. Biomass. 2025; 5(3):51. https://doi.org/10.3390/biomass5030051
Chicago/Turabian StylePonce-Fernández, Nora Estela, Leticia Casas-Godoy, Rebeca Astorga-Trejo, Cuauhtémoc Reyes-Moreno, and Claudia Castro-Martínez. 2025. "Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii" Biomass 5, no. 3: 51. https://doi.org/10.3390/biomass5030051
APA StylePonce-Fernández, N. E., Casas-Godoy, L., Astorga-Trejo, R., Reyes-Moreno, C., & Castro-Martínez, C. (2025). Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii. Biomass, 5(3), 51. https://doi.org/10.3390/biomass5030051