Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Enzyme Preparations
2.4. Enzyme-Assisted Extraction
2.5. Phytochemical Analyses
2.6. Experimental Design
2.7. Statistical Analysis
3. Results
3.1. Selection of the Mixture of Enzyme Preparations
3.2. Optimization of the Process Parameters
+ 278,661.1X13 − 0.00015X23 − 0.075X1X22 + 137.2X12X2, (mg GAE/L)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT-FAO. Statistical Database. 2016. Available online: http://www.fao.org (accessed on 2 December 2016).
- Proietti, P.; Nasini, L.; Reale, L.; Caruso, T.; Ferranti, F. Productive and vegetative behavior of olive cultivars in super high-density olive grove. Sci. Agric. 2015, 72, 20–27. [Google Scholar] [CrossRef]
- Rosello-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High voltage electrical discharges, pulsed electric field, and ultrasound-assisted extraction of protein and phenolic compounds from olive kernel. Food Bioprocess. Tech. 2015; 8, 885–894. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Cruz, R.M.; Brito, R.; Smirniotis, P.; Nikolaidou, Z.; Vieira, M.C. Extraction of Bioactive Compounds from Olive Leaves Using Emerging Technologies. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; pp. 441–461. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Cherng, J.M.; Shieh, D.E.; Chiang, W.; Chang, M.Y.; Chiang, L.C. Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci. Biotechnol. Biochem. 2007, 71, 1500–1504. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Abaza, L.; Youssef, N.B.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 2011, 62, 96–104. [Google Scholar] [CrossRef]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef]
- Zhao, G.; Yin, Z.; Dong, J. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J. Ethnopharmacol. 2009, 125, 265–268. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Odiatou, E.M.; Skaltsounis, A.L.; Constantinou, A.I. Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol. Cancer Lett. 2013, 330, 113–121. [Google Scholar] [CrossRef]
- Gligora, O.; Mocana, A.; Moldovana, C.; Locatellib, M.; Crișana, G.; Ferreirac, I. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–331. [Google Scholar] [CrossRef]
- Fares, R.; Bazzi, S.; Baydoun, S.E.; Abdel-Massih, R.M. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum. Nutr. 2011, 66, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial effect of olive (Olea europaea L.) leaves extract in raw peeled undeveined shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Erbay, Z.; Icier, F. Optimization of Drying of Olive Leaves in a Pilot-Scale Heat Pump Dryer. Dry Technol. 2009, 27, 416–427. [Google Scholar] [CrossRef]
- Vardakas, A.; Shikov, V.; Dinkova, R.; Mihalev, K. Valorization of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) tepals. Acta Sci. Pol. Technol. Aliment 2021, 20, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Dimitriou, E.; Kontakos, S.; Kontominas, M.G. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur. Food Res. Technol. 2016, 242, 1201–1210. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.I.; Mulero, M.; Muguerza, B.; Arola-Arnal, A. Optimized extraction by response surface methodology used for the characterization and quantification of phenolic compounds in whole red grapes (Vitis vinifera). Nutrients 2018, 10, 1931. [Google Scholar] [CrossRef]
- Markhali, F.; Teixeira, J.; Rocha, C. Olive Tree Leaves—A Source of Valuable Active Compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Kalcheva-Karadzhova, K.; Shikov, V.; Mihalev, K.; Dobrev, G.; Ludneva, D.; Penov, N. Enzyme-assisted extraction of polyphenols from rose (Rosa damascene Mill.) petals. Acta Univ. Cibin. Ser. E Food Technol. 2014, 18, 65–72. [Google Scholar] [CrossRef]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus) along with its color properties and structural stability. J. Food Drug Anal. 2015, 23, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Tang, J.; Powers, J. Effect of Pectolytic Enzyme Preparations on the Phenolic Composition and Antioxidant Activity of Asparagus Juice. J. Agric. Food Chem. 2005, 53, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Cambridge, UK, 2018; pp. 295–323. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Silveira da Rosa, G.; Vanga, S.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [Google Scholar] [CrossRef]
- Kalcheva-Karadzhova, K.D.; Mihalev, K.M.; Ludneva, D.P.; Shikov, V.T.; Dinkova, R.H.; Penov, N.D. Optimizing enzymatic extraction from rose petals (Rosa damascena Mill.). Bulg. Chem. Comm. 2016, 48, 459–463. [Google Scholar]
- Chanioti, S.; Siamandoura, P.; Tzia, C. Evaluation of Extracts Prepared from Olive Oil By-Products Using Microwave-Assisted Enzymatic Extraction: Effect of Encapsulation on the Stability of Final Products. Waste Biomass Valor. 2016, 7, 831–842. [Google Scholar] [CrossRef]
- Fernández, V.; Almonte, L.; Bahamonde, H.A.; Galindo-Bernabeu, A.; Sáenz-Arce GColchero, J. Chemical and structural heterogeneity of olive leaves and their trichomes. Commun. Biol. 2024, 7, 2399–3642. [Google Scholar] [CrossRef]
Factor | Minima | Centre Point | Maxima | Axial Point. a |
---|---|---|---|---|
Enzyme dose (%E/S a)—X1 | 0.02 | 0.1 | 0.18 | −a = −1 +a = +1 |
Time (min.)—X2 | 30 | 120 | 210 | −a = −1 +a = +1 |
Yield (%) | TPP b (mg GAE/L) | DPPH c (AA %) | |
---|---|---|---|
Control (no enzyme) | 64.00 ± 3.20 a | 442.13 ± 22.11 a | 64.76 ± 3.24 a |
X1 | 62.36 ± 3.12 ab | 434.90 ± 21.74 a | 66.51 ± 3.33 a |
X2 | 63.18 ± 3.16 ac | 387.53 ± 19.38 b | 68.36 ± 3.42 a |
X3 | 66.82 ± 3.34 a | 377.63 ± 18.88 b | 70.48 ± 3.52 a |
Mix 1 (X1/X2) | 64.17 ± 3.21 a | 447.64 ± 22.38 a | 69.05 ± 3.45 a |
Mix 2 (X1/X3) | 56.90 ± 2.84 b | 465.91 ± 23.30 a | 70.32 ± 3.52 a |
Mix 3 (X2/X3) | 61.68 ± 3.08 ab | 468.19 ± 23.41 a | 69.85 ± 3.49 a |
Mix 4, 5, 6 (X1/X2/X3) | 58.19 ± 2.91 bc | 464.64 ± 23.23 a | 70.08 ± 3.50 a |
No | Coded Values | Enzyme Dose (%E/S a) | Time (min) | TPP b (mg GAE/L) | DPPH c (AA%) | Yield d, (%) | |
---|---|---|---|---|---|---|---|
X1 | X2 | Y1 | Y2 | Y3 | |||
1 | − | − | 0.02 | 30 | 553.99 a | 55.23 a | 57.13 ad |
2 | + | − | 0.18 | 30 | 495.11 b | 57.22 a | 64.98 bcg |
3 | − | + | 0.02 | 210 | 602.88 cd | 58.61 a | 57.73 ad |
4 | + | + | 0.18 | 210 | 572.06 ac | 58.33 a | 55.54 ad |
5 | − | 0 | 0.02 | 120 | 530.78 ab | 56.85 a | 61.05 dce |
6 | + | 0 | 0.18 | 120 | 582.61 ac | 57.78 a | 58.22 adf |
7 | 0 | − | 0.1 | 30 | 605.55 c | 57.31 a | 70.14 g |
8 | 0 | + | 0.1 | 210 | 510.42 ab | 58.82 a | 62.42 bef |
9 | 0 | 0 | 0.1 | 120 | 556.85 ad | 58.21 a | 65.49 bef |
10 | 0 | 0 | 0.1 | 120 | 557.44 ad | 58.22 a | 65.72 bef |
11 | 0 | 0 | 0.1 | 120 | 556.95 ad | 57.98 a | 66.12 bef |
Extraction Method | Total Polyphenol Content | Reference |
---|---|---|
Enzyme-assisted extraction | 605.55 mg GAE/L | Current study |
Microwave-assisted enzymatic extraction | 34.53 mg GAE/g | [21] |
Ethanol 80% | 54.92 mg GAE/g | [22] |
Cyclodextrins and glycerin co-solvents | 54.33 mg GAE/g | [28] |
Microwave-assisted extraction | 104.22 mg GAE/g | [29] |
Ultrasound-assisted extraction | 80.52 mg GAE/g | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardakas, A.; Kechagias, A.; Penov, N.; Giannakas, A.E. Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass 2024, 4, 647-657. https://doi.org/10.3390/biomass4030035
Vardakas A, Kechagias A, Penov N, Giannakas AE. Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass. 2024; 4(3):647-657. https://doi.org/10.3390/biomass4030035
Chicago/Turabian StyleVardakas, Alexios, Achilleas Kechagias, Nikolay Penov, and Aris E. Giannakas. 2024. "Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves" Biomass 4, no. 3: 647-657. https://doi.org/10.3390/biomass4030035
APA StyleVardakas, A., Kechagias, A., Penov, N., & Giannakas, A. E. (2024). Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass, 4(3), 647-657. https://doi.org/10.3390/biomass4030035