An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apricot Pulp Waste (APW) Preparation
2.3. Synthesis of DES
2.4. Extraction of Antioxidant Polyphenols
2.5. Extraction of Carotenoid Pigments
2.6. Design of Experiment and Response Surface Methodology (RSM) Optimization
2.7. Determinations
2.7.1. Total Polyphenol Content (TPC)
2.7.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.3. Antiradical Activity (DPPH Assay)
2.7.4. Total Carotenoid Content (TCC)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Polyphenols Extraction
3.2. Evaluation of the Antioxidant Properties of the Polyphenolic Extracts
3.3. Optimization of Carotenoids Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aschemann-Witzel, J.; de Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-related food waste: Causes and potential for action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, J.; Barthel, M.; MacNaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Perlatti, B.; Forim, M.R.; Zuin, V.G. Green chemistry, sustainable agriculture and processing systems: A Brazilian overview. Chem. Biol. Technol. Agric. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Forster-Carneiro, T.; Berni, M.D.; Dorileo, I.L.; Rostagno, M.A. Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour. Conserv. Recycl. 2013, 77, 78–88. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H. Bin Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and modeling of polyphenol extraction from food: A review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef] [PubMed]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschberg, J. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 2001, 4, 210–218. [Google Scholar] [CrossRef]
- Ekesa, B.; Nabuuma, D.; Blomme, G.; Van den Bergh, I. Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. J. Food Compos. Anal. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E. Carotenoids: How effective are they to prevent age-related diseases? Molecules 2019, 24, 1801. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Kasapoglu, E.D.; Kahraman, S.; Tornuk, F. Apricot juice processing byproducts as sources of value-added compounds for food industry. Eur. Food Sci. Eng. 2020, 1, 18–23. [Google Scholar]
- Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and functional properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Kan, T.; Bostan, S.Z. Changes of Contents of Polyphenols and Vitamin a of Organic and Conventional Fresh and Dried Apricot Cultivars (Prunus armeniaca L.). World J. Agric. Sci. 2010, 6, 120–126. [Google Scholar]
- Zhou, W.; Niu, Y.; Ding, X.; Zhao, S.; Li, Y.; Fan, G.; Zhang, S.; Liao, K. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. Food Chem. 2020, 330, 127223. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Wojdyło, A.; Majerska, J.; Lech, K.; Brzezowska, J. Qualitative and Quantitative Evaluation of Heat-Induced Changes in Polyphenols and Antioxidant Capacity in Prunus domestica L. By-products. Molecules 2019, 24, 3008. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhang, Z.; Sun, D.W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Qasim, M.; Aziz, I.; Rasheed, M.; Gul, B.; Ajmal Khan, M. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes. Pak. J. Bot. 2016, 48, 621–627. [Google Scholar]
- Kalhor, P.; Ghandi, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P.; Lalas, S. Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef]
- Koutsoukos, S.; Tsiaka, T.; Tzani, A.; Zoumpoulakis, P.; Detsi, A. Choline chloride and tartaric acid, a Natural Deep Eutectic Solvent for the efficient extraction of phenolic and carotenoid compounds. J. Clean. Prod. 2019, 241, 118384. [Google Scholar] [CrossRef]
- Francisco, M.; Van Den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chemie-Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Extraction of Polyphenolic Antioxidants from Red Grape Pomace and Olive Leaves: Process Optimization Using a Tailor-Made Tertiary Deep Eutectic Solvent. Sustainability 2022, 14, 6864. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Dourtoglou, V.G.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Lalas, S.I. Hyphenated Extraction of Valuable Compounds from Aesculus carnea: Ultrasound Extraction with Pulsed Electric Field Pretreatment. AgriEngineering 2022, 4, 847–854. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The effect of ultrasonication pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L. (drumstick tree) using a novel bio-based deep eutectic solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Ayour, J.; Alahyane, A.; Harrak, H.; Neffa, M.; Taourirte, M.; Benichou, M. Assessment of Nutritional, Technological, and Commercial Apricot Quality Criteria of the Moroccan Cultivar “maoui” Compared to Introduced Spanish Cultivars “canino” and “delpatriarca” towards Suitable Valorization. J. Food Qual. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valorization 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Fadjare Frempong, T.; Owusu Boadi, N.; Badu, M. Optimization of extraction conditions for polyphenols from the stem bark of Funtumia elastica (Funtum) utilizing response surface methodology. AAS Open Res. 2021, 4, 46. [Google Scholar] [CrossRef]
- Zhumakanova, B.S.; Korona-Głowniak, I.; Skalicka-Woźniak, K.; Ludwiczuk, A.; Baj, T.; Wojtanowski, K.K.; Józefczyk, A.; Zhaparkulova, K.A.; Sakipova, Z.B.; Malm, A. Phytochemical fingerprinting and in vitro antimicrobial and antioxidant activity of the aerial parts of thymus marschallianus willd. And thymus seravschanicus klokov growing widely in Southern Kazakhstan. Molecules 2021, 26, 3193. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Vilas-Boas, A.; Machado, M.; Costa, E.M.; Silva, S.; Pereira, R.N.; Campos, D.; Teixeira, J.A.; Pintado, M. Exploring the bioactive potential of brewers spent grain ohmic extracts. Innov. Food Sci. Emerg. Technol. 2022, 76, 102943. [Google Scholar] [CrossRef]
- Cicci, A.; Bravi, M. Leveraging novel green solvents to drive conceptual and practical biorefinery innovation. Stud. Surf. Sci. Catal. 2019, 179, 243–259. [Google Scholar]
- Lomba, L.; Ribate, M.P.; Zaragoza, E.; Concha, J.; Garralaga, M.P.; Errazquin, D.; García, C.B.; Giner, B. Deep eutectic solvents: Are they safe? Appl. Sci. 2021, 11, 10061. [Google Scholar] [CrossRef]
- Cheaib, D.; El Darra, N.; Rajha, H.N.; El-Ghazzawi, I.; Mouneimne, Y.; Jammoul, A.; Maroun, R.G.; Louka, N. Study of the selectivity and bioactivity of polyphenols using infrared assisted extraction from apricot pomace compared to conventional methods. Antioxidants 2018, 7, 174. [Google Scholar]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Pintea, A. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, L.; Liu, S.; Zhao, G. The Genes of CYP, ZEP, and CCD1/4 Play an Important Role in Controlling Carotenoid and Aroma Volatile Apocarotenoid Accumulation of Apricot Fruit. Front. Plant Sci. 2020, 11, 607715. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şanal, I.S.; Bayraktar, E.; Mehmetoǧlu, Ü.; Çalimli, A. Determination of optimum conditions for SC-(CO2 + ethanol) extraction of β-carotene from apricot pomace using response surface methodology. J. Supercrit. Fluids 2005, 34, 331–338. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
R (mL/g) | X1 | 40 | 70 | 100 |
T (°C) | X2 | 50 | 65 | 80 |
t (min) | X3 | 100 | 150 | 200 |
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
t (min) | X1 | 30 | 60 | 90 |
T (°C) | X2 | 25 | 35 | 50 |
S (rpm) | X3 | 250 | 500 | 750 |
Design Point | Independent Variables | Response (TPC, mg GAE/g dw) | |||
---|---|---|---|---|---|
X1 (R, mL/g) | X2 (T, °C) | X3 (t, min) | Measured | Predicted | |
1 | 1 | 0 | 1 | 20.5 | 20.4 |
2 | 0 | −1 | 1 | 9.8 | 10.3 |
3 | −1 | 0 | 1 | 12.9 | 11.7 |
4 | 0 | 1 | 1 | 15.1 | 15.9 |
5 | −1 | −1 | 0 | 10.9 | 11.6 |
6 | 0 | 0 | 0 | 11.9 | 11.6 |
7 | 1 | 1 | 0 | 29.1 | 28.4 |
8 | 1 | −1 | 0 | 13.5 | 13.2 |
9 | −1 | 0 | −1 | 6.0 | 6.1 |
10 | 1 | 0 | −1 | 16.8 | 18.0 |
11 | 0 | 1 | −1 | 13.4 | 12.9 |
12 | 0 | −1 | −1 | 6.1 | 5.3 |
13 | 0 | 0 | 0 | 11.6 | 11.6 |
14 | 0 | 0 | 0 | 11.2 | 11.6 |
15 | −1 | 1 | 0 | 9.2 | 9.6 |
Design Point | Independent Variables | Response (TCC, mg β-Carotene/100 g dw) | |||
---|---|---|---|---|---|
X1 (t, min) | X2 (T, °C) | X3 (S, rpm) | Measured | Predicted | |
1 | −1 | −1 | 0 | 131.6 | 130.2 |
2 | −1 | 1 | 0 | 156.8 | 154.1 |
3 | 1 | −1 | 0 | 145.4 | 149.0 |
4 | 1 | 1 | 0 | 148.5 | 149.1 |
5 | 0 | −1 | −1 | 143.1 | 145.4 |
6 | 0 | −1 | 1 | 166.1 | 161.7 |
7 | 0 | 1 | −1 | 167.4 | 170.7 |
8 | 0 | 1 | 1 | 161.5 | 160.4 |
9 | −1 | 0 | −1 | 151.7 | 151.0 |
10 | 1 | 0 | −1 | 166.3 | 161.4 |
11 | −1 | 0 | 1 | 152.9 | 157.8 |
12 | 1 | 0 | 1 | 165.3 | 166.0 |
13 | 0 | 0 | 0 | 159.3 | 159.9 |
14 | 0 | 0 | 0 | 160.2 | 159.9 |
15 | 0 | 0 | 0 | 160.0 | 159.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments. Biomass 2022, 2, 334-347. https://doi.org/10.3390/biomass2040022
Makrygiannis I, Athanasiadis V, Bozinou E, Chatzimitakos T, Makris DP, Lalas SI. An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments. Biomass. 2022; 2(4):334-347. https://doi.org/10.3390/biomass2040022
Chicago/Turabian StyleMakrygiannis, Ioannis, Vassilis Athanasiadis, Eleni Bozinou, Theodoros Chatzimitakos, Dimitris P. Makris, and Stavros I. Lalas. 2022. "An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments" Biomass 2, no. 4: 334-347. https://doi.org/10.3390/biomass2040022
APA StyleMakrygiannis, I., Athanasiadis, V., Bozinou, E., Chatzimitakos, T., Makris, D. P., & Lalas, S. I. (2022). An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments. Biomass, 2(4), 334-347. https://doi.org/10.3390/biomass2040022