A Systematic Review of the Effects of Saccharomyces boulardii on Diabetes Mellitus in Experimental Mice Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Assessing Bias Risk and Quality of Evidence
3. Results
3.1. Comparison of Mice Models of Diabetes and Experimental Protocols
3.2. Effects of Saccharomyces boulardii on Glycaemia and Metabolic Markers
3.3. Impact on Oxidative Stress, Inflammation and Intestinal Microbiota
3.4. Risk of Bias
4. Discussion
5. Limitations and Perspectives
6. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IAA | Anti-insulin antibody |
| Anti-GAD | Anti-Glutamic Acid Decarboxylase antibody |
| Anti-IA2 | Insulinoma-Associated Protein-2 |
| Anti-ZnT8 | Zinc Transporter 8 autoantibodies |
| DM | Diabetes Mellitus |
| LC-MS/MS, MRM mode | Liquid chromatography coupled with tandem mass spectrometry in multiple reaction monitoring mode |
| T1D | Type 1 Diabetes |
| T2D | Type 2 Diabetes |
| GLP-1 | Glucagon Like-Peptide 1 |
| SGLT2 | Sodium-Glucose Cotransporter 2 |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PROSPERO | International Prospective Register of Systematic Reviews |
| SYRCLE | Systematic Review Centre for Laboratory animal Experimentation |
| RoB 2 | Risk of Bias 2.0 |
| STZ | Streptozotocin |
| IL | Interleukin |
| Ang-II | Angiotensin II |
| SOD | Superoxide Dismutase |
| GPx | Glutathione Peroxidase |
References
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.J.; Ali, M.K.; Taddei, C.; et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef]
- Kong, A.P.; Xu, G.; Brown, N.; So, W.-Y.; Ma, R.C.; Chan, J.C. Diabetes and its comorbidities—Where East meets West. Nat. Rev. Endocrinol. 2013, 9, 537–547. [Google Scholar] [CrossRef]
- O’Neal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and Appropriately Treating Latent Autoimmune Diabetes in Adults. Diabetes Spectr. 2016, 29, 249–252. [Google Scholar] [CrossRef]
- Krause, M.; De Vito, G. Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition. Nutrients 2023, 15, 4279. [Google Scholar] [CrossRef] [PubMed]
- DeMarsilis, A.; Reddy, N.; Boutari, C.; Filippaios, A.; Sternthal, E.; Katsiki, N.; Mantzoros, C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022, 137, 155332. [Google Scholar] [CrossRef] [PubMed]
- Ghatage, T.; Jarag, R.; Jadhav, S.; Raut, R. A review on adverse drug reactions of antidiabetic drugs. Int. J. Allied Med. Sci. Clin. Res. 2017, 5, 426–433. [Google Scholar]
- Akiyode, O.F.; Adesoye, A.A. Adverse Effects Associated With Newer Diabetes Therapies: A Review Article. J. Pharm. Pract. 2017, 30, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Fietto, J.L.; Araújo, R.S.; Valadão, F.N.; Fietto, L.G.; Brandão, R.L.; Neves, M.J.; Gomes, F.C.; Nicoli, J.R.; Castro, I.M. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can. J. Microbiol. 2004, 50, 615–621. [Google Scholar] [CrossRef]
- Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, S.G.; Stateva, L. Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73, 2458–2467. [Google Scholar] [CrossRef]
- Piame, L.T.; Kaktcham, P.M.; Kouam, E.M.F.; Techeu, U.D.F.; Ngouénam, R.J.; Ngoufack, F.Z. Technological characterisation and probiotic traits of yeasts isolated from Sha’a, a Cameroonian maize-based traditional fermented beverage. Heliyon 2022, 8, e10850. [Google Scholar]
- Duman, D.G.; Kumral, Z.N.Ö.; Ercan, F.; Deniz, M.; Can, G.; Yeğen, B.Ç. Saccharomyces boulardii ameliorates clarithromycin-and methotrexate-induced intestinal and hepatic injury in rats. Br. J. Nutr. 2013, 110, 493–499. [Google Scholar] [CrossRef]
- Justino, P.F.; Melo, L.F.; Nogueira, A.F.; Costa, J.V.; Silva, L.M.; Santos, C.M.; Mendes, W.O.; Costa, M.R.; Franco, A.X.; Lima, A.A. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br. J. Nutr. 2014, 111, 1611–1621. [Google Scholar] [CrossRef]
- Piame, L.T. Potential of Non-Dairy Probiotic Beverages to Modulate Gut Microbiota and Improve Management of Non-Communicable Diseases. Nov. Res. Microbiol. J. 2025, 9, 198–213. [Google Scholar]
- You, S.; Ma, Y.; Yan, B.; Pei, W.; Wu, Q.; Ding, C.; Huang, C. The promotion mechanism of prebiotics for probiotics: A review. Front. Nutr. 2022, 9, 1000517. [Google Scholar] [CrossRef] [PubMed]
- Wieërs, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart De Foy, J.-M.; Dequenne, I.; De Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell. Infect. Microbiol. 2020, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Albuquerque, R.C.M.F.; Brandão, A.B.P.; De Abreu, I.C.M.E.; Ferreira, F.G.; Santos, L.B.; Moreira, L.N.; Taddei, C.R.; Aimbire, F.; Cunha, T.S. Saccharomyces boulardii Tht 500101 changes gut microbiota and ameliorates hyperglycaemia, dyslipidaemia, and liver inflammation in streptozotocin-diabetic mice. Benef. Microbes 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Matamoros, S.; Geurts, L.; Delzenne, N.M.; Cani, P.D. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio 2014, 5, e01011-14. [Google Scholar] [CrossRef]
- Barssotti, L.; Abreu, I.C.M.E.; Brandão, A.B.P.; Albuquerque, R.C.M.F.; Ferreira, F.G.; Salgado, M.A.C.; Dias, D.D.S.; De Angelis, K.; Yokota, R.; Casarini, D.E.; et al. Saccharomyces boulardii modulates oxidative stress and renin angiotensin system attenuating diabetes-induced liver injury in mice. Sci. Rep. 2021, 11, 9189. [Google Scholar] [CrossRef]
- Chen, X.; Xie, N.; Feng, L.; Huang, Y.; Wu, Y.; Zhu, H.; Tang, J.; Zhang, Y.; Gao, T. Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies. Chin. Med. J. 2025, 138, 15–27. [Google Scholar]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Babaei, F.; Navidi-Moghaddam, A.; Naderi, A.; Ghafghazi, S.; Mirzababaei, M.; Dargahi, L.; Mohammadi, G.; Nassiri-Asl, M. The preventive effects of Saccharomyces boulardii against oxidative stress induced by lipopolysaccharide in rat brain. Heliyon 2024, 10, e30426. [Google Scholar] [CrossRef]
- Czerucka, D.; Rampal, P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J. Gastroenterol. 2019, 25, 2188–2203. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.; Albuquerque, R.; Brandão, A.B.P.; Barssotti, L.; de Souza, L.B.; Ferreira, F.G.; Oliveira, L.C.G.; Yokota, R.; Sparvoli, L.G.; Dias, D.D.S.; et al. Saccharomyces boulardii exerts renoprotection by modulating oxidative stress, renin angiotensin system and uropathogenic microbiota in a murine model of diabetes. Life Sci. 2022, 301, 120616. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.B.P.; Albuquerque, R.C.M.F.; de Abreu, I.C.M.E.; Ferreira, F.G.; Santos, L.B.; Jensen, L.; de Souza, L.E.; Ferreira, S.G.; de Souza, L.B.; Lo Schiavo, E.; et al. From the gut to the heart: Probiotic therapy with Saccharomyces boulardii and its potential role on diabetic cardiomyopathy in a murine model. Arch. Physiol. Biochem. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vijayashankar, U.; Ramashetty, R.; Rajeshekara, M.; Vishwanath, N.; Yadav, A.K.; Prashant, A.; Lokeshwaraiah, R. Leptin and ghrelin dynamics: Unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus. J. Diabetes Metab. Disord. 2024, 23, 427–440. [Google Scholar] [CrossRef]
- Van Syoc, E.P.; Damani, J.; DiMattia, Z.; Ganda, E.; Rogers, C.J. The Effects of Bifidobacterium Probiotic Supplementation on Blood Glucose: A Systematic Review and Meta-Analysis of Animal Models and Clinical Evidence. Adv. Nutr. 2024, 15, 100137. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, L.; Jia, F.; Yan, Y.; Xiong, F.; Li, Y.; Hidayat, K.; Guan, R. Effects of Lactobacillus plantarum supplementation on glucose and lipid metabolism in type 2 diabetes mellitus and prediabetes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2024, 61, 377–384. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, H. Effects of Bifidobacterium on metabolic parameters in overweight or obesity adults: A systematic review and meta-analysis. Front. Microbiol. 2025, 16, 1633434. [Google Scholar] [CrossRef]
- Neves, A.F.; Lubaczeuski, C.; Bozadjieva Kramer, N.; Andrade Louzada Neto, R.; Bernal-Mizrachi, E. 1735-P: AKT Modulates Glucose Sensing and Glucagon Secretion in Alpha Cells. Diabetes 2024, 73, 1735-P. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Wen, X.; Zhang, G.; Cai, J.; Qiao, Z.; An, Z.; Zheng, J.; Li, L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob. Proteins 2023, 15, 967–982. [Google Scholar]
- Tchamani Piame, L. Bioactive Metabolites from Yeasts Presumptively Qualified as Safe as Functional Agents in the Management of Type 2 Diabetes. Appl. Microbiol. 2025, 5, 84. [Google Scholar] [CrossRef]
- Khorami, S.A.H.; Movahedi, A.; Huzwah, K.; Sokhini, A. PI3K/AKT pathway in modulating glucose homeostasis and its alteration in diabetes. Ann. Med. Biomed. Sci. 2015, 1, 46–55. [Google Scholar]
- Grasset, E.; Puel, A.; Charpentier, J.; Klopp, P.; Christensen, J.E.; Lelouvier, B.; Servant, F.; Blasco-Baque, V.; Tercé, F.; Burcelin, R. Gut microbiota dysbiosis of type 2 diabetic mice impairs the intestinal daily rhythms of GLP-1 sensitivity. Acta Diabetol. 2022, 59, 243–258. [Google Scholar]
- Olaniyi, K.S.; Owolabi, M.N.; Atuma, C.L.; Agunbiade, T.B.; Alabi, B.Y. Acetate rescues defective brain-adipose metabolic network in obese Wistar rats by modulation of peroxisome proliferator-activated receptor-γ. Sci. Rep. 2021, 11, 18967. [Google Scholar] [PubMed]
- Arora, T.; Tremaroli, V. Therapeutic potential of butyrate for treatment of type 2 diabetes. Front. Endocrinol. 2021, 12, 761834. [Google Scholar] [CrossRef]
- Capcarova, M.; Kalafova, A. Zucker diabetic fatty rats for research in diabetes. In Animal Models in Medicine and Biology; IntechOpen: London, UK, 2019. [Google Scholar]
- Udayappan, S.; Manneras-Holm, L.; Chaplin-Scott, A.; Belzer, C.; Herrema, H.; Dallinga-Thie, G.M.; Duncan, S.H.; Stroes, E.S.G.; Groen, A.K.; Flint, H.J.; et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. npj Biofilms Microbiomes 2016, 2, 16009. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Sun, J.; He, J.; Chen, F.; Chen, R.; Chen, H. Effect of Probiotics on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. PLoS ONE 2015, 10, e0132121. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]

| Question | Study | ||||
|---|---|---|---|---|---|
| Albuquerque et al. [17] | Abreu et al. [26] | Everard et al. [18] | Barssotti et al. [19] | Brandão et al. [27] | |
| 1. Was the allocation sequence adequately generated and applied? | Yes | Yes | Yes | Yes | Yes |
| 2. Were the groups similar at baseline, or were they adjusted for confounders in the analysis? | Yes | Yes | Yes | Yes | Yes |
| 3. Was the allocation to the different groups adequately concealed? | Yes | Yes | Yes | Yes | Yes |
| 4. Were the animals randomly housed during the experiment? | Yes | Yes | Yes | Yes | Yes |
| 5. Were the caregivers and/or investigators blinded from knowledge of the intervention each animal received during the experiment? | Unclear | Unclear | Unclear | Unclear | Unclear |
| 6. Were animals selected randomly for outcome assessment? | No | No | No | No | No |
| 7. Was the outcome assessor blinded? | Unclear | Unclear | Unclear | Unclear | Unclear |
| 8. Were incomplete outcome data adequately addressed? | Yes | Yes | Yes | Yes | Yes |
| 9. Are reports of the study free of selective outcome reporting? | Yes | Yes | Yes | Yes | Yes |
| 10. Was the study apparently free of other problems that could result in high risk of bias? | Yes | Yes | No | Yes | Yes |
| Total | 7 | 7 | 6 | 7 | 7 |
| Bias Risk (%) | Low (77.77) | Low (77.77) | Moderate (66.66) | Low (77.77) | Low (77.77) |
| Study | Organisms | Age | Disease Model | Participants per Group | Dose and Duration of Intervention | Method/Technology | Main Observations |
|---|---|---|---|---|---|---|---|
| Brandão et al. [27] | C57BL/6 male mice | 6 weeks (w) | Diabetic cardiomyopathy (STZ-induced T1D) | Control (n = 14), Control + Sb (n = 14), Diabetic (n = 14), Diabetic + Sb (n = 14) | 0.5 × 108 cfu of Sb THT 500101 in 0.3 mL of sterile water for 8 w | Enzymatic colorimetric assay | ↓ blood glucose |
| Enzymatic kits, Enzyme-linked immunosorbent assay (ELISA) kits | ↓ triglycerides, ↓ cardiac IL-6 levels and ↑ cardiac IL-10 levels | ||||||
| Histopathological analysis and non-invasive cardiovascular monitoring | Improvement in heart rate variability and blood pressure, cardiac congestion; ↓ left ventricular posterior wall thickness in systole and diastole | ||||||
| Abreu et al. [26] | C57BL/6 male mice | 6 w (15–20 g) | Streptozotocin (STZ)-induced T1D | Control (n = 9), Control + Sb (n = 9), Diabetic (n = 6), Diabetic + Sb (n = 8) | 0.5 × 108 cfu of Sb THT 500101 in 0.3 mL of sterile water for 8 w | Glucometer (Accu-Check) | ↓ blood glucose |
| Liquid chromatography coupled with tandem mass spectrometry in multiple reaction monitoring mode (LC-MS/MS, MRM mode) | Normalisation of Ang-II | ||||||
| Colorimetric kits Urine measurement (mL/24 h) | ↓ proteinuria ↓ polyuria | ||||||
| Spectrophotometric methods | ↓ oxidative stress (↑ catalase and glutathione peroxidase) | ||||||
| DNA extraction-Amplification-Sequencing and beta-diversity assessment | ↓ pathogenic bacteria in stools (Proteus spp., Escherichia spp., and Shigella spp.) | ||||||
| Barssotti et al. [19] | C57BL/6 male mice | 5 w (15–20 g) | STZ-induced T1D | Control (n = 6–9), Diabetic (n = 6–9), Diabetic + Sb (n = 6–9) | 0.5 × 108 cfu of Sb THT 500101 in 0.3 mL of sterile for 8 w | Glucometer (Accu-Check) | ↓ Blood glucose (−30%) |
| Spectrophotometric methods | ↓ Liver oxidative stress: ↑ antioxidant enzymes (SOD, CAT, GPx) | ||||||
| LC-MS/MS, MRM mode | Normalisation of peptides from the renin-angiotensin II system | ||||||
| Microscopic observation (haematoxylin and eosin-stained sections) | ↓ liver damage (hydropic degeneration, vascular congestion) | ||||||
| Albuquerque et al. [17] | C57BL/6 male mice | 6 w (15–20 g) | STZ-induced T1D | Control (n = 9), Diabetic (n = 8), Diabetic + Sb (n = 8) | 0.5 × 108 cfu of Sb THT 500101 in 0.3 mL of sterile water for 8 w | Glucometer (Accu-Check) | ↓ Blood glucose (−31%), |
| Phenol-sulfuric acid method | ↑ Liver glycogen | ||||||
| Enzyme immunoassay kit | ↑ C peptide, ↓ liver inflammation, | ||||||
| Enzymatic colorimetric assay kits | ↓ Serum triglycerides, | ||||||
| DNA extraction-Amplification-Sequencing and diversity assessment | Modulation of intestinal microbiota | ||||||
| Everard et al. [18] | db/db mice (obese and type 2 diabetics) | 6 w | Genetic model of T2D (leptin mutation) | Control (n = 15), Diabetic (n = 15), Diabetic + Sb (n = 15) | Sb Administered for 4 w (120 mg in saline solution) | / | No significant effect on glycaemia |
| Extraction in CHCl3-methanol | ↓ hepatic steatosis | ||||||
| Bio-Plex Pro cytokine assay kit | ↓ systemic and hepatic inflammation | ||||||
| DNA extraction-Amplification-Sequencing and diversity assessment | Modification of the microbiota (↑ Bacteroidetes, ↓ Firmicutes and Proteobacteria). Correlation between microbiota composition and metabolic parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tchamani Piame, L.; Yako, Y.Y. A Systematic Review of the Effects of Saccharomyces boulardii on Diabetes Mellitus in Experimental Mice Models. Encyclopedia 2026, 6, 14. https://doi.org/10.3390/encyclopedia6010014
Tchamani Piame L, Yako YY. A Systematic Review of the Effects of Saccharomyces boulardii on Diabetes Mellitus in Experimental Mice Models. Encyclopedia. 2026; 6(1):14. https://doi.org/10.3390/encyclopedia6010014
Chicago/Turabian StyleTchamani Piame, Laverdure, and Yandiswa Yolanda Yako. 2026. "A Systematic Review of the Effects of Saccharomyces boulardii on Diabetes Mellitus in Experimental Mice Models" Encyclopedia 6, no. 1: 14. https://doi.org/10.3390/encyclopedia6010014
APA StyleTchamani Piame, L., & Yako, Y. Y. (2026). A Systematic Review of the Effects of Saccharomyces boulardii on Diabetes Mellitus in Experimental Mice Models. Encyclopedia, 6(1), 14. https://doi.org/10.3390/encyclopedia6010014

