Games and Playful Activities to Learn About the Nature of Science
Abstract
1. Introduction
2. Theoretical Background
3. Games and Playful Activities to Learn About the Nature of Science
3.1. Playful Approaches to Observing and Inferring
3.2. Discovering Patterns and Principles
3.3. Inferring the Invisible: Black-Box Activities and Model-Based Reasoning
3.4. Teaching Tentativeness
3.5. Unresolvable Mysteries
3.6. The Power of Moderately Contextualized Playful Activities
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BCE | Before Common Era |
| CER | Claim, Evidence, Reasoning |
| GBL | Game-Based Learning |
| NoS | Nature of Science |
| PD | Professional Development |
References
- Allchin, D. Evaluating knowledge of the nature of (whole) science. Sci. Educ. 2011, 95, 518–542. [Google Scholar] [CrossRef]
- Erduran, S.; Dagher, Z.R. Reconceptualizing the Nature of Science for Science Education: Scientific Knowledge, Practices and Other Family Categories; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Roberts, D.A.; Bybee, R.W. Scientific Literacy, Science Literacy, and Science Education. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: New York, NY, USA, 2014; Volume II, pp. 545–558. [Google Scholar]
- Lederman, N.G.; Lederman, J.S. Teaching and learning nature of scientific knowledge: Is it Déjà vu all over again? Discip. Interdiscip. Sci. Educ. Res. 2019, 1, 6. [Google Scholar] [CrossRef]
- Osborne, J.; Collins, S.; Ratcliffe, M.; Millar, R.; Duschl, R. What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. J. Res. Sci. Teach. 2003, 40, 692–720. [Google Scholar] [CrossRef]
- Lederman, N.G. Nature of science: Past, present, and future. In Handbook of Research on Science Education; Abell, S., Lederman, N.G., Eds.; Erlbaum: Mahwah, NJ, USA, 2007; pp. 831–880. [Google Scholar]
- Deng, F.; Chen, D.-T.; Tsai, C.-C.; Chai, C.S. Students’ views of the nature of science: A critical review of research. Sci. Educ. 2011, 95, 961–999. [Google Scholar] [CrossRef]
- Kind, V. Preservice science teachers’ science teaching orientations and beliefs about science. Sci. Educ. 2016, 100, 122–152. [Google Scholar] [CrossRef]
- McComas, W.F.; Clough, M.P. Nature of Science in Science Instruction: Meaning, Advocacy, Rationales, and Recommendations. In Nature of Science in Science Instruction; McComas, W.F., Ed.; Springer: Cham, Switzerland, 2020; Science: Philosophy, History and Education; pp. 1–22. [Google Scholar] [CrossRef]
- Khishfe, R.; Lederman, N.G. Relationship between instructional context and views of nature of science. Int. J. Sci. Educ. 2007, 29, 939–961. [Google Scholar] [CrossRef]
- Cadiz, G.S.; Lacre, G.J.R.; Delamente, R.L.; Diquito, T.J.A. Game-Based Learning Approach in Science Education: A Meta-Analysis. Int. J. Soc. Sci. Hum. Res. 2023, 6, 1856–1865. [Google Scholar] [CrossRef]
- Chen, P.Y.; Hwang, G.J.; Yeh, S.Y.; Chen, Y.T.; Chen, T.W.; Chien, C.H. Three decades of game-based learning in science and mathematics education: An integrated bibliometric analysis and systematic review. J. Comput. Educ. 2021, 9, 455–476. [Google Scholar] [CrossRef]
- Manassero-Mas, M.A.; Vázquez-Alonso, Á. Conceptualización y taxonomía para estructurar los conocimientos acerca de la ciencia. Rev. Eureka Enseñ. Divulg. Cienc. 2019, 16, 3104. [Google Scholar] [CrossRef]
- Bell, R.L. Teaching the Nature of Science: Three Critical Questions. In Best Practices in Science Education; National Geographic School Publishing: Carmel, CA, USA, 2009; Available online: https://ngl.cengage.com/assets/downloads/ngsci_pro0000000028/am_bell_teach_nat_sci_scl22-0449a_.pdf (accessed on 5 November 2025).
- Lederman, N.G.; Abd-El-Khalick, F.; Bell, R.L.; Schwartz, R.S. Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. J. Res. Sci. Teach. 2002, 39, 497–521. [Google Scholar] [CrossRef]
- Manassero-Mas, M.-A.; Vázquez-Alonso, Á. Enseñar y aprender a pensar sobre la naturaleza de la ciencia: Un juego de cartas como recurso en educación primaria. Rev. Eureka Enseñ. Divulg. Cienc. 2023, 20, 2202. [Google Scholar] [CrossRef]
- Liang, L.L.; Chen, S.; Chen, X.; Kaya, O.N.; Adams, A.D.; Macklin, M.; Ebenezer, J. Preservice teachers’ views about nature of scientific knowledge development: An international collaborative study. Int. J. Sci. Math. Educ. 2009, 7, 987–1012. [Google Scholar] [CrossRef]
- Jiménez-Valverde, G. ¿Cuáles son los perfiles de entrada sobre la naturaleza de la ciencia de los futuros docentes de física y química? In Educación Siglo XXI: Nuevos Retos, Nuevas Soluciones; Rodríguez Rodríguez, J.C., Ed.; Dykinson S.L.: Madrid, Spain, 2023; Volume 3, pp. 160–167. Available online: https://hdl.handle.net/2445/216280 (accessed on 4 October 2025).
- Abell, S.K.; Smith, D.C. What is science?: Preservice elementary teachers’ conceptions of the nature of science. Int. J. Sci. Educ. 1994, 16, 475–487. [Google Scholar] [CrossRef]
- Mesci, G.; Schwartz, R.S. Changing preservice science teachers’ views of nature of science: Why some conceptions may be more easily altered than others. Res. Sci. Educ. 2017, 47, 329–351. [Google Scholar] [CrossRef]
- Takriti, R.; Tairab, H.; Alhosani, N.; Elhoweris, H.; Schofield, L.; Rabbani, L.; AlAmirah, I. Toward Understanding Science as a Whole. Sci. Educ. 2022, 32, 1321–1361. [Google Scholar] [CrossRef]
- Jiménez-Valverde, G. Evaluación de la comprensión de la naturaleza de la ciencia en docentes de física y química en formación inicial. In Educar Para el Futuro: Claves Para Una Educación del Siglo XXI.; Rodríguez Góngora, J.C., Ed.; Dykinson S.L.: Madrid, Spain, 2024; pp. 640–655. Available online: https://hdl.handle.net/2445/217245 (accessed on 4 October 2025).
- Akerson, V.L.; Morrison, J.A.; McDuffie, A.R. One course is not enough: Preservice elementary teachers’ retention of improved views of nature of science. J. Res. Sci. Teach. 2006, 43, 194–213. [Google Scholar] [CrossRef]
- Voss, S.; Kent-Schneider, I.; Kruse, J.; Daemicke, R. Investigating the development of preservice science teachers’ nature of science instructional views across rings of the family resemblance approach wheel. Sci. Educ. 2023, 32, 1363–1399. [Google Scholar] [CrossRef]
- Beeghly, K.; Gao, S.; Kruse, J. Preservice secondary science teachers’ nature of science views, rationales, and teaching during a NOS course guided by RFN: A multiple case study. Sci. Educ. 2024, 34, 3155–3196. [Google Scholar] [CrossRef]
- Abrahams, I.; Reiss, M.J. Practical work: Its effectiveness in primary and secondary schools in England. J. Res. Sci. Teach. 2012, 49, 1035–1055. [Google Scholar] [CrossRef]
- Clough, M.P. Using Stories Behind the Science to Improve Understanding of Nature of Science, Science Content, and Attitudes Toward Science. In Nature of Science in Science Instruction. Science: Philosophy, History and Education; McComas, W.F., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Leung, J.S.C. A practice-based approach to learning nature of science through socioscientific issues. Res. Sci. Educ. 2022, 52, 259–285. [Google Scholar] [CrossRef]
- Eastwood, J.L.; Sadler, T.D.; Zeidler, D.L.; Lewis, A.; Amiri, L.; Applebaum, S. Contextualizing nature of science instruction in socioscientific issues. Int. J. Sci. Educ. 2012, 34, 2289–2315. [Google Scholar] [CrossRef]
- García-Carmona, A.; Acevedo-Díaz, J.A. Learning About the Nature of Science Using Newspaper Articles with Scientific Content: A Study in Initial Primary Teacher Education. Sci. Educ. 2016, 25, 523–546. [Google Scholar] [CrossRef]
- Safkolam, R.; Madahae, S.; Saleah, P. The effects of inquiry-based learning activities to understand the nature of science of science student teachers. Int. J. Instr. 2024, 17, 479–496. [Google Scholar] [CrossRef]
- Moutinho, S.; Torres, J.; Fernandes, I.; Vasconcelos, C. Problem-based learning and nature of science: A study with science teachers. Proc. Soc. Behav. Sci. 2015, 191, 1871–1875. [Google Scholar] [CrossRef]
- Manassero-Mas, M.A.; Vázquez-Alonso, Á. El impacto de los juegos epistémicos para aprender sobre naturaleza de la ciencia en primaria. Ensen. Cienc. 2024, 42, 173–195. [Google Scholar] [CrossRef]
- Voulgari, I. Digital Games for Science Learning and Scientific Literacy. In Non-Formal and Informal Science Learning in the ICT Era; Giannakos, M., Ed.; Springer: Singapore, 2020; pp. 35–49. [Google Scholar] [CrossRef]
- Kim, S.; Song, K.; Lockee, B.; Burton, J. What Is a Game? In Gamification in Learning and Education; Kim, S., Song, K., Lockee, B., Burton, J., Eds.; Springer: Cham, Switzerland, 2018; pp. 15–23. [Google Scholar] [CrossRef]
- Li, M.-C.; Tsai, C.-C. Game-based learning in science education: A review of relevant research. J. Sci. Educ. Technol. 2013, 22, 877–898. [Google Scholar] [CrossRef]
- Arztmann, M.; Hornstra, L.; Jeuring, J.; Kester, L. Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Stud. Sci. Educ. 2022, 59, 109–145. [Google Scholar] [CrossRef]
- Sanchez, E. Game-Based Learning. In Encyclopedia of Education and Information Technologies; Tatnall, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Grace, L. Doing Things with Games: Social Impact Through Play; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Galeote, D.F.; Legaki, N.Z.; Hamari, J. From traditional to game-based learning of climate change: A media comparison experiment. In Proceedings of the 2023 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2023), Stratford, ON, Canada, 10–13 October 2023; ACM: New York, NY, USA, 2023. Article 393. pp. 503–525. [Google Scholar] [CrossRef]
- Lamb, R.L.; Annetta, L.; Firestone, J.; Etopio, E. A meta-analysis with examination of moderators of student cognition, affect, and learning outcomes while using serious educational games, serious games, and simulations. Comput. Hum. Behav. 2018, 80, 158–167. [Google Scholar] [CrossRef]
- Kula, S.S. Mind games with the views of classroom teachers. Int. J. Res. Educ. Sci. 2021, 7, 747–766. [Google Scholar] [CrossRef]
- Naaim, M.N.M.; Karpudewan, M. STEM-PT Traveler, a game-based approach for learning elements of the periodic table: An approach for enhancing secondary school students’ motivation for learning chemistry. Chem. Educ. Res. Pract. 2024, 25, 1251–1267. [Google Scholar] [CrossRef]
- Hodges, G.W.; Flanagan, K.; Lee, J.; Cohen, A.; Krishnan, S.; Ward, C. A quasi-experimental study comparing learning gains associated with serious educational gameplay and hands-on science in elementary classrooms. J. Res. Sci. Teach. 2020, 57, 1460–1489. [Google Scholar] [CrossRef]
- Plass, J.L.; Homer, B.D.; Kinzer, C.K. Foundations of game-based learning. Educ. Psychol. 2015, 50, 258–283. [Google Scholar] [CrossRef]
- Rigby, C.S.; Ryan, R.M. Glued to Games: How Video Games Draw Us in and Hold Us Spellbound; Praeger: Santa Barbara, CA, USA, 2011. [Google Scholar] [CrossRef]
- Alejandria, L.N.; Bajenting, J.M.S.; Pacatan, M.A.L.D.; Diquito, T.J.A. The use of educational board game as a supplemental tool in learning periodic table of elements among senior high school students. Am. J. Educ. Technol. 2023, 2, 60–67. [Google Scholar] [CrossRef]
- Daniel, A.D.; Negre, Y.; Casaca, J.; Patrício, R.; Tsvetcoff, R. The effect of game-based learning on the development of entrepreneurial competence among higher education students. Educ. Train. 2024, 66, 1117–1134. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Setiani, I.; Darmawansah, D.; Yang, J.C. Effects of game-based learning integrated with the self-regulated learning strategy on nursing students’ entrustable professional activities: A quasi-experimental study. Nurse Educ. Today 2024, 139, 106213. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Tsai, J.-C.; Liu, S.-Y.; Chang, C.-Y. The effect of a scientific board game on improving creative problem solving skills. Think. Skills Creat. 2021, 41, 100921. [Google Scholar] [CrossRef]
- Kucher, T. Principles and best practices of designing digital game-based learning environments. Int. J. Technol. Educ. Sci. 2021, 5, 213–223. [Google Scholar] [CrossRef]
- Hoffman, B.; Nadelson, L. Motivational engagement and video gaming: A mixed methods study. Educ. Technol. Res. Dev. 2010, 58, 245–270. [Google Scholar] [CrossRef]
- Fonseca, I.; Caviedes, M.; Chantré, J.; Bernate, J. Gamification and Game-Based Learning as Cooperative Learning Tools: A Systematic Review. Int. J. Emerg. Technol. Learn. 2023, 18, 4–23. [Google Scholar] [CrossRef]
- Yaman, H.; Sousa, C.; Neves, P.P.; Luz, F. Implementation of game-based learning in educational contexts: Challenges and intervention strategies. Electron. J. e-Learn. 2024, 22, 19–36. [Google Scholar] [CrossRef]
- Cès, P.; Doyen, A.-L.; Duflos, M.; Giraudeau, C. Board games in the elementary classroom: Teachers’ perspectives. Educ. Res. 2025, 67, 190–211. [Google Scholar] [CrossRef]
- Byusa, E.; Kampire, E.; Mwesigye, A.R. Analysis of teaching techniques and scheme of work in teaching chemistry in Rwandan secondary schools. Eur. J. Math. Sci. Technol. Educ. 2020, 16, em1848. [Google Scholar] [CrossRef]
- Jesmin, T.; Osula, K.; Niglas, K.; Ley, T. A large-scale study to profile teachers’ use of games in the classrooms: From concerns to adoption. Tech. Knowl. Learn. 2025, 30, 483–508. [Google Scholar] [CrossRef]
- Allsop, Y.; Jessel, J. Teachers’ experience and reflections on game-based learning in the primary classroom: Views from England and Italy. Int. J. Game-Based Learn. 2015, 5, 1–17. [Google Scholar] [CrossRef]
- Marfisi-Schottman, I. Games in Higher Education. In Encyclopedia of Education and Information Technologies; Tatnall, A., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Kalmpourtzis, G. Educational Game Design Fundamentals: A Journey to Creating Intrinsically Motivating Learning Experiences; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- van der Meij, H.; Albers, E.; Leemkuil, H. Learning from games: Does collaboration help? Br. J. Educ. Technol. 2011, 42, 655–664. [Google Scholar] [CrossRef]
- Mayo, M.J. Video games: A route to large-scale STEM education? Science 2009, 323, 79–82. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, X. Using game-based learning to support learning science: A study with middle school students. Asia-Pac. Educ. Res. 2021, 30, 167–176. [Google Scholar] [CrossRef]
- Zeng, H.; Zhou, S.N.; Hong, G.R.; Li, Q.Y.; Xu, S.Q. Evaluation of interactive game-based learning in physics domain. J. Balt. Sci. Educ. 2020, 19, 484–498. [Google Scholar] [CrossRef]
- Klopfer, E.; Thompson, M. Game-Based Learning in Science, Technology, Engineering, and Mathematics. In Handbook of Game-Based Learning; Plass, J.L., Mayer, R.E., Homer, B.D., Eds.; MIT Press: Cambridge, MA, USA, 2020; pp. 387–409. [Google Scholar]
- Nietfeld, J.L.; Shores, L.R.; Hoffmann, K.F. Self-regulation and gender within a game-based learning environment. J. Educ. Psychol. 2014, 106, 961–973. [Google Scholar] [CrossRef]
- Webb, A.W.; Bunch, J.C.; Wallace, M.F.G. Agriscience teachers’ implementation of digital game-based learning in an introductory animal science course. J. Sci. Educ. Technol. 2015, 24, 888–897. [Google Scholar] [CrossRef]
- Wilson, C.D.; Reichsman, F.; Mutch-Jones, K.; Gardner, A.; Marchi, L.; Kowalski, S.; Lord, T.; Dorsey, C. Teacher implementation and the impact of game-based science curriculum materials. J. Sci. Educ. Technol. 2018, 27, 285–305. [Google Scholar] [CrossRef]
- Plass, J.L.; Milne, C.; Homer, B.D.; Schwartz, R.N.; Hayward, E.O.; Jordan, T.; Verkuilen, J.; Ng, F.; Wang, Y.; Barrientos, J. Investigating the effectiveness of computer simulations for chemistry learning. J. Res. Sci. Teach. 2012, 49, 394–419. [Google Scholar] [CrossRef]
- Wang, L.-H.; Chen, B.; Hwang, G.-J.; Guan, J.-Q.; Wang, Y.-Q. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. Int. J. STEM Educ. 2022, 9, 26. [Google Scholar] [CrossRef]
- Byusa, E.; Kampire, E.; Mwesigye, A.R. Game-based learning approach on students’ motivation and understanding of chemistry concepts: A systematic review of literature. Heliyon 2022, 8, e09541. [Google Scholar] [CrossRef]
- Toprak Yallıhep, E.S.; Akcay, H.; Kapici, H.O. Impacts of serious games on middle school students’ science achievement and attitudes towards science. Int. J. Technol. Educ. Sci. 2021, 5, 203–212. [Google Scholar] [CrossRef]
- Bressler, D.M.; Bodzin, A.M. A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 2013, 29, 505–517. [Google Scholar] [CrossRef]
- Sung, H.Y.; Hwang, G.J. A collaborative game-based learning approach to improving students’ learning performance in science courses. Comput. Educ. 2013, 63, 43–51. [Google Scholar] [CrossRef]
- Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Li, Y. Educational Game Design Based on Experiential Learning Theory. In Proceedings of the 2021 9th International Conference on Information and Education Technology (ICIET 2021), Kunming, China, 8–10 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 190–193. [Google Scholar] [CrossRef]
- Sawyer, R.K. Educating for Innovation. Think. Skills Creat. 2006, 1, 41–48. [Google Scholar] [CrossRef]
- Heidari-Shahreza, M.A. Pedagogy of play: Insights from playful learning for language learning. Discov. Educ. 2024, 3, 157. [Google Scholar] [CrossRef]
- Tinnesand, M.J. Observations v. assumptions. ChemMatters 2022, 40, 4–5. [Google Scholar]
- González-Espada, W.J.; Birriel, J.; Birriel, I. Discrepant Events: A Challenge to Students’ Intuition. Phys. Teach. 2010, 48, 508–511. [Google Scholar] [CrossRef]
- Bell, R.L. Teaching the Nature of Science through Process Skills: Activities for Grades 3–8; Pearson: Boston, MA, USA, 2008. [Google Scholar]
- Herr, N. The Sourcebook for Teaching Science, Grades 6–12: Strategies, Activities, and Instructional Resources; Jossey-Bass: San Francisco, CA, USA, 2008. [Google Scholar]
- Harris, M.F.; Hisser, D.T.; Hynek, J.A.; Matthews, W.H., III; Roy, C.J.; Skehan, J.; Stevenson, R.E. Teacher’s Guide: Investigating the Earth, Revised ed.; Houghton Mifflin Company: Boston, MA, USA, 1976. [Google Scholar]
- Tricky Tracks Overhead. Available online: http://fossilfinder.coe.uga.edu/wp-content/uploads/2013/03/Tricky-Tracks-Overhead.pdf (accessed on 4 October 2025).
- Lederman, N.; Abd-El-Khalick, F. Avoiding De-Natured Science: Activities That Promote Understandings of the Nature of Science. In The Nature of Science in Science Education; McComas, W.F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 83–126. [Google Scholar]
- Warren, D. The Nature of Science; Royal Society of Chemistry: London, UK, 2001. [Google Scholar]
- Heras-Paniagua, C.; Jiménez-Valverde, G.; Calafell-Subirà, G. La necesidad de una narrativa en la gamificación estructural de una asignatura. In Narrativas y Usuarios de la Sociedad Transmedia; Anaya Benítez, F., Ed.; Dykinson S.L.: Madrid, España, 2022; pp. 73–94. Available online: https://hdl.handle.net/2445/215656 (accessed on 4 October 2025).
- McComas, W.F. (Ed.) Nature of Science in Science Instruction: Rationales and Strategies; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Cobern, W.W. Introducing teachers to the philosophy of science: The card exchange. J. Sci. Teach. Educ. 1991, 2, 45–46. [Google Scholar] [CrossRef]
- Cobern, W.W.; Loving, C.C. The card exchange: Introducing teachers to the philosophy of science. In The Nature of Science in Science Education: Rationales and Strategies; McComas, W.F., Ed.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 73–82. [Google Scholar]
- Cobern, W.W.; Loving, C. The Nature of Science Card Exchange: Introducing the Philosophy of Science. In Nature of Science in Science Instruction: Rationales and Strategies; McComas, W.F., Ed.; Springer: Cham, Switzerland, 2020; pp. 213–222. [Google Scholar] [CrossRef]
- Allaire, F.A. Cobern and Loving’s card exchange revisited: Using literacy strategies to support and enhance teacher candidates’ understanding of NOS. Innov. Sci. Teach. Educ. 2018, 3, 3. Available online: http://innovations.theaste.org/?p=3004 (accessed on 4 October 2025).
- Gilroy, H. Goodbye Old Paint: We’re A-Leavin’ Big D. Pers. Comput. 1977, 1, 120–123. [Google Scholar]
- Play Petals Around the Rose—JavaScript. Available online: https://www.borrett.id.au/computing/petals-j.htm (accessed on 4 October 2025).
- Reichert, M.; Hawley, R. Reaching Boys, Teaching Boys: Strategies that Work—And Why; Jossey-Bass: San Francisco, CA, USA, 2010. [Google Scholar]
- Wason, P.C. On the failure to eliminate hypotheses in a conceptual task. Q. J. Exp. Psychol. 1960, 12, 129–140. [Google Scholar] [CrossRef]
- The Most Common Cognitive Bias. Available online: https://www.youtube.com/watch?v=vKA4w2O61Xo (accessed on 4 October 2025).
- Kang, K. The influence of NOS learning program using board game to the perception of pre-service science teachers on the nature of science. Educ. Res. 2022, 85, 87–108. [Google Scholar] [CrossRef]
- Gardner, M. Mathematical games. Sci. Am. 1959, 200, 160–164. [Google Scholar] [CrossRef]
- Gardner, M. Mathematical games. Sci. Am. 1977, 237, 18–25. [Google Scholar] [CrossRef]
- Abbott, R. Abbott’s New Card Games; Funk and Wagnalls: New York, NY, USA, 1968. [Google Scholar]
- Romesburg, H.C. Simulating scientific inquiry with the card game eleusis. Sci. Educ. 1979, 63, 599–608. [Google Scholar] [CrossRef]
- Anderson, L. The Games Bible; Workman Publishing Company: New York, NY, USA, 2010. [Google Scholar]
- Walkup, J.R.; Key, R. Speed Eleusis: Variation on an old educational card game. Phys. Teach. 2020, 58, 160–163. [Google Scholar] [CrossRef]
- Lopes Dias, G.; dos Santos, R.P. The game of Eleusis: An entertaining simulation of the research heuristic. Acta Sci. 2015, 17, 715–731. [Google Scholar]
- Hagège, H.; Dartnell, C.; Sallantin, J. Positivism Against Constructivism: A Network Game to Learn Epistemology. In Proceedings of the Discovery Science 2007 (DS’07), Sendai, Japan, 1–4 October 2007; Corruble, V., Takeda, M., Suzuki, E., Eds.; Lecture Notes in Artificial Intelligence. Springer: Berlin/Heidelberg, Germany, 2007; Volume 4755, pp. 91–103. Available online: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00193672 (accessed on 4 October 2025).
- Qiao, H.; Suriyaarachchi, H.; Cooray, S.; Nanayakkara, S. Snatch and Hatch: Improving receptivity towards a Nature of Science with a playful mobile application. In Proceedings of the Interaction Design and Children (IDC ‘23), Chicago, IL, USA, 19–23 June 2023; ACM: New York, NY, USA, 2023; pp. 278–288. [Google Scholar] [CrossRef]
- Hassard, J. The Art of Teaching Science; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Llewellyn, D. Teaching High School Science Through Inquiry and Argumentation, 2nd ed.; Corwin: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Llewellyn, D. Inquire Within: Implementing Inquiry- and Argument-Based Science Standards in Grades 3–8; Corwin: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Vázquez-Alonso, Á.; Manassero-Mas, M.A. Juegos para enseñar la naturaleza del conocimiento científico y tecnológico. Educar 2017, 53, 149–170. [Google Scholar] [CrossRef]
- Jiménez-Valverde, G.; Fabre-Mitjans, N.; Guimerà-Ballesta, G. Narrative-Driven Digital Gamification for Motivation and Presence: Preservice Teachers’ Experiences in a Science Education Course. Computers 2025, 14, 384. [Google Scholar] [CrossRef]
- Haskel-Ittah, M. Explanatory black boxes and mechanistic reasoning. J. Res. Sci. Teach. 2023, 60, 915–933. [Google Scholar] [CrossRef]
- O’Brien, T. Identification Detectives: Sounds and Smells of Science. In Brain-Powered Science: Teaching and Learning with Discrepant Events; National Science Teachers Association (NSTA): Arlington, VA, USA, 2010; pp. 73–83. [Google Scholar]
- Mystery Boxes. Available online: https://learning.sciencemuseumgroup.org.uk/wp-content/uploads/2020/04/SMG-Academy-Mystery-Boxes.pdf (accessed on 4 October 2025).
- Rau, G. A new twist on mystery boxes. Sci. Teach. 2009, 76, 30–35. [Google Scholar]
- French, M. Using the Science Museum’s ‘Mystery Boxes’ as a model for science and ‘How science works’. Sch. Sci. Rev. 2012, 94, 15–16. [Google Scholar]
- Manassero-Mas, M.A.; Bennàssar-Roig, A.J.; Vázquez-Alonso, A. Formar, enseñar y aprender sobre la práctica científica en primaria con un juego de cajas negras. REIRE 2021, 14, 1–22. [Google Scholar] [CrossRef]
- Miller, S. Modeling the nature of science with the mystery tube. Phys. Teach. 2014, 52, 548–551. [Google Scholar] [CrossRef]
- Briggs, M. A more challenging mystery tube for teaching the nature of science. Phys. Teach. 2019, 57, 300–303. [Google Scholar] [CrossRef]
- Krell, M.; Hergert, S. The Black Box Approach: Analyzing Modeling Strategies. In Towards a Competence-Based View on Models and Modeling in Science Education; Upmeier zu Belzen, A., Krüger, D., Eds.; Springer: Cham, Switzerland, 2019; Volume 12, pp. 147–160. [Google Scholar] [CrossRef]
- Ruebush, L.; Sulikowski, M.; North, S. A simple exercise reveals the way students think about scientific modeling. J. Coll. Sci. Teach. 2009, 38, 18–22. Available online: https://www.jstor.org/stable/42993571 (accessed on 4 October 2025).
- Modelle in der Biologie. Available online: https://tetfolio.fu-berlin.de/web/440484 (accessed on 4 October 2025).
- Ammoneit, R.; Göhner, M.F.; Bielik, T.; Krell, M. Why most definitions of modeling competence in science education fall short: Analyzing the relevance of volition for modeling. Sci. Educ. 2024, 108, 443–466. [Google Scholar] [CrossRef]
- McNeill, K.L.; Krajcik, J. Supporting Grade 5–8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing; Pearson Allyn & Bacon: New York, NY, USA, 2012. [Google Scholar]
- “The Nature of Science”: An Activity for the First Day of Class 2004. Available online: https://www.scienceteacherprogram.org/genscience/Choi04.html (accessed on 4 October 2025).
- Vesali, M.; Nouri, N.; Saberi, M. Promoting Understanding of Several Elements of Nature of Science Using an Analogy: A Tangram Activity. Innov. Sci. Teach. Educ. 2022, 7, 1–17. Available online: https://innovations.theaste.org/index.php/iste/article/view/366 (accessed on 4 October 2025).
- The Checks Lab. Available online: https://evolution.berkeley.edu/ensi/ensi_checks_lab.html (accessed on 4 October 2025).
- Colburn, A. Learning Science by Doing Science: 10 Classic Investigations Reimagined to Teach Kids How Science Really Works, Grades 3–8; Corwin, NSTA Press: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Lederman, J.; Gnanakkan, D.; Bartels, S.; Lederman, N. The E-mail Lab: Teaching nature of science and science practices through story construction. Sci. Teach. 2015, 82, 57–61. [Google Scholar] [CrossRef]
- The Case of the Missing Computer Chip. ENSI—Evolution & the Nature of Science Institutes 1999. Available online: https://web.archive.org/web/20100211221949/http://www.indiana.edu/~ensiweb/lessons/crime.html (accessed on 4 October 2025).
- Jimenez-Valverde, G.; Heras-Paniagua, C.; Fabre-Mitjans, N.; Calafell, G. Un chip-sterio intrigante: Abordando la Naturaleza de la Ciencia con un juego detectivesco. In Proceedings of the III International Conference on Innovation in Teaching and Research in Social and Legal Sciences (INNDOC), Online, 8–9 June 2023; Available online: https://2023.inndoc.org/ponencia/un-chip-sterio-intrigante-abordando-la-naturaleza-de-la-ciencia-con-un-juego-detectivesco/ (accessed on 4 October 2025).
- Guimerà-Ballesta, G.; Jiménez-Valverde, G.; Fabre-Mitjans, N.; Heras-Paniagua, C. Integrant la naturalesa de la ciència en la formació inicial del professorat: Proposta narrativa i gamificada per promoure la comprensió científica. In Proceedings of the 13th CIDUI Congress 2025: Today’s Teachers for Tomorrow’s University, Barcelona, Spain, 9–11 July 2025. [Google Scholar]
- Clough, M.P. Learners’ Responses to the Demands of Conceptual Change: Considerations for Effective Nature of Science Instruction. Sci. Educ. 2006, 15, 463–494. [Google Scholar] [CrossRef]
- Kotar, M. Demystifying mystery powders. Sci. Child. 1989, 26, 25–28. Available online: https://www.jstor.org/stable/43167067 (accessed on 4 October 2025).
- Oliver-Hoyo, M.; Allen, D.; Solomon, S.; Brook, B.; Ciraolo, J.; Daly, S.; Jackson, L. Qualitative analysis of fourteen white solids and two mixtures using household chemicals. J. Chem. Educ. 2001, 78, 1475–1478. [Google Scholar] [CrossRef]
- Lee, E.J.; Cite, S.; Hanuscin, D. Taking the “mystery” out of argumentation. Sci. Child. 2014, 52, 74–80. [Google Scholar] [CrossRef]
- Bressler, D.M.; Bodzin, A.M. Investigating flow experience and scientific practices during a mobile serious educational game. J. Sci. Educ. Technol. 2016, 25, 795–805. [Google Scholar] [CrossRef]
- Bressler, D.M.; Bodzin, A.M.; Eagan, B.; Tabatabai, S. Using epistemic network analysis to examine discourse and scientific practice during a collaborative game. J. Sci. Educ. Technol. 2019, 28, 553–566. [Google Scholar] [CrossRef]
- Contant, T.L.; Tweed, A.L.; Bass, J.E.; Carin, A.A. Teaching Science Through Inquiry-Based Instruction, 13th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Lederman, N.G.; Abd-El-Khalick, F.; Lederman, J.S. Avoiding De-Natured Science: Integrating Nature of Science into Science Instruction. In Nature of Science in Science Instruction; McComas, W.F., Ed.; Springer: Cham, Switzerland, 2020; pp. 295–326. [Google Scholar] [CrossRef]
- Boxer, A. Teaching Secondary Science: A Complete Guide; John Catt Educational Ltd.: Woodbridge, UK, 2021. [Google Scholar]
- Periodic Patterns Puzzle. Available online: https://www.wpi.edu/sites/default/files/docs/Events/Annual-Events/AweSTEM/puzzle_print.pdf (accessed on 4 October 2025).
- The Missing Piece. Available online: https://passionatelycurioussci.weebly.com/blog/the-missing-piece (accessed on 4 October 2025).
- Hassard, J.; Dias, M. The Art of Teaching Science: Inquiry and Innovation in Middle School and High School; Taylor & Francis Group: New York, NY, USA, 2008. [Google Scholar]
- Rees, S.; Newton, D. Creative Chemists: Strategies for Teaching and Learning; Royal Society of Chemistry: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Jiménez-Valverde, G. Narrative Approaches in Science Education: From Conceptual Understanding to Applications in Chemistry and Gamification. Encyclopedia 2025, 5, 116. [Google Scholar] [CrossRef]
- Scerri, E.R.; McIntyre, L. The Case for the Philosophy of Chemistry. Synthese 1997, 111, 213–232. [Google Scholar] [CrossRef]
- Niaz, M.; Rodríguez, M.A.; Brito, A. An appraisal of Mendeleev’s contribution to the development of the periodic table. Stud. Hist. Philos. Sci. A 2004, 35, 271–282. [Google Scholar] [CrossRef]
- Criswell, W.B. Mistake of Having Students Be Mendeleev for Just a Day. J. Chem. Educ. 2007, 84, 1140–1144. [Google Scholar] [CrossRef]
- Guo, X.-J. The Design and Effectiveness of Board Games about Nature of Science. Master’s Thesis, National Taiwan Normal University, Taipei, Taiwan, August 2021. [Google Scholar]
- Aragón, L.; Vicente, J.J. Abordar la Historia y la Naturaleza de la Ciencia en la Formación Inicial del Profesorado mediante una Secuencia Didáctica basada en un Juego de Cartas. Eur. Public Soc. Innov. Rev. 2024, 9, 1–20. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Valverde, G.; Fabre-Mitjans, N.; Guimerà-Ballesta, G. Games and Playful Activities to Learn About the Nature of Science. Encyclopedia 2025, 5, 193. https://doi.org/10.3390/encyclopedia5040193
Jiménez-Valverde G, Fabre-Mitjans N, Guimerà-Ballesta G. Games and Playful Activities to Learn About the Nature of Science. Encyclopedia. 2025; 5(4):193. https://doi.org/10.3390/encyclopedia5040193
Chicago/Turabian StyleJiménez-Valverde, Gregorio, Noëlle Fabre-Mitjans, and Gerard Guimerà-Ballesta. 2025. "Games and Playful Activities to Learn About the Nature of Science" Encyclopedia 5, no. 4: 193. https://doi.org/10.3390/encyclopedia5040193
APA StyleJiménez-Valverde, G., Fabre-Mitjans, N., & Guimerà-Ballesta, G. (2025). Games and Playful Activities to Learn About the Nature of Science. Encyclopedia, 5(4), 193. https://doi.org/10.3390/encyclopedia5040193

