Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes
Definition
1. Introduction
2. Proposed Geodynamic Interpretation
2.1. Main Concepts
- -
- In the Mediterranean area, the convergence of the confining plates (Nubia, Arabia and Eurasia) was accommodated by the consumption of the oceanic domains which originally lay in that zone.
- -
- These processes only occurred where the sinking of the oceanic lithosphere was triggered by extrusion mechanisms.
- -
- The configuration of the plate mosaic and the related kinematic pattern during each tectonic phase was conditioned, through the activation of major discontinuities, by the need to create strong compression on the buoyant structures that were lying close to oceanic domains (so favoring extrusion processes).
2.2. Evolutionary Reconstruction
3. Tectonics and Seismicity Distribution (Some Examples)
4. Discussion
- -
- The Oligocene evolution of the Iberian–Alpine belt [17,128,129,130] indicates that when the Balearic basin started developing the presence of a well-developed NW-ward plunging slab was very unlikely. This would imply that the generation of the above basin cannot be attributed to a slab-pull driving force.
- -
- The migration of the Iberian–Alpine belt in the western Mediterranean started just when the Nubian plate collided with that belt (e.g., [128,131,132,133]. Was this a mere coincidence? How is it possible to neglect the expected effects (shortening) of the belt-parallel compression that stressed the belt after its collision with western Nubia?
- -
- -
- The reactivation of a major discontinuity in the Western Padanian zone (Giudicarie fault system e.g., [44,136]) around the upper Miocene cannot be associated with a slab-pull process [19,64]. Thus, another coeval driving mechanism must be identified to explain the occurrence of such a major tectonic event.
- -
- The extensional process that formed the northern Tyrrhenian basin in the late Miocene occurred just after the collision of the Iberian–Apennine belt with the Adriatic continental domain. This context is not compatible with the presumed occurrence of a slab-pull mechanism, since that process would have required the very unlikely retreat of a continental domain. One should also consider that during the formation of that basin the northern Apennines did not undergo accretionary activity.
- -
- The development of a major discontinuity crossing the Ionian (Victor Hensen–Medina fault) and the Pelagian (Sicily Channel fault system) domains has been tentatively explained by proposing various driving forces (e.g., [33,35,36,137,138]), but none of them involves a slab-pull mechanism. Thus, the adoption of this mechanism to explain the Tyrrhenian basins would require the identification of a coeval driving force strong enough to break undeformed foreland domains, such as the Ionian and the Pelagian ones.
- -
- Around the late Miocene–early Pliocene an old weak zone in the northeastern sector of the Adriatic promontory reactivated as a sinistral transpressional fault system (Schio–Vicenza) [44,46,47]. Since this major event cannot be explained as an effect of a slab-pull mechanism, one should identify another coeval driving force, able to break the northern Adriatic continental foreland.
- -
- The available evidence indicates that the Maghrebian belt lying north of the Pelagian domain underwent a northward displacement since the late Miocene (e.g., [37,38,39,139]). The fact that this belt sector moved in the opposite direction with respect to the other peri-Tyrrhenian belts is not compatible with the implications of the slab-pull model [19,64].
- -
- An important aspect of the Pliocene deformation pattern is the generation of the Campidano graben in Sardinia during the Pliocene (e.g., [41]). The significance of this event is due to the fact that the occurrence of tetonic activity in such an isolated block cannot easily be explained by an alternative interpretation, with respect to the one proposed in this work (that is, the interaction of Sardinia with the Adventure–Maghrebian indenter). In particular, the above tectonic activity cannot be related to a slab-pull driving force.
- -
- The southernmost Tyrrhenian basin (Marsili) developed at a very high rate (19 cm/y) during the Early Pleistocene [140]. Explaining this rate as an effect of a slab-pull force is quite difficult as it is difficult to explain why this rate underwent a drastic reduction in the late Pleistocene.
- -
- -
- The slab-pull model has been considerably encouraged by the fact that the Aegean zone is moving significantly faster than Anatolia, as indicated by geodetic velocities (e.g., [148,149]). However, this interpretation does not take into account the possibility that the present velocity field can represent the transient pattern triggered by the post-seismic relaxation induced by the strong seismic sequence that has occurred along the North Anatolian fault since 1939 [150,151].
- -
- -
- The available evidence indicates that the Cyclades massif in the Aegean zone has been affected by coeval E-W compression and S-N extension since the early Miocene (e.g., [155,156]). The S-N extension can be interpreted as an effect of the presumed slab-pull force, but explaining why the pull of the Hellenic slab may have caused E-W compression is not simple.
- -
- -
- -
- The very strong E-W compression that caused the S- to SW-ward escape of the Peloponnesus wedge and the occurrence of S-N extension in northern Greece (revealed by the formation of a series of roughly E-W troughs: Corinth, Ambracique, Thessaly) is not compatible with the implications of the presumed slab-pull mechanism in the Aegean arc.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dercourt, J.; Zonenshain, L.P.; Ricou, L.E.; Kazmin, V.G.; Le Pichon, X.; Knipper, A.L.; Grandjacquet, C.; Sbortshikov, I.M.; Geyssant, J.; Lepvrirer, C.; et al. Geological evolution of the Tethys belt from Atlantic to the Pamirs since the Lias. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Royden, L.H.; Baldi, T. Early Cenozoic tectonics and paleogeography of the Pannonian and surrounding regions. In The Pannonian Basin: A Study in Basin Evolution; Royden, L.H., Horvath, F., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1988; Memoir 45; pp. 1–16. [Google Scholar]
- Robertson, A.H.F. Mesozoic-Tertiary tectonic-sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In Tectonics and Magmatism in Turkey and the Surrounding Area; Bozkurt, E., Winchester, J.A., Piper, J.D.A., Eds.; Geological Society, London, Special Publications: London, UK, 2000; Volume 173, pp. 97–138. [Google Scholar]
- Cavazza, W.; Roure, F.; Spakman, W.; Stampfli, G.; Ziegler, P.A. The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Springer: Berlin/Heidelberg, Germany, 2004; p. 141. [Google Scholar]
- Finetti, I.R. CROP PROJECT, Deep Seismic Exploration of the Central Mediterranean and Italy; Elsevier: Amsterdam, The Netherlands, 2005; p. 794. [Google Scholar]
- Burchfiel, B.; Nakov, R.; Dumurdzanov, N.; Papanikolaou, D.; Tzankov, T.; Serafimovski, T.; King, R.; Kotzev, V.; Todosov, A.; Nurce, B. Evolution and dynamics of the Cenozoic Tectonics of the South Balkan Extensional System. Geosphere 2008, 4, 919–938. [Google Scholar] [CrossRef]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef]
- Handy, M.R.; Schmid, S.M.; Bousquet, R.; Kissling, E.; Bernoulli, D. Reconciling plate-tectonic reconstructions with the geological-geophysical record of spreading and subduction in the Alps. Earth-Sci. Rev. 2010, 102, 121–158. [Google Scholar] [CrossRef]
- van Hinsbergen, D.; Schmid, S.M. Map view restoration of Aegean-West Anatolian accretion and extension since the Eocene. Tectonics 2012, 31, 5. [Google Scholar] [CrossRef]
- Horváth, F.; Musitz, B.; Balázs, A.; Végh, A.; Uhrin, A.; Nádor, A.; Koroknai, B.; Pap, N.; Tóth, T.; Wórum, G. Evolution of the Pannonian Basin and its geothermal resources. Geothermics 2015, 53, 328–352. [Google Scholar] [CrossRef]
- Karig, D.E. Origin and development of marginal basins in the western Pacific. J. Geophys. Res. 1971, 76, 2542–2561. [Google Scholar] [CrossRef]
- Uyeda, S.; Kanamori, H. Back-arc opening and mode of subduction. J. Geophys. Res. 1979, 84, 1049–1061. [Google Scholar] [CrossRef]
- Taylor, B.; Karner, G.D. On the evolution of marginal basins. Rev. Geophys. 1983, 21, 1727–1741. [Google Scholar] [CrossRef]
- Honza, E.; Fujioka, K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics 2004, 384, 23–53. [Google Scholar] [CrossRef]
- Heuret, A.; Lallemand, S. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 2005, 149, 31–51. [Google Scholar] [CrossRef]
- Currie, C.A.; Hyndman, R.D. The thermal structure of subduction zone back arcs. J. Geophys. Res. 2006, 111, B08404. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Babbucci, D.; Tamburelli, C. Generation of trench-arc-backarc systems in the Western Mediterranean region driven by plate convergence. Ital. J. Geosci. 2009, 128, 89–106. [Google Scholar]
- Artemieva, I. Back-arc basins: A global view from geophysical synthesis and analysis. Earth-Sci. Rev. 2023, 236, 104242. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C. Neogenic Evolution of the Mediterranean Region: Geodynamics, Tectonics and Seismicity; Springer Nature: Cham, Switzerland, 2024; p. 174. ISBN 3031621492. [Google Scholar]
- Cenni, N.; Mantovani, E.; Baldi, P.; Viti, M. Present kinematics of Central and Northern Italy from continuous GPS measurements. J. Geodyn. 2012, 58, 62–72. [Google Scholar] [CrossRef]
- Nocquet, J.M. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics 2012, 579, 220–242. [Google Scholar] [CrossRef]
- Serpelloni, E.; Cavaliere, A.; Martelli, L.; Pintori, F.; Anderlini, L.; Borghi, A.; Randazzo, D.; Bruni, S.; Devoti, R.; Perfetti, P.; et al. Surface velocities and strain-rates in the Euro-Mediterranean Region from massive GPS data processing. Front. Earth Sci. 2022, 10, 907897. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Albarello, D. Nubia-Eurasia kinematics: An alternative interpretation from Mediterranean and North Atlantic evidence. Ann. Geophys. 2007, 50, 311–336. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Babbucci, D.; Tamburelli, C. Plate kinematics and geodynamics in the Central Mediterranean. J. Geodyn. 2011, 51, 190–204. [Google Scholar] [CrossRef]
- Sartori, R.; Torelli, L.; Zitellini, N.; Carrara, G.; Magaldi, M.; Mussoni, P. Crustal features along a W-E Tyrrhenian transect from Sardinia to Campania Margins (Central Mediterranean). Tectonophysics 2004, 383, 171–192. [Google Scholar] [CrossRef]
- Finetti, I.R.; Del Ben, A. Ionian Tethys Lithosphere Roll-Back Sinking and Back-Arc Tyrrhenian Opening from New CROP Seismic Data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 21; pp. 483–504. [Google Scholar]
- Milia, A.; Torrente, M.M.; Iannace, P. Pliocene-Quaternary orogenic systems in Central Mediterranean: The Apulia-Southern Apennines-Tyrrhenian Sea example. Tectonics 2017, 36, 1614–1632. [Google Scholar] [CrossRef]
- Finetti, I.R.; Lentini, F.; Carbone, S.; Del Ben, A.; Di Stefano, A.; Guarnieri, P.; Pipan, M.; Prizzon, A. Crusta1 Tectono-Stratigraphy and Geodynamics of the Southern Apennines from CROP and Other Integrated Geophysical-Geological Data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 12; pp. 225–262. [Google Scholar]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Ghielmi, M.; Minervini, M.; Nini, C.; Rogledi, S.; Rossi, M. Late Miocene–Middle Pleistocene sequences in the Po Plain–Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Mar. Pet. Geol. 2013, 42, 50–81. [Google Scholar] [CrossRef]
- Del Ben, A.; Barnaba, C.; Toboga, A. Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the Calabrian Arc. Mar. Geophys. Res. 2008, 29, 1–12. [Google Scholar] [CrossRef]
- Zecchin, M.; Praeg, D.; Ceramicola, S.; Muto, F. Onshore to offshore correlation of regional unconformities in the Plio-Pleistocene sedimentary successions of the Calabrian Arc (central Mediterranean). Earth-Sci. Rev. 2015, 142, 60–78. [Google Scholar] [CrossRef]
- Hieke, W.; Hirschleber, H.B.; Deghani, G.A. The Ionian Abyssal Plain (central Mediterranean Sea): Morphology, sub-bottom structures and geodynamic history—An inventory. Mar. Geophys. Res. 2003, 24, 279–310. [Google Scholar] [CrossRef]
- Gallais, F.; Gutscher, M.A.; Graindorge, D.; Chamot-Rooke, N.; Klaeschen, D.A. Miocene tectonic inversion in the Ionian Sea (Central Mediterranean): Evidence from multichannel seismic data. J. Geophys. Res. 2011, 116, B12108. [Google Scholar] [CrossRef]
- Finetti, I.R.; Del Ben, A. Crustal tectono-stratigraphic setting of the Pelagian foreland from new CROP Seismic Data. In CROP PROJECT, Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 26; pp. 581–596. [Google Scholar]
- Civile, D.; Lodolo, E.; Accettella, D.; Geletti, R.; Ben-Avraham, Z.; Deponte, M.; Facchin, L.; Ramella, R.; Romeo, R. The Pantelleria Graben (Sicily Channel, Central Mediterranean): An example of intraplate ‘passive’ rift. Tectonophysics 2010, 490, 173–183. [Google Scholar] [CrossRef]
- Sulli, A. Structural framework and crustal characteristics of the Sardinia Channel Alpine transect in the central Mediterranean. Tectonophysics 2000, 324, 321–336. [Google Scholar] [CrossRef]
- Finetti, I.R.; Lentini, F.; Carbone, S.; Del Ben, A.; Di Stefano, A.; Forlin, E.; Guarnieri, P.; Pipan, M.; Prizzon, A. Geological Outline of Sicily and Lithospheric Tectono-Dynamics of its Tyrrhenian Margin from New CROP Seismic Data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 15; pp. 319–376. [Google Scholar]
- Pepe, F.; Sulli, A.; Bertotti, G.; Catalano, R. Structural highs formation and their relationship to sedimentary basins in the north Sicily continental margin (southern Tyrrhenian Sea): Implications for the Drepano thrust front. Tectonophysics 2005, 409, 1–18. [Google Scholar] [CrossRef]
- Carmignani, L.; Decandia, F.A.; Fantozzi, P.L.; Lazzarotto, A.; Liotta, D.; Meccheri, M. Tertiary extensional tectonics in Tuscany (northern Apennines, Italy). Tectonophysics 1994, 238, 295–315. [Google Scholar] [CrossRef]
- Finetti, I.R.; Del Ben, A.; Fais, S.; Forlin, E.; Klingele, E.; Lecca, L.; Pipan, M.; Prizzon, A. Crustal Tectono-Stratigraphic Setting and Geodynamics of the Corso-Sardinian Block from New CROP Seismic Data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 18; pp. 413–446. [Google Scholar]
- Frizon de Lamotte, D.; Saint Bezar, B.; Bracène, R.; Mercier, E. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 2000, 19, 740–761. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Castellarin, A.; Cantelli, L. Neo-alpine evolution of the southern eastern Alps. J. Geodyn. 2000, 30, 251–274. [Google Scholar] [CrossRef]
- Verwater, V.F.; Le Breton, E.; Handy, M.R.; Picotti, V.; Najafabadi, A.J.; Haberland, C. Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy). Solid Earth 2021, 12, 1309–1334. [Google Scholar] [CrossRef]
- Zampieri, D.; Massironi, M.; Sedea, R.; Saracino, V. Strike-slip contractional stepovers in the Southern Alps (northeastern Italy). Ecol. Geol. Helv. 2003, 96, 115–123. [Google Scholar]
- Pola, M.; Ricciato, A.; Fantoni, R.; Fabbri, P.; Zampieri, D. Architecture of the western margin of the North adriatic foreland: The Schio-Vicenza fault system. Ital. J. Geosci. 2014, 133, 223–234. [Google Scholar] [CrossRef]
- Mazzoli, S.; Pierantoni, P.P.; Borraccini, F.; Paltrinieri, W.; Deiana, G. Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, central Italy. J. Struct. Geol. 2005, 27, 1940–1953. [Google Scholar] [CrossRef]
- Pizzi, A.; Galadini, F. Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 2009, 476, 304–319. [Google Scholar] [CrossRef]
- Mueller, S.; Phillips, R.J. On the initiation of subduction. J. Geophys. Res. Solid Earth 1991, 96, 651–665. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Evans, B.; Mackwell, S.J. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 1995, 100, 17587–17602. [Google Scholar] [CrossRef]
- Viti, M.; Albarello, D.; Mantovani, E. Rheological profiles in the central-eastern Mediterranean. Ann. Geofis. 1997, 40, 849–864. [Google Scholar]
- Burov, E.B. Rheology and strength of the lithosphere. Mar. Pet. Geol. 2011, 28, 1402–1443. [Google Scholar] [CrossRef]
- Zuber, M.T. Compression of oceanic lithosphere: Analyses of intraplate deformation in the central Indian Basin. J. Geophys. Res. 1987, 92, 4817–4825. [Google Scholar] [CrossRef]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Royden, L.H. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 1993, 12, 629–638. [Google Scholar] [CrossRef]
- Rosenbaum, G. Geodynamics of oroclinal bending: Insights from the Mediterranean. J. Geodyn. 2014, 82, 5–15. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.J.; Vissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Brun, J.P.; Faccenna, C.; Gueydan, F.; Sokoutis, D.; Philippon, M.; Kydonakis, K.; Gorini, C. The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Can. J. Earth Sci. 2016, 53, 1142–1157. [Google Scholar] [CrossRef]
- Royden, L.; Faccenna, C. Subduction orogeny and the late Cenozoic evolution of the Mediterranean Arcs. Annu. Rev. Earth Planet. Sci. 2018, 46, 261–289. [Google Scholar] [CrossRef]
- Romagny, A.; Jolivet, L.; Menant, A.; Bessière, E.; Maillard, A.; Canva, A.; Gorini, C.; Augier, R. Detailed tectonic reconstructions of the western Mediterranean region for the last 35 Ma, insights on driving mechanisms. Bull. Soc. Géolo. Fr. 2020, 191, 37. [Google Scholar] [CrossRef]
- Jolivet, L.; Menant, A.; Roche, V.; Le Pourhiet, L.; Maillard, A.; Augier, R.; Do Couto, D.; Gorini, C.; Thinon, I.; Canva, A. Transfer zones in Mediterranean back-arc regions and tear faults. BSGF-Earth Sci. Bull. 2021, 192, 11. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Cenni, N.; Baglione, M.; D’Intinosante, V. Generation of back-arc basins as side effect of shortening processes: Examples from the Central Mediterranean. Int. J. Geosci. 2014, 5, 1062–1079. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Cenni, N. Geodynamics of the central-western Mediterranean region: Plausible and non-plausible driving forces. Mar. Pet. Geol. 2020, 113, 104121. [Google Scholar] [CrossRef]
- Mantovani, E.; Babbucci, D.; Tamburelli, C.; Viti, M. Late Cenozoic evolution and present tectonic setting of the Aegean–Hellenic Arc. Geosciences 2022, 12, 104. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Hoxha, I.; Piccardi, L. Geodynamics of the South Balkan and Northern Aegean Regions Driven by the Westward Escape of Anatolia. Int. J. Geosci. 2023, 14, 480–504. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Baglione, M.; D’Intinosante, V. Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System. Geosciences 2024, 14, 277. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C. Plio–Quaternary Tectonic Activity in the Northern Nubian Belts: The Main Driving Forces. Appl. Sci. 2025, 15, 587. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Babbucci, D.; Tamburelli, C.; Caggiati, M.; Riva, A. Basic role of extrusion processes in the Late Cenozoice of the western and central Mediterranean belts. Geosciences 2021, 11, 499. [Google Scholar] [CrossRef]
- Hempton, M.R. Constraints on Arabian plate motion and extensional history of the Red sea. Tectonics 1987, 6, 687–705. [Google Scholar] [CrossRef]
- Okay, A.I.; Zattin, M.; Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 2010, 38, 35–38. [Google Scholar] [CrossRef]
- Albino, I.; Cavazza, W.; Zattin, M.; Okay, A.I.; Adamia, S.; Sadradze, N. Far-field tectonic effects of the Arabia-Eurasia collision and the inception of the North Anatolian Fault system. Geol. Mag. 2014, 151, 372–379. [Google Scholar] [CrossRef]
- Cavazza, W.; Cattò, S.; Zattin, M.; Okay, A.I.; Reiners, P. Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey. Geosphere 2018, 14, 2277–2293. [Google Scholar] [CrossRef]
- Fodor, L.; Csontos, L.; Bada, G.; Györfi, I.; Benkovics, L. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: A new synthesis of paleostress data. In The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, F., Seranne, M., Eds.; Geological Society, London, Special Publications: London, UK, 1999; Volume 156, pp. 295–334. [Google Scholar]
- Balázs, A.; Matenco, L.; Magyar, I.; Horváth, F.; Cloetingh, S. The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics 2016, 35, 1526–1559. [Google Scholar] [CrossRef]
- Sartori, R. The main results of ODP leg 107 in the frame of Neogene to Recent geology of perityrrhenian areas. Proc. Ocean Drill. Program Sci. Results 1990, 107, 715–730. [Google Scholar]
- Finetti, I.; Boccaletti, M.; Bonini, M.; Del Ben, A.; Geletti, R.; Pipan, M.; Sani, F. Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines-Adriatic Sea. Tectonophysics 2001, 343, 135–163. [Google Scholar] [CrossRef]
- Finetti, I.R.; Boccaletti, M.; Bonini, M.; Del Ben, A.; Pipan, M.; Prizzon, A.; Sani, F. Lithospheric tectono-stratigraphic setting of the Ligurian Sea-Northern Apennines-Adriatic foreland from integrated CROP seismic data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 8; pp. 119–158. [Google Scholar]
- Mantovani, E.; Viti, M.; Tamburelli, C.; Babbucci, D.; Baglione, M.; D’Intinosante, V. Tectonic Setting and Spatiotemporal Earthquake Distribution in Northern Nubia and Iberia. Geosciences 2025, 15, 49. [Google Scholar] [CrossRef]
- Casula, G.; Cherchi, A.; Montadert, L.; Murru, M.; Sarria, E. The Cenozoic graben system of Sardinia (Italy): Geodynamic evolution from new seismic and field data. Mar. Pet. Geol. 2001, 18, 863–888. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A.; Patacca, E.; Scandone, P. Plio-Pleistocene extensional tectonics in the Campidano Graben (SW Sardinia, Italy): Preliminary note. Rend. Online Soc. Geol. Ital. 2013, 29, 31–34. [Google Scholar]
- Mercier, J.L.; Simeakis, K.; Sorel, D.; Vergely, P. Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res. 1989, 2, 49–71. [Google Scholar] [CrossRef]
- Meulenkamp, J.E.; Van Der Zwan, G.J.; Van Wamel, W.A. On late Miocene to recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics 1994, 234, 53–72. [Google Scholar] [CrossRef]
- Skampa, E.; Dimiza, M.D.; Arabas, A.; Gogou, A.; Panagiotopoulos, I.P.; Tsourou, T.; Velaoras, D.; Karagiorgas, M.; Baumann, K.-H.; Triantaphyllou, M.V. The Cretan Basin (South Aegean Sea, NE Mediterranean) in the Early Pliocene: A paleoceanographic reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 640, 112085. [Google Scholar] [CrossRef]
- Armijo, R.; Lyon-Caen, H.; Papanastassiou, D. East-west extension and Holocene normal-fault scarps in the Hellenic arc. Geology 1992, 20, 491–494. [Google Scholar] [CrossRef]
- Duermeijer, C.; Nyst, M.; Meijer, P.; Langereis, C.; Spakman, W. Neogene evolution of the Aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth Planet. Sci. Lett. 2000, 176, 509–525. [Google Scholar] [CrossRef]
- Stein, S.; Geller, R.J.; Liu, M. Why earthquake hazard maps often fail and what to do about it. Tectonophysics 2012, 562–563, 1–25. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Cenni, N.; Tamburelli, C.; Vannucchi, A. Middle term prediction of earthquakes in Italy: Some remarks on empirical and deterministic approaches. Boll. Geof. Teor. Appl. 2012, 53, 89–111. [Google Scholar]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Cenni, N.; Baglione, M.; D’Intinosante, V. Present Tectonic Setting and Spatio-Temporal Distribution of Seismicity in the Apennine Belt. Int. J. Geosci. 2015, 6, 429–454. [Google Scholar] [CrossRef]
- Mantovani, E.; Tamburelli, C.; Babbucci, D.; Viti, M.; Cenni, N. Tectonics and Seismicity in the Periadriatic Zones: Implications for Seismic Hazard in Italy. In Earthquakes—From Tectonics to Buildings; Salazar, W., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Baglione, M.; D’Intinosante, V. Short-Term Kinematics of the Adria Plate and Space-Time Distribution of Major Peri-Adriatic Earthquakes. Int. J. Geosci. 2022, 13, 1057–1081. [Google Scholar] [CrossRef]
- Viti, M.; Mantovani, E.; Babbucci, D.; Cenni, N.; Tamburelli, C. Where the next strong earthquake in Italy: Possible insights by a deterministic approach. Boll. Geof. Teor. Appl. 2015, 56, 329–350. [Google Scholar]
- Rothé, J.P. The Seismicity of the Earth (1953–1965); UNESCO Series of Earth Sciences; UNESCO: Brussels, Belgium, 1969; p. 336. [Google Scholar]
- Karnik, V. Seismicity of the European Area, Part and Part II; Reidel Publishing Company: Dordrecht, The Netherlands, 1971. [Google Scholar]
- Rothé, J.P. Seismicité de l’Atlantique oriental, de la Méditerranée occidentale et de ses bordures. Rev. Géogr. Phys. Géol. Dyn. 1971, 13, 419–428. [Google Scholar]
- Roussel, J. Les zones actives et la frequence des seismes en Algerie (1716–1970). Bull. Soc. Hist. Nat. Afr. Nord. Alger. 1973, 64, 211–227. [Google Scholar]
- Shebalin, N.V.; Karnik, V.; Hadzievski, D. Catalogue of Earthquakes (Part I, 1901–1970); UNDP-Unesco Survey of the Seismicity of Balkan Region: Skopje, North Macedonia, 1974. [Google Scholar]
- Ben-Menahem, A. Earthquake catalogue for the Middle East (92 B.C.-1980 A.D.). Boll. Geofis. Teor. Appl. 1979, XXI, 245–310. [Google Scholar]
- Poirier, J.P.; Taher, M.A. Historical seismicity in the near and middle East, north Africa and Spain from Arabic documents (VIIth–XVIIIth century). Bull. Seismol. Soc. Am. 1980, 70, 2185–2201. [Google Scholar] [CrossRef]
- Kondorskaya, N.V.; Shebalin, N.V. New catalog of strong earthquakes in the U.S.S.R. from ancient times through 1977. In World Data Center A for Solid Earth Geophysics; EDIS: Boulder, CO, USA, 1982; p. 173. [Google Scholar]
- Mezcua, J.; Martinez Solares, J.M. Sismicidad del Area Ibero-Moghrebi; Publicacion 203; Instituto Geográfico Nacional: Madrid, Spain, 1983; p. 302. [Google Scholar]
- Ambraseys, N.N. Material for the investigation of the seismicity of Tripolitania (Libya). Boll. Geof. Teor. Appl. 1984, XXVI, 143–155. [Google Scholar]
- Ambraseys, N.N.; Finkel, C.F. Seismicity of Turkey and neighbouring regions, 1899–1915. Ann. Geophys. 1987, 5B, 501–726. [Google Scholar]
- Comninakis, P.E.; Papazachos, B.C. A Catalogue of Earthquakes in Greece and the Surrounding Area for the Period 1901–1985; Geophysical Laboratory Publications: Thessaloniki, Greece, 1986. [Google Scholar]
- Al Hakeem, K. Studying of historical earthquakes activity in Syria. In Workshop on Historical Seismicity of Central-Eastern Mediterranean Region; Margottini, C., Serva, L., Eds.; ENEA-IAEA: Rome, Italy, 1988. [Google Scholar]
- Eva, C.; Riuscetti, M.; Slejko, D. Seismicity of the Black sea region. Boll. Geof. Teor. Appl. 1988, 30, 53–66. [Google Scholar]
- Benouar, D. Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Ann. Di Geofis. 1994, XXXVII, 459–860. [Google Scholar] [CrossRef]
- Khair, K.; Karakaisis, G.F.; Papadimitriou, E.E. Seismic zonation oft he Dead Sea trasform fault area. Ann. Di Geofis. 2000, 43, 61–79. [Google Scholar]
- Sbeinati, M.R.; Darawcheh, R.; Mouty, M. The historical earthquakes of Syria: An analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Ann. Geophys. 2005, 3, 347–435. [Google Scholar] [CrossRef]
- Godey, S.; Bossu, R.; Guilbert, J.; Mazet-Roux, G. The Euro-Mediterranean Bulletin: A comprehensive seismological bulletin at regional scale. Seismol. Res. Lett. 2006, 77, 460–474. [Google Scholar] [CrossRef]
- Peláez, J.A.; Chourak, M.; Tadili, B.A.; Aït Brahim, L.; Hamdache, M.; López Casado, C.; Martínez Solares, J.M.A. Catalog of Main Moroccan Earthquakes from 1045 to 2005. Seismol. Res. Lett. 2007, 78, 6. [Google Scholar] [CrossRef]
- Abde-Ramal, K.; Al-Amri, A.M.S.; Abdel-Moneit, E. Seismicity of Sinai peninsula, Egypt. Arab J. Geosci. 2009, 2, 103–118. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewonski, A. The global CMT project 2004–2010: Centroid-moment tensors for 13.017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- Grünthal, G.; Wahlström, R. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J. Seismol. 2012, 16, 535–570. [Google Scholar] [CrossRef]
- Makropoulos, K.; Kaviris, G.; Kouskouna, V. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci 2012, 12, 1425–1430. [Google Scholar] [CrossRef]
- Sesetyan, K.; Demircioglu, M.; Rovida, A.; Albini, P.; Stucchi, M.; with the collaboration of Zare, M.; Viganò, D.; Locati, M. SHARE-CET, the SHARE Earthquake Catalogue for Central and Eastern Turkey Complementing the SHARE European Catalogue (SHEEC). 2012. Available online: https://www.emidius.eu/SHEEC/ (accessed on 1 March 2025).
- Stucchi, M.; Rovida, A.; Capera, A.A.G.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef]
- ISIDe Working Group. Italian Seismological Instrumental and Parametric Database (ISIDe); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2016. [Google Scholar]
- Cherkaoui, T.-E.; Medina, F.; Mridekh, A. Re-examination of the historical 11 May, 1624 Fez earthquake parameters. Física Tierra 2017, 29, 135–157. [Google Scholar]
- Poujol, A.; Ritz, J.-F.; Vernant, P.; Huot, S.; Maate, S.; Tahayt, A. Which fault destroyed Fes city (Morocco) in 1755? A new insight from the Holocene deformations observed along the southern border of Gibraltar arc. Tectonophysics 2017, 712, 303–311. [Google Scholar] [CrossRef]
- Suwihli, S.S.; Paradise, T.R. Creating a Libyan Earthquake Archive: From Classical Times to the Present. Open J. Earthq. Res. 2020, 9, 367–382. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Italian Parametric Earthquake Catalogue (CPTI15); Version 3.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2022. [Google Scholar] [CrossRef]
- Incorporated Research Institutions for Seismology (IRIS). Available online: http://ds.iris.edu/ieb/ (accessed on 1 March 2025).
- Mantovani, E.; Viti, M.; Tamburelli, C.; Babbucci, D.; Baglione, M.; D’Intinosante, V. Seismicity Patterns in Some Mediterranean Zones After the 1939 Anatolian Earthquake: Insights on Seismic Risk and the Tectonic Setting. GeoHazards 2025, 6, 29. [Google Scholar] [CrossRef]
- Barka, A.A. Slip distribution along the North Atlantic fault associated with the large earthquakes of the period 1939 to 1967. Bull. Seismol. Soc. Am. 1996, 86, 1238–1254. [Google Scholar] [CrossRef]
- Hubert-Ferrari, A.; Armijo, R.; King, G.; Meyer, B.; Barka, A. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. J. Geophys. Res. 2002, 107, ETG 9-1–ETG 9-33. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Tüysüz, O.; İmren, C.; Sakınç, M.; Eyidoğan, H.; Görü, N.; Le Pichon, X.; Rangin, C. The North Anatolian Fault. A New look. Annu. Rev. Earth Planet. Sci. 2005, 33, 37–112. [Google Scholar] [CrossRef]
- Finetti, I.R.; Forlin, E.; Pipan, M. Lithospheric Tectono-Dynamics of the Balearic Basin Opening from CROP-ECORS Seismic Data. In CROP PROJECT, Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 20; pp. 471–481. [Google Scholar]
- Molli, G. Northern Apennine-Corsica Orogenic System: An Updated Overview. In Tectonic Aspects of the Alpine-Dinarides-Carpathians System; Siegesmund, S., Fugensheu, B., Froitzheim, N., Eds.; The Geological Society: London, UK, 2008; Volume 298, pp. 413–442. [Google Scholar]
- Handy, M.R.; Ustaszewski, K.; Kissling, E. Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. 2015, 104, 1–26. [Google Scholar] [CrossRef]
- Azanon, J.M.; Crespo-Blanc, A.; Garcia-Duenas, V. Continental collision, crustal thinning and nappe forming during the pre-Miocene evolution of the Alpujarride Complex (Alboran Domain, Betics). J. Struct. Geol. 1997, 19, 1055–1071. [Google Scholar] [CrossRef]
- Casas Sainz, A.-M.; Faccenna, C. Tertiary compressional deformation of the Iberian plate. Terra Nova 2001, 13, 281–288. [Google Scholar] [CrossRef]
- Michard, A.; Chalouan, A.; Feinberg, H.; Goffé, B.; Montigny, R. How does the Alpine belt end between Spain and Morocco? Bull. Soc. Géol. Fr. 2002, 173, 3–15. [Google Scholar] [CrossRef]
- Schellart, W.P.; Freeman, J.; Stegman, D.R.; Moresi, L.; May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 2007, 446, 308–311. [Google Scholar] [CrossRef]
- Schellart, W.P.; Stegman, D.R.; Farrington, R.J.; Moresi, L. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. J. Geophys. Res. 2011, 116, B10408. [Google Scholar] [CrossRef]
- Castellarin, A.; TRANSALP Working Group. Structural synthesis of the Eastern Alps: A collisional orogenic chain. In Proceedings of the Geology of Italy: Special Volume of the Italian Geological Society for the 32nd International Geological Congress, Florence, Italy, 20–28 August 2004; Crescenti, V., D’Offizi, S., Merlino, S., Sacchi, L., Eds.; Società Geologica Italiana: Rome, Italy, 2004; pp. 3–13. [Google Scholar]
- Reuther, C.-D.; Ben Avraham, Z.; Grasso, M. Origin and role of major strike-slip transfers during plate collision in the Central Mediterranean. Terra Nova 1993, 5, 249–257. [Google Scholar] [CrossRef]
- Civile, D.; Brancolini, G.; Lodolo, E.; Forlin, E.; Accaino, F.; Zecchin, M.; Brancatelli, G. Morphostructural setting and tectonic evolution of the central part of the Sicilian Channel (Central Mediterranean). Lithosphere 2021, 2021, 7866771. [Google Scholar] [CrossRef]
- Ben Avraham, Z.; Boccaletti, M.; Cello, G.; Grasso, M.; Lentini, F.; Torelli, L.; Tortorici, L. Principali domini strutturali originatisi dalla collisione Neogenico-Quaternaria nel Mediterraneo Centrale. Mem. Soc. Geol. Ital. 1990, 45, 453–462. [Google Scholar]
- Nicolosi, I.; Speranza, F.; Chiappini, M. Ultrafast Oceanic Spreading of the Marsili Basin, Southern Tyrrhenian Sea. Evidence from Magnetic Anomaly Analysis. Geology 2006, 34, 717–720. [Google Scholar] [CrossRef]
- Zecchin, M.; Nalin, R.; Roda, C. Raised Pleistocene marine terraces of the Crotone peninsula (Calabria, southern Italy): Facies analysis and organization of their deposits. Sediment. Geol. 2004, 172, 165–185. [Google Scholar] [CrossRef]
- Antonioli, F.; Ferranti, L.; Lambeck, K.; Kershaw, S.; Verrubbi, V.; Dai Pra, G. Late Pleistocene to Holocene record of changing uplift rates in Southern Calabria and northeastern Sicily (Southern Italy, Central Mediterranean Sea). Tectonophysics 2006, 422, 23–40. [Google Scholar] [CrossRef]
- Roda-Boluda, D.C.; Whittaker, A.C. Structural and geomorphic constraints on active normal faulting and landscape evolution in Calabria, Italy. J. Geol. Soc. Lond. 2017, 174, 701–720. [Google Scholar] [CrossRef]
- Shemenda, A.I. Subduction of the lithosphere and back arc dynamics: Insights from physical modelling. J. Geophys. Res. 1993, 98, 167–185. [Google Scholar] [CrossRef]
- Hassani, R.; Jongmans, D.; Chery, J. Study of plate deformation and stress in subduction processes using two dimensional numerical models. J. Geophys. Res. 1997, 102, 17951–17965. [Google Scholar] [CrossRef]
- Hampel, A.; Pfiffner, A. Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction related mountain belts. In Analogue and Numerica; Buiter, S.J.H., Schreurs, G., Eds.; Geological Society, London, Special Publications: London, UK, 2006; Volume 253, pp. 105–115. [Google Scholar] [CrossRef]
- Husson, L. Dynamic topography above retreating subduction zones. Geology 2006, 34, 741–744. [Google Scholar] [CrossRef]
- Reilinger, R.E.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 2006, 111, B05411. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.P.; Capitanio, F.A.; Funiciello, F.; Horvàth, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Cenni, N.; Albarello, D.; Babbucci, D. Short and long-term deformation patterns in the Aegean-Anatolian systems: Insights from space geodetic data (GPS). Geophys. Res. Lett. 2001, 28, 2325–2328. [Google Scholar] [CrossRef]
- Cenni, N.; D’onza, F.; Viti, M.; Mantovani, E.; Albarello, D.; Babbucci, D. Post seismic relaxation processes in the Aegean-Anatolian system: Insights from space geodetic data (GPS) and geological/geophysical evidence. Boll. Geofis. Teor. Appl. 2002, 43, 23–36. [Google Scholar]
- Koukouvelas, I.K.; Aydin, A. Fault Structure and Related Basins of the North Aegean Sea and Its Surroundings. Tectonics 2002, 21, 10-1–10-17. [Google Scholar] [CrossRef]
- Kokkalas, S.; Aydin, A. Is there a link between faulting and magmatism in the south-central Aegean Sea? Geol. Mag. 2013, 150, 193–224. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. [Google Scholar] [CrossRef]
- Avigad, D.; Ziv, A.; Garfunkel, Z. Ductile and brittle shortening, extension-parallel folds and maintenance of crustal thickness in the central Aegean (Cyclades, Greece). Tectonics 2001, 20, 277–287. [Google Scholar] [CrossRef]
- Virgo, S.; von Hagke, C.; Urai, J.L. Multiphase boudinage: A case study of amphibolites in marble in the Naxos migmatite core. Solid. Earth 2018, 9, 91–113. [Google Scholar] [CrossRef]
- Kiratzi, A.A. Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys. J. Int. 2002, 151, 360–376. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Filice, F.; Sieber, L. The culmination of an oblique time-trangressive arc continent collision: The Pollino Massif Between Calabria and the Southern Apennines, Italy. Tectonics 2019, 38, 3261–3280. [Google Scholar] [CrossRef]
- Finetti, I.R. The Calabrian Arc and subducting Ionian slab from new CROP Seismic Data. In CROP PROJECT: Deep Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 17; pp. 393–412. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantovani, E.; Viti, M.; Tamburelli, C.; Babbucci, D. Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes. Encyclopedia 2025, 5, 97. https://doi.org/10.3390/encyclopedia5030097
Mantovani E, Viti M, Tamburelli C, Babbucci D. Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes. Encyclopedia. 2025; 5(3):97. https://doi.org/10.3390/encyclopedia5030097
Chicago/Turabian StyleMantovani, Enzo, Marcello Viti, Caterina Tamburelli, and Daniele Babbucci. 2025. "Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes" Encyclopedia 5, no. 3: 97. https://doi.org/10.3390/encyclopedia5030097
APA StyleMantovani, E., Viti, M., Tamburelli, C., & Babbucci, D. (2025). Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes. Encyclopedia, 5(3), 97. https://doi.org/10.3390/encyclopedia5030097