From Progression to Regression: How Running Performance Changes for Males and Females Across the Lifespan
Abstract
1. Introduction
- Review the determinants of running events for sprints, middle-distance running, and long-distance running;
- Summarize the major developmental changes that occur in youth to adulthood and then senescence;
- Note the known sex differences in running performance across developmental stages;
- Discuss the progression and eventual regression of running performance across the lifespan;
- Propose future research questions to advance our understanding of these topics.
2. Defining Terminology, Development, and Performance
- Childhood (Ch)—from age 5 to 10 yo—which typically refers to the years preceding puberty.
- Adolescence (AD)—from age 11 to 18 yo—which typically marks the beginning of puberty to early adulthood. Where appropriate, we delineate early AD (EAD) as 11–14 yo and late (LAD) as 15–18 yo to better capture pubertal changes.
- Early Adulthood (EA)—from age 19 to 35 years. This is the period where running performance peaks and is generally maintained for both elite and age-group athletes.
- Middle Adulthood (MA)—from age 36 to 55 years. During this period, most athletes can maintain a very high level of performance with minimal performance loss.
- Late Adulthood (LA)—from age 56 years and beyond; this is the period where performance declines become more noticeable, with significant and accelerated declines after age 70.
3. Competitive Running Distances and Determinants
3.1. Physiological Determinants of Sprint and Middle-Distance Running
3.1.1. Sprint Events (100–400 m)
3.1.2. Middle Distance (800–3000 m)
3.2. Physiological Determinants of Long-Distance Running
3.2.1. Middle–Long Distance (3000–10,000 m)
3.2.2. Long Distance (Half-Marathon and Marathon)
4. Running Performance During Adolescent Development
4.1. Childhood: It Is About the Fundamental Movement Skills
4.2. Adolescence: Sex, Puberty, and the Athletic Divide
5. Adulthood: From Peak Performance to Accelerating Decline
5.1. Early Adulthood: Savoring the Fruits of Our Labor
5.2. Middle to Late Adulthood: A Steady Then Accelerated Decline
6. Discussion
6.1. Adolescent Development Between Sexes More Consequential than Early Success
6.2. Peak Performance Differences Persist Between Men and Women, but Do Not Limit Progression
6.3. Aging-Related Performance Decline Is Inevitable but Relatively Slow
6.4. O2 Max as the Ultimate Performance Variable
6.5. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Adolescence |
AG | Age-group amateur athletes |
ATP | Adenosine triphosphate |
a-vO2 difference | Arterio-venous oxygen difference |
Ch | Childhood |
CO | Cardiac output |
EA | Early adulthood |
FMS | Fundamental movement skill |
HbMass | Hemoglobin mass of the blood |
Hct | Hematocrit |
LT | Lactate threshold; used broadly in the paper to refer to some blood lactate-based measure |
GCT | Ground contact time |
GRF | Ground reaction force |
LA | Late adulthood |
MA | Middle adulthood |
MCV | Mean corpuscle volume |
MHR | Maximum heart rate |
PA | Physical activity |
PCr | Creatine phosphate |
RBC | Red blood cell |
RE | Running economy |
SR | Step rate as steps per minute |
SL | Stride length |
SV | Stroke volume |
vLT | Velocity at lactate threshold |
O2 LT | Oxygen consumption at lactate threshold |
O2 Max | Maximal oxygen consumption |
vO2 Max | Velocity at maximal oxygen consumption |
WBC | White blood cell |
WR | World record |
YO | Years old |
References
- Mattson, M.P. Evolutionary Aspects of Human Exercise—Born to Run Purposefully. Ageing Res. Rev. 2012, 11, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Bramble, D.M.; Lieberman, D.E. Endurance Running and the Evolution of Homo. Nature 2004, 432, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N. 120+ Running Statistics 2021/2022 [Research Review] 2023. Available online: https://runrepeat.com/running-statistics (accessed on 21 March 2025).
- Lathan, S.R. A History of Jogging and Running—The Boom of the 1970s. Bayl. Univ. Med. Cent. Proc. 2023, 36, 775–777. [Google Scholar] [CrossRef]
- Akkari, A.; Machin, D.; Tanaka, H. Greater Progression of Athletic Performance in Older Masters Athletes. Age Ageing 2015, 44, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Brustio, P.R.; Stival, M.; Cardinale, M.; Mulasso, A.; Rainoldi, A.; Boccia, G. Performance Pathways in Elite Middle-and Long-Distance Track and Field Athletes: The Influence of a Successful Youth. J. Sci. Med. Sport. 2024, 27, 654–659. [Google Scholar] [CrossRef]
- Agudo-Ortega, A.; Gonzalez-Rave, J.M.; Salinero, J.J. Early Success Is Not a Prerequisite for Success at the Adult Age in Spanish Sprinters. J. Hum. Kinet. 2023, 89, 139. [Google Scholar] [CrossRef]
- Bezuglov, E.; Emanov, A.; Waśkiewicz, Z.; Semeniuk, N.; Butovsky, M.; Shoshorina, M.; Baranova, D.; Volodina, K.; Morgans, R. Successful Young Athletes Have Low Probability of Being Ranked among the Best Senior Athletes, but This Is Higher When Compared to Their Less Successful Peers. Front. Psychol. 2022, 13, 869637. [Google Scholar] [CrossRef] [PubMed]
- Boccia, G.; Cardinale, M.; Brustio, P.R. World-Class Sprinters’ Careers: Early Success Does Not Guarantee Success at Adult Age. Int. J. Sports Physiol. Perform. 2020, 16, 367–374. [Google Scholar] [CrossRef]
- Boccia, G.; Moisè, P.; Franceseschi, A.; Trova, F.; Panero, D.; La Torre, A.; Rainoldi, A.; Schena, F.; Cardinale, M. Correction: Career Performance Trajectories in Track and Field Jumping Events from Youth to Senior Success: The Importance of Learning and Development. PLoS ONE 2017, 12, e0178662. [Google Scholar] [CrossRef]
- Güllich, A.; Barth, M.; Macnamara, B.N.; Hambrick, D.Z. Quantifying the Extent to Which Successful Juniors and Successful Seniors Are Two Disparate Populations: A Systematic Review and Synthesis of Findings. Sports Med. 2023, 53, 1201–1217. [Google Scholar] [CrossRef]
- Casado, A.; Hanley, B.; Santos-Concejero, J.; Ruiz-Pérez, L.M. World-Class Long-Distance Running Performances Are Best Predicted by Volume of Easy Runs and Deliberate Practice of Short-Interval and Tempo Runs. J. Strength. Cond. Res. 2021, 35, 2525–2531. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Haischer, M.H.; Jones, A.M.; Wiggins, C.C.; Beilfuss, R.; Joyner, M.J.; Hunter, S.K. Technological Advances in Elite Marathon Performance. J. Appl. Physiol. 2021, 130, 2002–2008. [Google Scholar] [CrossRef]
- Tanaka, H.; Seals, D.R. Scientific Writing in Physiology: Confused/Misused Terms and Phrases. J. Appl. Physiol. 2024, 136, 401–407. [Google Scholar] [CrossRef]
- Tanaka, H.; Tarumi, T.; Rittweger, J. Aging and Physiological Lessons from Master Athletes. In Comprehensive Physiology; Terjung, R., Ed.; Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 261–296. ISBN 978-0-470-65071-4. [Google Scholar]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The Age of Adolescence. Lancet Child. Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Blum, R.W.; Astone, N.M.; Decker, M.R.; Mouli, V.C. A Conceptual Framework for Early Adolescence: A Platform for Research. Int. J. Adolesc. Med. Health 2014, 26, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, P.; Avulakunta, I.D. Human Growth and Development. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Newell, K.M. What Are Fundamental Motor Skills and What Is Fundamental About Them? J. Mot. Learn. Dev. 2020, 8, 280–314. [Google Scholar] [CrossRef]
- Sandford, G.N.; Stellingwerff, T. “Question Your Categories”: The Misunderstood Complexity of Middle-Distance Running Profiles with Implications for Research Methods and Application. Front. Sports Act. Living 2019, 1, 28. [Google Scholar] [CrossRef]
- Our Sport 2025. World Athletics. Available online: https://worldathletics.org/our-sport (accessed on 23 January 2025).
- Haugen, T.; Sandbakk, Ø.; Enoksen, E.; Seiler, S.; Tønnessen, E. Crossing the Golden Training Divide: The Science and Practice of Training World-Class 800- and 1500-m Runners. Sports Med. 2021, 51, 1835–1854. [Google Scholar] [CrossRef]
- Majumdar, A.S.; Robergs, R.A. The Science of Speed: Determinants of Performance in the 100 m Sprint. Int. J. Sports Sci. Coach. 2011, 6, 479–493. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy System Contribution to 100-m and 200-m Track Running Events. J. Sci. Med. Sport. 2004, 7, 302–313. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy System Contribution to 400-Metre and 800-Metre Track Running. J. Sports Sci. 2005, 23, 299–307. [Google Scholar] [CrossRef]
- Thompson, M.A. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr. Comp. Biol. 2017, 57, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Bovim, I.M.; Whitfield, J. Contemporary Nutrition Interventions to Optimize Performance in Middle-Distance Runners. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Weyand, P.G.; Sandell, R.F.; Prime, D.N.L.; Bundle, M.W. The Biological Limits to Running Speed Are Imposed from the Ground Up. J. Appl. Physiol. 2010, 108, 950–961. [Google Scholar] [CrossRef]
- Lipps, D.B.; Galecki, A.T.; Ashton-Miller, J.A. On the Implications of a Sex Difference in the Reaction Times of Sprinters at the Beijing Olympics. PLoS ONE 2011, 6, e26141. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Dawson, B.; Goodman, C. Energy System Contribution to 1500- and 3000-Metre Track Running. J. Sports Sci. 2005, 23, 993–1002. [Google Scholar] [CrossRef]
- Tønnessen, E.; Haugen, T.; Shalfawi, S.A.I. Reaction Time Aspects of Elite Sprinters in Athletic World Championships. J. Strength Cond. Res. 2013, 27, 885–892. [Google Scholar] [CrossRef]
- Rabadán, M.; Díaz, V.; Calderón, F.J.; Benito, P.J.; Peinado, A.B.; Maffulli, N. Physiological Determinants of Speciality of Elite Middle- and Long-Distance Runners. J. Sports Sci. 2011, 29, 975–982. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance Exercise Performance: The Physiology of Champions: Factors That Make Champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- de Souza, K.M.; Vieira, G.; Baldi, M.F.; Guglielmo, L.G.A.; de Lucas, R.D.; Denadai, B.S. Physiological and Neuromuscular Variables Associated to Aerobic Performance in Endurance Runners: Effects of the Event Distance. Rev. Bras. De. Med. Do Esporte 2011, 17, 40–44. [Google Scholar]
- Lacour, J.R.; Padilla-Magunacelaya, S.; Bartholomy, J.C.; Dormois, D. The Energetics of Middle-Distance Running. Europ. J. Appl. Physiol. 1990, 60, 38–43. [Google Scholar] [CrossRef]
- Venturini, E.; Giallauria, F. Factors Influencing Running Performance During a Marathon: Breaking the 2-h Barrier. Front. Cardiovasc. Med. 2022, 9, 856875. [Google Scholar] [CrossRef]
- INTERNATIONAL AGE RECORDS. Available online: http://age-records.125mb.com/ (accessed on 3 February 2025).
- USA Track & Field|USATF National Junior Olympic Track & Field Championships Records. Available online: https://www.usatf.org/resources/statistics/records/championship-meet-records/usatf-national-junior-olympic-track-field-champion (accessed on 3 February 2025).
- World Single Age Records. Available online: https://arrs.run/SARec.htm (accessed on 3 February 2025).
- Atkinson, G.; Peacock, O.; Passfield, L. Variable versus Constant Power Strategies during Cycling Time-Trials: Prediction of Time Savings Using an up-to-Date Mathematical Model. J. Sports Sci. 2007, 25, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Saunders, L.; Krause, J. Racial Disparities in Depression and Life Satisfaction After Spinal Cord Injury: A Mediational Model. Top. Spinal Cord. Inj. Rehabil. 2012, 18, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Kampmiller, T.; Vanderka, M.; Šelinger, P.; Šelingerová, M.; Čierna, D. KInematic Parameters of the Running Stride in 7-To 18-Year-Old Youth. Kinesiol. Slov. 2011, 17, 1. [Google Scholar]
- Papaiakovou, G.; Giannakos, A.; Michailidis, C.; Patikas, D.; Bassa, E.; Kalopisis, V.; Anthrakidis, N.; Kotzamanidis, C. The Effect of Chronological Age and Gender on the Development of Sprint Performance during Childhood and Puberty. J. Strength Cond. Res. 2009, 23, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Kiviranta, P.; Kuiri-Hänninen, T.; Saari, A.; Lamidi, M.-L.; Dunkel, L.; Sankilampi, U. Transient Postnatal Gonadal Activation and Growth Velocity in Infancy. Pediatrics 2016, 138, e20153561. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho E Silva, M.J.; Figueiredo, A.J. Biological Maturation of Youth Athletes: Assessment and Implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Beunen, G. Human Growth: Selected Aspects of Current Research on Well-Nourished Children. Annu. Rev. Anthropol. 1988, 17, 187–219. [Google Scholar] [CrossRef]
- Davis, S.M.; Kaar, J.L.; Ringham, B.M.; Hockett, C.W.; Glueck, D.H.; Dabelea, D. Sex Differences in Infant Body Composition Emerge in the First 5 Months of Life. J. Pediatr. Endocrinol. Metab. 2019, 32, 1235–1239. [Google Scholar] [CrossRef]
- De Simone, G.; Devereux, R.B.; Daniels, S.R.; Meyer, R.A. Gender Differences in Left Ventricular Growth. Hypertension 1995, 26, 979–983. [Google Scholar] [CrossRef] [PubMed]
- St Pierre, S.R.; Peirlinck, M.; Kuhl, E. Sex Matters: A Comprehensive Comparison of Female and Male Hearts. Front. Physiol. 2022, 13, 831179. [Google Scholar] [CrossRef]
- Foryst-Ludwig, A.; Kintscher, U. Sex Differences in Exercise-Induced Cardiac Hypertrophy. Pflug. Arch. Eur. J. Physiol. 2013, 465, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Belcher, B.R.; Berrigan, D.; Dodd, K.W.; Emken, B.A.; Chou, C.-P.; Spruijt-Metz, D. Physical Activity in US Youth: Effect of Race/Ethnicity, Age, Gender, and Weight Status. Med. Sci. Sports Exerc. 2010, 42, 2211–2221. [Google Scholar] [CrossRef]
- Pate, R.R. Associations Between Physical Activity and Physical Fitness in American Children. Arch. Pediatr. Adolesc. Med. 1990, 144, 1123. [Google Scholar] [CrossRef]
- Lindquist, C.H.; Reynolds, K.D.; Goran, M.I. Sociocultural Determinants of Physical Activity among Children. Prev. Med. 1999, 29, 305–312. [Google Scholar] [CrossRef]
- Gosselin, V.; Leone, M.; Laberge, S. Socioeconomic and Gender-Based Disparities in the Motor Competence of School-Age Children. J. Sports Sci. 2021, 39, 341–350. [Google Scholar] [CrossRef]
- Wu, H.; Eungpinichpong, W.; Ruan, H.; Zhang, X.; Dong, X. Relationship between Motor Fitness, Fundamental Movement Skills, and Quality of Movement Patterns in Primary School Children. PLoS ONE 2021, 16, e0237760. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The Effect of Endurance Training on Parameters of Aerobic Fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Kokstejn, J.; Musalek, M.; Wolanski, P.; Murawska-Cialowicz, E.; Stastny, P. Fundamental Motor Skills Mediate the Relationship Between Physical Fitness and Soccer-Specific Motor Skills in Young Soccer Players. Front. Physiol. 2019, 10, 596. [Google Scholar] [CrossRef]
- Holfelder, B.; Schott, N. Relationship of Fundamental Movement Skills and Physical Activity in Children and Adolescents: A Systematic Review. Psychol. Sport. Exerc. 2014, 15, 382–391. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Zhang, Z.; Gao, R.; Qu, G. Correlation of Fundamental Movement Skills with Health-Related Fitness Elements in Children and Adolescents: A Systematic Review. Front. Public. Health 2023, 11, 9258. [Google Scholar] [CrossRef]
- Gundersen, H.; Harris, A.; Grendstad, H.; Kristoffersen, M.; Guttormsen, A.; Dalen, T.; Rygh, C.B. Performance in Youth Track and Field Is Associated with Birth Quartile. A Register-Based Study among Athletes in Norway from 10 Years to Senior Level. PLoS ONE 2022, 17, e0273472. [Google Scholar] [CrossRef] [PubMed]
- Krahenbuhl, G.S.; Pangrazi, R.P.; Chomokos, E.A. Aerobic Responses of Young Boys to Submaximal Running. Res. Quarterly Am. Alliance Health Phys. Educ. Recreat. Danc. 1979, 50, 413–421. [Google Scholar] [CrossRef]
- Van Praagh, E.; Dor, E. Short-Term Muscle Power During Growth and Maturation. Sports Med. 2002, 32, 701–728. [Google Scholar] [CrossRef]
- Prasad, N. The Relationship Between Aerobic and Anaerobic Exercise Capacities in Pre-Pubertal Children. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2009. [Google Scholar] [CrossRef]
- Rowland, T.W. Developmental Aspects of Physiological Function Relating to Aerobic Exercise in Children. Sports Med. 1990, 10, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Krahenbuhl, G.S.; SKINNER, J.S.; KOHRT, W.M. Developmental Aspects of Maximal Aerobic Power in Children. Exerc. Sport. Sci. Rev. 1985, 13, 503–538. [Google Scholar] [CrossRef]
- Rowland, T. Oxygen Uptake and Endurance Fitness in Children, Revisited. Pediatr. Exerc. Sci. 2013, 25, 4. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Maffulli, N. Endurance in Young Athletes: It Can Be Trained. Br. J. Sports Med. 2003, 37, 96–97. [Google Scholar] [CrossRef]
- Krahenbuhl, G.S.; Williams, T.J. Running Economy: Changes with Age during Childhood and Adolescence. Med. Sci. Sports Exerc. 1992, 24, 462–466. [Google Scholar] [CrossRef]
- Rowland, T. Inferior Exercise Economy in Children: Perpetuating a Myth? Pediatr. Exerc. Sci. 2012, 24, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Shindo, M. Running Velocity at Blood Lactate Threshold of Boys Aged 6–15 Years Compared with Untrained and Trained Young Males. Int. J. Sports Med. 1985, 06, 90–94. [Google Scholar] [CrossRef]
- Atkinson, M.; James, J.; Quinn, M.; Senefeld, J.; Hunter, S. Sex Differences in Track and Field Elite Youth 2024. Available online: https://sportrxiv.org/index.php/server/preprint/view/324/774 (accessed on 1 March 2025).
- Brown, G.A.; Shaw, B.S.; Shaw, I. Sex-based Differences in Track Running Distances of 100, 200, 400, 800, and 1500m in the 8 and under and 9–10-year-old Age Groups. Eur. J. Sport. Sci. 2024, 24, 217–225. [Google Scholar] [CrossRef]
- Aerenhouts, D.; Delecluse, C.; Hagman, F.; Taeymans, J.; Debaere, S.; Van Gheluwe, B.; Clarys, P. Comparison of Anthropometric Characteristics and Sprint Start Performance between Elite Adolescent and Adult Sprint Athletes. Eur. J. Sport. Sci. 2012, 12, 9–15. [Google Scholar] [CrossRef]
- Eisenmann, J.; Malina, R. Age- and Sex-Associated Variation in Neuromuscular Capacities of Adolescent Distance Runners. J. Sports Sci. 2003, 21, 551–557. [Google Scholar] [CrossRef]
- Hsieh, Y.-L.; Yen, S.-W.; Chang, C.-M.; Li, W.-C.; Yang, N.-P.; Chen, H.-Y. Sensorimotor Processing in Elite and Sub-Elite Adolescent Sprinters during Sprint Starts: An Electrophysiological Study. Sports 2024, 12, 222. [Google Scholar] [CrossRef]
- Alves, D.L.; Castro, P.H.C.; Freitas, J.V.; De-Oliveira, F.R.; Lima, J.R.P.; Cruz, R. What Variables Determine Sprint Performance in Young Athletes? Sci. Sports 2021, 36, e87–e94. [Google Scholar] [CrossRef]
- Fernhall, B.; Kohrt, W.; Burkett, L.N.; Walters, S. Relationship between the Lactate Threshold and Cross-Country Run Performance in High School Male and Female Runners. Pediatr. Exerc. Sci. 1996, 8, 37–47. [Google Scholar] [CrossRef]
- Nudel, D.B.; Hassett, I.; Gurian, A.; Diamant, S.; Weinhouse, E.; Gootman, N. Young Long Distance Runners: Physiological and Psychological Characteristics. Clin. Pediatr. 1989, 28, 500–505. [Google Scholar] [CrossRef]
- Coelho e Silva, M.J. Youth Sports: Growth, Maturation and Talent; Investigação; Coimbra University Press: Outubro, Portugal, 2010; ISBN 978-989-26-0005-5. [Google Scholar]
- Cole, A.S.; Woodruff, M.E.; Horn, M.P.; Mahon, A.D. Strength, Power, and Aerobic Exercise Correlates of 5-Km Cross-Country Running Performance in Adolescent Runners. Pediatr. Exerc. Sci. 2006, 18, 374–384. [Google Scholar] [CrossRef]
- Ali Almarwaey, O.; Mark Jones, A.; Tolfrey, K. Physiological Correlates with Endurance Running Performance in Trained Adolescents. Med. Sci. Sports Exerc. 2003, 35, 480–487. [Google Scholar] [CrossRef]
- Bliss, A.; Waldron, M.; Maxwell, N. Predicting Middle-distance Track and Cross-country Performances of National and International Level Adolescent Runners. Eur. J. Sport. Sci. 2022, 22, 305–313. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Guglielmo, L.G.; Santos, B.V.; Hernandez, S.G.; da Silva, S.G.; de Campos, W. Physiological, Anthropometric, Strength, and Muscle Power Characteristics Correlates with Running Performance in Young Runners. J. Strength. Cond. Res. 2015, 29, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, L.N. Physiologic Comparison of Adolescent Female and Male Cross-Country Runners. Pediatr. Exerc. Sci. 1990, 2, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Garrido, A.; Aedo-Muñoz, E.; Brito, C.; Silva-Esparza, D.; Pérez-Contreras, J.; Izquierdo-Redin, M.; Cerda-Kohler, H. Anthropometric and Mechanical Factors Determining Sprint in Young Soccer Players: A Brief Report. Front. Sports Act. Living 2024, 6, 1480973. [Google Scholar] [CrossRef]
- Janz, K.F.; Dawson, J.D.; Mahoney, L.T. Predicting Heart Growth During Puberty: The Muscatine Study. Pediatrics 2000, 105, e63. [Google Scholar] [CrossRef] [PubMed]
- Forså, M.I.; Bjerring, A.W.; Haugaa, K.H.; Smedsrud, M.K.; Sarvari, S.I.; Landgraff, H.W.; Hallén, J.; Edvardsen, T. Young Athlete’s Growing Heart: Sex Differences in Cardiac Adaptation to Exercise Training during Adolescence. Open Heart 2023, 10, e002155. [Google Scholar] [CrossRef]
- Weberruß, H.; Engl, T.; Baumgartner, L.; Mühlbauer, F.; Shehu, N.; Oberhoffer-Fritz, R. Cardiac Structure and Function in Junior Athletes: A Systematic Review of Echocardiographic Studies. Rev. Cardiovasc. Med. 2022, 23, 129. [Google Scholar] [CrossRef]
- Chidi-Ogbolu, N.; Baar, K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front. Physiol. 2019, 9, 1834. [Google Scholar] [CrossRef]
- Collado-Boira, E.; Baliño, P.; Boldo-Roda, A.; Martínez-Navarro, I.; Hernando, B.; Recacha-Ponce, P.; Hernando, C.; Muriach, M. Influence of Female Sex Hormones on Ultra-Running Performance and Post-Race Recovery: Role of Testosterone. Int. J. Environ. Res. Public Health 2021, 18, 10403. [Google Scholar] [CrossRef]
- Lowe, D.A.; Baltgalvis, K.A.; Greising, S.M. Mechanisms Behind Estrogen’s Beneficial Effect on Muscle Strength in Females. Exerc. Sport. Sci. Rev. 2010, 38, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.K.; Joyner, M.J.; Senefeld, J.W.; Wiggins, C.C.; Secomb, T.W. An Empirical Model for World Record Running Speeds with Distance, Age, and Sex: Anaerobic and Aerobic Contributions to Performance. J. Appl. Physiol. 2024, 137, 357–363. [Google Scholar] [CrossRef]
- Joyner, M.J.; Hunter, S.K.; Senefeld, J.W. Evidence on Sex Differences in Sports Performance. J. Appl. Physiol. 2025, 138, 274–281. [Google Scholar] [CrossRef]
- Joyner, M.J. Physiological Limits to Endurance Exercise Performance: Influence of Sex: Sex, Exercise and Elite Endurance Performance. J. Physiol. 2017, 595, 2949–2954. [Google Scholar] [CrossRef] [PubMed]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.M.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex Differences in Endurance Running. Sports Med. 2022, 52, 1235–1257. [Google Scholar] [CrossRef]
- Hilton, E.N.; Lundberg, T.R. Correction to: Transgender Women in the Female Category of Sport: Perspectives on Testosterone Suppression and Performance Advantage. Sports Med. 2021, 51, 2235. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D. Endocrinology: Test Selection and Interpretation; Quest Diagnostics. 2007. Available online: https://specialtytesting.labcorp.com/sites/default/files/2021-07/L5167-0421-18%20Endocrine%20Expected%20Values_0.pdf (accessed on 23 February 2025).
- Cappola, A.R.; Auchus, R.J.; El-Hajj Fuleihan, G.; Handelsman, D.J.; Kalyani, R.R.; McClung, M.; Stuenkel, C.A.; Thorner, M.O.; Verbalis, J.G. Hormones and Aging: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2023, 108, 1835–1874. [Google Scholar] [CrossRef]
- Holmes, D.T.; Van Der Gugten, J.G.; Jung, B.; McCudden, C.R. Continuous Reference Intervals for Pediatric Testosterone, Sex Hormone Binding Globulin and Free Testosterone Using Quantile Regression. J. Mass. Spectrom. Adv. Clin. Lab. 2021, 22, 64–70. [Google Scholar] [CrossRef]
- Pataky, M.W.; Dasari, S.; Michie, K.L.; Sevits, K.J.; Kumar, A.A.; Klaus, K.A.; Heppelmann, C.J.; Robinson, M.M.; Carter, R.E.; Lanza, I.R.; et al. Impact of Biological Sex and Sex Hormones on Molecular Signatures of Skeletal Muscle at Rest and in Response to Distinct Exercise Training Modes. Cell Metab. 2023, 35, 1996–2010.e6. [Google Scholar] [CrossRef]
- Adult Complete Blood Count (CBC)—Mayo Clinic. Available online: https://www.mayoclinic.org/tests-procedures/complete-blood-count/about/pac-20384919 (accessed on 23 February 2025).
- Pediatric Complete Pediatric Blood Cell Count (CBC) With Differential, Blood—Mayo Clinic Laboratories|Pediatric Catalog. Available online: https://pediatric.testcatalog.org/show/CBC (accessed on 23 February 2025).
- Zierk, J.; Krebs, A.; Rauh, M.; Metzler, M.; Löscher, A.; Strasser, E.; Krause, S.W. Blood Counts in Adult and Elderly Individuals: Defining the Norms over Eight Decades of Life. Br. J. Haematol. 2020, 189, 777–789. [Google Scholar] [CrossRef]
- Nah, E.-H.; Kim, S.; Cho, S.; Cho, H.-I. Complete Blood Count Reference Intervals and Patterns of Changes Across Pediatric, Adult, and Geriatric Ages in Korea. Ann. Lab. Med. 2018, 38, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.A.; Solberg, P.A.; Foster, C.; Morán-Navarro, R.; Breitschädel, F.; Hopkins, W.G. Peak Age and Performance Progression in World-Class Track-and-Field Athletes. Int. J. Sports Physiol. Perform. 2018, 13, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.V.; Hopkins, W.G. Age of Peak Competitive Performance of Elite Athletes: A Systematic Review. Sports Med. 2015, 45, 1431–1441. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Tomko, K.A.; Smoliga, J.M. Declines in Marathon Performance: Sex Differences in Elite and Recreational Athletes. PLoS ONE 2017, 12, e0172121. [Google Scholar] [CrossRef]
- Lara, B.; Salinero, J.J.; Del Coso, J. The Relationship between Age and Running Time in Elite Marathoners Is U-Shaped. AGE 2014, 36, 1003–1008. [Google Scholar] [CrossRef]
- Foster, C.; De Koning, J.J.; Thiel, C. Evolutionary Pattern of Improved 1-Mile Running Performance. Int. J. Sports Physiol. Perform. 2014, 9, 715–719. [Google Scholar] [CrossRef]
- Sandbakk, Ø.; Solli, G.S.; Holmberg, H.-C. Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. Int. J. Sports Physiol. Perform. 2018, 13, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Rothschild, J.; Harnish, C.R.; Naderi, A. Metabolic Adaptations to Endurance Training and Nutrition Strategies Influencing Performance. Res. Sports Med. 2019, 27, 134–146. [Google Scholar] [CrossRef]
- Santisteban, K.J.; Lovering, A.T.; Halliwill, J.R.; Minson, C.T. Sex Differences in VO2max and the Impact on Endurance-Exercise Performance. Int. J. Environ. Res. Public Health 2022, 19, 4946. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Zingg, M.A.; Knechtle, B. Performance Trends in Age-group Runners from 100 m to Marathon—The World Championships from 1975 to 2015. Scand. J. Med. Sci. Sports 2017, 27, 1588–1596. [Google Scholar] [CrossRef]
- Lepers, R.; Knechtle, B.; Stapley, P.J. Trends in Triathlon Performance: Effects of Sex and Age. Sports Med. 2013, 43, 851–863. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Gangi, S.D.; Knechtle, B. World Records in Half-Marathon Running by Sex and Age. J. Aging Phys. Act. 2018, 26, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, J.; di Prampero, P.E.; Maffulli, N.; Narici, M.V. Sprint and Endurance Power and Ageing: An Analysis of Master Athletic World Records. Proc. R. Soc. B Biol. Sci. 2009, 276, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Harnish, C.R.; Ferguson, H.A.; Swinand, G.P. Racing Demands of Off-Road Triathlon: A Case Study of a National Champion Masters Triathlete. Sports 2021, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Harnish, C.R.; Swinand, G.P.; Fisher, A.E. Making History in 1-Hour: How Sex, Aging, Technology, and Elevation Effect the Cycling Hour Record. Med. Sci. Sports Exerc. 2023. [Google Scholar] [CrossRef]
- Ganse, B.; Kleerekoper, A.; Knobe, M.; Hildebrand, F.; Degens, H. Longitudinal Trends in Master Track and Field Performance throughout the Aging Process: 83,209 Results from Sweden in 16 Athletics Disciplines. GeroScience 2020, 42, 1609–1620. [Google Scholar] [CrossRef]
- Bagley, L.; McPhee, J.S.; Ganse, B.; Müller, K.; Korhonen, M.T.; Rittweger, J.; Degens, H. Similar Relative Decline in Aerobic and Anaerobic Power with Age in Endurance and Power Master Athletes of Both Sexes. Scand. J. Med. Sci. Sports 2019, 29, 791–799. [Google Scholar] [CrossRef]
- Bernard, T.; Sultana, F.; Lepers, R.; Hausswirth, C.; Brisswalter, J. Age-Related Decline in Olympic Triathlon Performance: Effect of Locomotion Mode. Exp. Aging Res. 2009, 36, 64–78. [Google Scholar] [CrossRef]
- Wright, V.J.; Perricelli, B.C. Age-Related Rates of Decline in Performance among Elite Senior Athletes. Am. J. Sports Med. 2008, 36, 443–450. [Google Scholar] [CrossRef]
- Reaburn, P.; Dascombe, B. Endurance Performance in Masters Athletes. Eur. Rev. Aging Phys. Act. 2008, 5, 31–42. [Google Scholar] [CrossRef]
- Gava, P.; Giuriati, W.; Ravara, B. Gender Difference of Aging Performance Decay Rate in Normalized Masters World Records of Athletics: Much Less than Expected. Eur. J. Transl. Myol. 2020, 30, 8869. [Google Scholar] [CrossRef] [PubMed]
- Ganse, B.; Drey, M.; Hildebrand, F.; Knobe, M.; Degens, H. Performance Declines Are Accelerated in the Oldest-Old Track and Field Athletes 80 to 94 Years of Age. Rejuvenation Res. 2021, 24, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, N.R.; Harridge, S.D. Declining Performance of Master Athletes: Silhouettes of the Trajectory of Healthy Human Ageing? J. Physiol. 2017, 595, 2941–2948. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Seals, D.R. Endurance Exercise Performance in Masters Athletes: Age-Associated Changes and Underlying Physiological Mechanisms: Endurance Performance and Masters Athletes. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef]
- Lepers, R.; Cattagni, T. Age-Related Decline in Endurance Running Performance–An Example of a Multiple World Records Holder. Appl. Physiol. Nutr. Metab. 2018, 43, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Young, B.W.; Weir, P.L.; Starkes, J.L.; Medic, N. Does Lifelong Training Temper Age-Related Decline in Sport Performance? Interpreting Differences Between Cross-Sectional and Longitudinal Data. Exp. Aging Res. 2007, 34, 27–48. [Google Scholar] [CrossRef]
- Ganse, B.; Degens, H. Current Insights in the Age-Related Decline in Sports Performance of the Older Athlete. Int. J. Sports Med. 2021, 42, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, M.T.; Mero, A.A.; Alen, M.; Sipilä, S.; Häkkinen, K.; Liikavainio, T.; Viitasalo, J.T.; Haverinen, M.T.; Suominen, H. Biomechanical and Skeletal Muscle Determinants of Maximum Running Speed with Aging. Med. Sci. Sports Exerc. 2009, 41, 844–856. [Google Scholar] [CrossRef]
- Korhonen, M.T.; Suominen, H.; Mero, A. Age and Sex Differences in Blood Lactate Response to Sprint Running in Elite Master Athletes. Can. J. Appl. Physiol. 2005, 30, 647–665. [Google Scholar] [CrossRef]
- Reaburn, P.; Dascombe, B. Anaerobic Performance in Masters Athletes. Eur. Rev. Aging Phys. Act. 2009, 6, 39. [Google Scholar] [CrossRef]
- Dahl, J.; Degens, H.; Hildebrand, F.; Ganse, B. Age-Related Changes of Sprint Kinematics. Front. Physiol. 2019, 10, 613. [Google Scholar] [CrossRef] [PubMed]
- Young, B.W.; Medic, N.; Weir, P.L.; Starkes, J.L. Explaining Performance in Elite Middle-Aged Runners: Contributions from Age and from Ongoing and Past Training Factors. J. Sport. Exerc. Psychol. 2008, 30, 737–754. [Google Scholar] [CrossRef]
- Easthope, C.S.; Hausswirth, C.; Louis, J.; Lepers, R.; Vercruyssen, F.; Brisswalter, J. Effects of a Trail Running Competition on Muscular Performance and Efficiency in Well-Trained Young and Master Athletes. Eur. J. Appl. Physiol. 2010, 110, 1107–1116. [Google Scholar] [CrossRef]
- Suominen, H. Ageing and Maximal Physical Performance. Eur. Rev. Aging Phys. Act. 2011, 8, 37–42. [Google Scholar] [CrossRef]
- Sayer, A. A Complete List of Running World Records (Updated 2024). 2024. Available online: https://marathonhandbook.com/running-world-records/ (accessed on 25 January 2025).
- Stats|World Athletics | World Athletics. Available online: https://worldathletics.org/stats-zone (accessed on 23 February 2025).
- Rodrigues, A.M.M.; E Silva, M.J.C.; Mota, J.; Cumming, S.P.; Sherar, L.B.; Neville, H.; Malina, R.M. Confounding Effect of Biologic Maturation on Sex Differences in Physical Activity and Sedentary Behavior in Adolescents. Pediatr. Exerc. Sci. 2010, 22, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Siegel, J.T. Youth Sports and Physical Activity: The Relationship between Perceptions of Childhood Sport Experience and Adult Exercise Behavior. Psychol. Sport. Exerc. 2017, 33, 85–92. [Google Scholar] [CrossRef]
- Bell, D.R.; DiStefano, L.; Pandya, N.K.; McGuine, T.A. The Public Health Consequences of Sport Specialization. J. Athl. Train. 2019, 54, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Bolger, L.E.; Bolger, L.A.; O’ Neill, C.; Coughlan, E.; O’Brien, W.; Lacey, S.; Burns, C. Age and Sex Differences in Fundamental Movement Skills Among a Cohort of Irish School Children. J. Mot. Learn. Dev. 2018, 6, 81–100. [Google Scholar] [CrossRef]
- Hardy, L.L.; Barnett, L.; Espinel, P.; Okely, A.D. Thirteen-Year Trends in Child and Adolescent Fundamental Movement Skills: 1997–2010. Med. Sci. Sports Exerc. 2013, 45, 1965–1970. [Google Scholar] [CrossRef]
- Behan, S.; Belton, S.; Peers, C.; O’Connor, N.E.; Issartel, J. Moving Well-Being Well: Investigating the Maturation of Fundamental Movement Skill Proficiency across Sex in Irish Children Aged Five to Twelve. J. Sports Sci. 2019, 37, 2604–2612. [Google Scholar] [CrossRef]
- Eyre, E.L.J.; Walker, L.J.; Duncan, M.J. Fundamental Movement Skills of Children Living in England: The Role of Ethnicity and Native English Language. Percept. Mot. Ski. 2018, 125, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi-Walker, L.J.; Duncan, M.; Tallis, J.; Eyre, E. Fundamental Motor Skills of Children in Deprived Areas of England: A Focus on Age, Gender and Ethnicity. Children 2018, 5, 110. [Google Scholar] [CrossRef]
- Bardid, F.; Huyben, F.; Lenoir, M.; Seghers, J.; De Martelaer, K.; Goodway, J.D.; Deconinck, F.J.A. Assessing Fundamental Motor Skills in Belgian Children Aged 3–8 Years Highlights Differences to US Reference Sample. Acta Paediatr. 2016, 105, 13380. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Welsman, J.R. Development of Aerobic Fitness during Childhood and Adolescence. Pediatr. Exerc. Sci. 2000, 12, 128–149. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.O. Traditional and New Perspectives on Youth Cardiorespiratory Fitness. Med. Sci. Sports Exerc. 2020, 52, 2563–2573. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.R.; Kirby, B.J. Performance on the Wingate Anaerobic Test and Maturation. Pediatr. Exerc. Sci. 1997, 9, 253–261. [Google Scholar] [CrossRef]
- Tolfrey, K.; Campbell, I.G.; Batterham, A.M. Aerobic Trainability of Prepubertal Boys and Girls. Pediatr. Exerc. Sci. 1998, 10, 248–263. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J. The Development of Aerobic and Anaerobic Fitness with Reference to Youth Athletes. J. Sci. Sport Exerc. 2020, 2, 275–286. [Google Scholar] [CrossRef]
- Petray, C.K.; Krahenbuhl, G.S. Running Training, Instruction on Running Technique, and Running Economy in 10-Year-Old Males. Res. Q. Exerc. Sport. 1985, 56, 251–255. [Google Scholar] [CrossRef]
- Welsman, J.; Armstrong, N. Interpreting Aerobic Fitness in Youth: The Fallacy of Ratio Scaling. Pediatr. Exerc. Sci. 2019, 31, 184–190. [Google Scholar] [CrossRef]
- Emig, T.; Adam, G. Evolution of World Running Record Performances for Men and Women: Physiological Characteristics. Front. Physiol. 2024, 15, 1372092. [Google Scholar] [CrossRef]
- Gorzi, A.; Khantan, M.; Khademnoe, O.; Eston, R. Prediction of Elite Athletes’ Performance by Analysis of Peak-performance Age and Age-related Performance Progression. Eur. J. Sport. Sci. 2022, 22, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Foss, J.L.; Sinex, J.A.; Chapman, R.F. Career Performance Progressions of Junior and Senior Elite Track and Field Athletes. J. Sci. Sport. Exerc. 2019, 1, 168–175. [Google Scholar] [CrossRef]
- Agudo-Ortega, A.; Del Cerro, J.S.; Salinero, J.J.; González-Rave, J.M. Unveiling the Development of Sprint Athletes: Percentile Patterns, Peak Performance Age, and a Performance Progression Model. J. Hum. Kinet. 2024, 94, 147. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.G.; Gledhill, N.; Warburton, D.E.; Jamnik, V.K.; Ferguson, S. Exercise Cardiac Function in Endurance-Trained Males versus Females. Clin. J. Sport. Med. 1998, 8, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Waldron, S.; DeFreese, J.D.; Register-Mihalik, J.; Pietrosimone, B.; Barczak, N. The Costs and Benefits of Early Sport Specialization: A Critical Review of Literature. Quest 2020, 72, 1–18. [Google Scholar] [CrossRef]
- Harridge, S.D.; Lazarus, N.R. Physical Activity, Aging, and Physiological Function. Physiology 2017, 32, 152–161. [Google Scholar]
- Ferguson, H.A.; Harnish, C.; Chase, J.G. Using Field Based Data to Model Sprint Track Cycling Performance. Sports Med. Open 2021, 7, 20. [Google Scholar] [CrossRef]
- Ferguson, H.; Harnish, C.; Klich, S.; Michalik, K.; Dunst, A.K.; Zhou, T.; Chase, J.G. Power-Duration Relationship Comparison in Competition Sprint Cyclists from 1-s to 20-Min. Sprint Performance Is More than Just Peak Power. PLoS ONE 2023, 18, e0280658. [Google Scholar] [CrossRef]
- Armstrong, N.; Barker, A.R. New Insights in Paediatric Exercise Metabolism. J. Sport. Health Sci. 2012, 1, 18–26. [Google Scholar] [CrossRef]
Childhood | Adolescence | Adulthood | Late Adulthood | Running Event Advantage | ||||
---|---|---|---|---|---|---|---|---|
♂ vs. ♀ | Δ | ♂ vs. ♀ | Δ | ♂ vs. ♀ | Δ | ♂ vs. ♀ | ||
Physical | ||||||||
Height | > | ♂↑ ♀↔ | >> | ↔ | >> | ↔ | >> | Sprint, Mid, Long |
Weight | > | ↑ | >> | ↔ | >> | ↑ | >> | |
Body Fat | < | ♂↓ ♀↑ | << | ↔ | << | ↑ | << | Sprint, Mid, Long |
Muscle Mass | > | ↑ | >> | ↔ | >> | ↓ | >> | |
Strength/Power | > | ↑ | >> | ↔ | >> | ↓ | >> | Sprint, Mid, Long |
Heart Size | > | ↑ | >> | ↔ | >> | ↔ | >> | Sprint, Mid, Long |
Higher SV | ||||||||
Neurophysiological | ||||||||
Type I/II Ratio | ? | ? | < | ↔ | < | ↔ | < | Long |
O2 Max (L/min) | > | ↑ | > | ↔ | >> | ↓ | >> | Mid, Long |
Max Stroke Volume | > | ↑ | > | ↔ | >> | ↔ | >> | Mid, Long |
Max Heart Rate | = | ↑ | = | ↔ | < | ↓↓ | < | Mid, Long |
a-vO2 difference | = | ↑ | = | ↔ | = | ↔ | = | Mid, Long |
HbMass | =? | ↑ | > | ↔ | > | ↔ | > | Mid, Long |
Lactate Threshold | = | ↑ | = | ↔ | = | ↔ | = | Mid, Long |
Peak Lactate | = | ↑ | = | ↔ | = | ↓ | = | Sprint, Mid |
Glycolytic Ability | = | ↑ | = | ↔ | = | ↓ | = | Sprint, Mid |
Running Economy | = | ↑? | = | ↔ | = | ↔ | = | Mid, Long |
Biomechanical | ||||||||
Stride Length | > | ↑ | >> | ↔ | >> | ↓ | >> | Sprint, Mid, Long |
Stride Rate | = | ↔ | = | ↔ | = | ↓ | = | |
Ground Contact Time | =? | ↓ | < | ↔ | < | ↑ | < | Sprint, Mid, Long |
Ground Reaction Force | =? | ↑ | < | ↔ | < | ↓ | < | Sprint, Mid, Long |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnish, C.R.; Swensen, T.C. From Progression to Regression: How Running Performance Changes for Males and Females Across the Lifespan. Encyclopedia 2025, 5, 88. https://doi.org/10.3390/encyclopedia5030088
Harnish CR, Swensen TC. From Progression to Regression: How Running Performance Changes for Males and Females Across the Lifespan. Encyclopedia. 2025; 5(3):88. https://doi.org/10.3390/encyclopedia5030088
Chicago/Turabian StyleHarnish, Christopher R., and Thomas C. Swensen. 2025. "From Progression to Regression: How Running Performance Changes for Males and Females Across the Lifespan" Encyclopedia 5, no. 3: 88. https://doi.org/10.3390/encyclopedia5030088
APA StyleHarnish, C. R., & Swensen, T. C. (2025). From Progression to Regression: How Running Performance Changes for Males and Females Across the Lifespan. Encyclopedia, 5(3), 88. https://doi.org/10.3390/encyclopedia5030088