Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine
Abstract
:1. Introduction
2. Early History of Microbial, Including Phage-Related, Biology
3. Phages for Investigating the Basics of Molecular Biology
3.1. Early Background: Genetics
3.2. Early Background: Physiology and Biochemistry
3.3. Interface with Basic Physics
3.4. Brief Description of Major Subsequent Developments (Excluding Genetic Engineering)
4. A Case for Backup Strategies for Therapy of Chronic Diseases
5. Projected Future of Phage-Based Biomedicine: Phage Therapy of Bacterial Infections
5.1. Limitations of Antibiotics
5.2. Anti-Bacterial Therapy: Phage Therapy
5.3. Anti-Bacterial Therapy: Vaccines
6. Metastatic Cancer
7. Amyloid Associated Neurodegenerative Diseases
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DDV | Drug delivery vehicle |
EPR | Enhanced permeability and retention |
HHV | Human herpesvirus |
mRNA | Messenger RNA |
US | United States |
References
- Keen, E.C. A century of phage research: Bacteriophages and the shaping of modern biology. Bioessays 2015, 37, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Dubos, R. Louis Pasteur: Free Lance of Science, revised ed.; Da Capo PR Inc.: Boston, MA, USA, 1986. [Google Scholar]
- Institute Pasteur. Our History: The Early Years 1847–1862. Available online: https://www.pasteur.fr/en/institut-pasteur/history/early-years-1847-1862 (accessed on 17 March 2025).
- Berche, P. Louis Pasteur, from crystals of life to vaccination. Clin. Microbiol. Infect. 2012, 18, 1–6. [Google Scholar] [CrossRef]
- Smith, K.A. Louis Pasteur, the father of immunology? Front. Immunol. 2012, 3, 68. [Google Scholar] [CrossRef]
- Kadar, N. Rediscovering Ignaz Philipp Semmelweis (1818–1865). Am. J. Obstet. Gynecol. 2019, 220, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Pittet, D.; Allegranzi, B. Preventing sepsis in healthcare—200 years after the birth of Ignaz Semmelweis. Euro Surveill. 2018, 23, 18-00222. [Google Scholar] [CrossRef] [PubMed]
- Lecoq, H. Découverte du premier virus, le virus de la mosaïque du tabac: 1892 ou 1898? Comptes Rendus Acad. Sci. III 2001, 324, 929–933. [Google Scholar] [CrossRef]
- Twort, F.W. An investigation on the nature of ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef]
- d’Herelle, F. Sur un microbe invisible antagoniste des bacillus dysentérique. Comptes Rendus Acad. Sci. Paris 1917, 165, 373–375. [Google Scholar]
- Summers, W.C. The strange history of phage therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef]
- Emrich, J.; Richter, C. Bacteria Eaters: The “Twort-d’Hérelle Phenomenon”. The American Association of Immunologists. 2021. Available online: https://www.aai.org/About/History/History-Articles-Keep-for-Hierarchy/Bacteria-Eaters-The-Twort-d’Herelle-Phenomenon”#:~:text=The%20“Twort%2Dd'Hérelle%20Phenomenon%2C”%20also%20known,know%20it%20now%20as%20bacteriophage (accessed on 18 March 2025).
- d’Herelle, F. Le Bactériophage; Son Rôle dans l’Immunité; Masson et cie: Paris, France, 1921. [Google Scholar]
- Ellis, E.L.; Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 1939, 22, 365–384. [Google Scholar] [CrossRef]
- Dulbecco, R. Production of plaques in monolayer tissue cultures by single particles of an animal virus. Proc. Natl. Acad. Sci. USA 1952, 38, 747–752. [Google Scholar] [CrossRef]
- Baer, A.; Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. J. Vis. Exp. 2014, 93, e52065. [Google Scholar] [CrossRef]
- Solis-Balandra, M.A.; Sanchez-Salas, J.L. Classification and multi-functional use of bacteriocins in health, biotechnology, and food industry. Antibiotics 2024, 13, 666. [Google Scholar] [CrossRef]
- Weaver-Rosen, M.S.; Serwer, P. Alzheimer’s Disease: A molecular model and implied path to improved therapy. Int. J. Mol. Sci. 2024, 25, 3479. [Google Scholar] [CrossRef]
- Summers, W.C. Félix d’Herelle and the Origins of Molecular Biology; Yale University Press: New Haven, CT, USA, 1999. [Google Scholar]
- Carlson, E.A. Genes, Radiation, and Society: The Life and Work of H.J. Muller; Cornell University Press: Ithaca, NY, USA, 1981. [Google Scholar]
- Griffith, F. The significance of pneumococcal types. J. Hyg. 1928, 27, 113–159. [Google Scholar] [CrossRef] [PubMed]
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 1944, 89, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Petsko, G.A. Transformation. Genome Biol. 2006, 7, 117. [Google Scholar] [CrossRef]
- Kavenoff, R.; Zimm, B.H. Chromosome-sized DNA molecules from Drosophila. Chromosoma 1973, 41, 1–27. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef]
- Scarano, C.; Veneruso, I.; De Simone, R.R.; Di Bonito, G.; Secondino, A.; D’Argenio, V. The third- generation sequencing challenge: Novel insights for the omic sciences. Biomolecules 2024, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.; Hendrix, R.W. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015, 479–480, 310–330. [Google Scholar] [CrossRef]
- Stahl, F.W.; Edgar, R.S.; Steinberg, J. The linkage map of bacteriophage T4. Genetics 1964, 50, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W. The genetics and physiology of bacteriophage T7. Virology 1969, 39, 562–574. [Google Scholar] [CrossRef]
- Crick, F.H.C.; Barnett, L.; Brenner, S.; Watts-Tobin, R.J. General nature of the genetic code for proteins. Nature 1961, 192, 1227–1232. [Google Scholar] [CrossRef]
- Summers, W.C. The American Phage Group: Founders of Molecular Biology; Yale University Press: New Haven, CT, USA, 2023. [Google Scholar]
- Nirenberg, M.; Leder, P.; Bernfield, M.; Brimacombe, R.; Trupin, J.; Rottman, F.; O’Neal, C. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc. Natl. Acad. Sci. USA 1965, 53, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L.; Itano, H.A.; Singer, S.J.; Wells, I.C. Sickle cell anemia, a molecular disease. Science 1949, 110, 543–548. [Google Scholar] [CrossRef]
- Ingram, V.M. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 1956, 178, 792–794. [Google Scholar] [CrossRef]
- Heydemann, A.; Siemionow, M. A brief review of Duchenne muscular dystrophy treatment options, with an emphasis on two novel strategies. Biomedicines 2023, 11, 830. [Google Scholar] [CrossRef]
- Krishna, L.; Prashant, A.; Kumar, Y.H.; Paneyala, S.; Patil, S.J.; Ramachandra, S.C.; Vishwanath, P. Molecular and biochemical therapeutic strategies for Duchenne muscular dystrophy. Neurol. Int. 2024, 16, 731–760. [Google Scholar] [CrossRef]
- Kuhn, A.; Thomas, J.A. The beauty of bacteriophage T4 research: Lindsay W. Black and the T4 head assembly. Viruses 2022, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Kutter, E.; Bryan, D.; Ray, G.; Brewster, E.; Blasdel, B.; Guttman, B. From host to phage metabolism: Hot tales of phage T4’s takeover of E. coli. Viruses 2018, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Edgar, B. The genome of bacteriophage T4: An archeological dig. Genetics 2004, 168, 575–582. [Google Scholar] [CrossRef]
- Wood, W.B. Bacteriophage T4 morphogenesis as a model for assembly of subcellular structure. Q. Rev. Biol. 1980, 55, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Hyman, P.; Abedon, S.T. Practical methods for determining phage growth parameters. Meth. Mol Biol. 2009, 501, 175–202. [Google Scholar] [CrossRef]
- Luria, S.E.; Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943, 28, 491–511. [Google Scholar] [CrossRef]
- Gabashvili, I.S.; Khan, S.A.; Hayes, S.J.; Serwer, P. Polymorphism of bacteriophage T7. J. Mol. Biol. 1997, 273, 658–667. [Google Scholar] [CrossRef]
- d’Herelle, F. Bacteriophage as a treatment in acute medical and surgical infections. Bull. N. Y. Acad. Med. 1931, 7, 329–348. [Google Scholar] [PubMed]
- Luria, S.E.; Latarjet, R. Ultraviolet irradiation of bacteriophage during intracellular growth. J. Bacteriol. 1947, 53, 149–163. [Google Scholar] [CrossRef]
- Hyman, P. The genetics of the Luria-Latarjet effect in bacteriophage T4: Evidence for the involvement of multiple DNA repair pathways. Genet. Res. 1993, 62, 1–9. [Google Scholar] [CrossRef]
- Thomson, J.J. On the scattering of rapidly moving electrified particles. Proc. Cambridge Phil. Soc. 1910, 15, 465–471. [Google Scholar]
- Rutherford, E. The structure of the atom. Nature 1913, 92, 423. [Google Scholar] [CrossRef]
- Svidzinsky, A.A.; Scully, M.O.; Herschbach, D.R. Bohr’s 1913 molecular model revisited. Proc. Natl. Acad. Sci. USA 2005, 102, 11985–11988. [Google Scholar] [CrossRef]
- Available online: https://uh.edu/~chem1p/c7/c7F99.pdf (accessed on 17 February 2025).
- Stent, G.S. A short epistemology of bacteriophage multiplication. Biophys. J. 1962, 2, 13–23. [Google Scholar] [CrossRef]
- Delbrück, M. A physicist looks at biology. In Phage and the Origins of Molecular Biology; Cairns, J., Stent, G.S., Watson, J.D., Eds.; Cold Spring Laboratory of Quantitative Biology: Cold Spring Harbor, NY, USA, 1966; pp. 9–22. [Google Scholar]
- Strauss, B.S. A physicist’s quest in biology: Max Delbrück and “complementarity”. Genetics 2017, 206, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Bridges, W.B. Archives California Institute of Technology, Pasadena, California, Electrical Engineering, Applied Physics. Available online: https://oralhistories.library.caltech.edu/117/1/OH_Bridges_W.pdf (accessed on 17 February 2025).
- Edgar, R.S.; Feynman, R.P.; Klein, S.; Lielausis, I.; Steinberg, C.M. Mapping experiments with r mutants of bacteriophage T4D. Genetics 1962, 47, 179–186. [Google Scholar] [CrossRef]
- Feynman, R.P. (Notes Taken and Transcribed by John T. Neer). Feynman Hughes Lectures, Volume 4, Biology, Organic Chemistry and Microbiology 1966. Available online: http://www.thehugheslectures.info/wp-content/uploads/lectures/FeynmanHughesLectures_Vol4.pdf (accessed on 17 February 2025).
- Barrio, J.R. Consensus science and the peer review. Mol. Imaging Biol. 2009, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Boualam, M.A.; Pradines, B.; Drancourt, M.; Barbieri, R. Malaria in Europe: A historical perspective. Front. Med. 2021, 8, 691095. [Google Scholar] [CrossRef]
- Astrachan, L.; Volkin, E. Properties of ribonucleic acid turnover in T2-infected Escherichia coli. Biochim. Biophys. Acta. 1958, 29, 536–544. [Google Scholar] [CrossRef]
- Nomura, M.; Hall, B.D.; Spiegelman, S. Characterization of RNA synthesized in Escherichia coli after bacteriophage T2 infection. J. Mol. Biol. 1960, 2, 306–326. [Google Scholar] [CrossRef]
- Cobb, M. Who discovered messenger RNA? Curr. Biol. 2015, 25, R526–R532. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.E. The impact of phage lambda: From restriction to recombineering. Biochem. Soc. Trans. 2006, 34 (Pt 2), 203–207. [Google Scholar] [CrossRef]
- Gottesman, M. Bacteriophage lambda: The untold story. J. Mol. Biol. 1999, 293, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Visconti, N.; Delbrück, M. The mechanism of genetic recombination in phage. Genetics 1953, 38, 5–33. [Google Scholar] [CrossRef] [PubMed]
- Nafissi, N.; Slavcev, R. Bacteriophage recombination systems and biotechnical applications. Appl. Microbiol. Biotechnol. 2014, 98, 2841–2851. [Google Scholar] [CrossRef]
- Hillyar, C.R.T. Genetic recombination in bacteriophage lambda. Biosci. Horizons Int. J. Student Res. 2012, 5, hzs001. [Google Scholar] [CrossRef]
- Bull, J.J.; Wichman, H.A.; Krone, S.M.; Molineux, I.J. Controlling recombination to evolve bacteriophages. Cells 2024, 13, 585. [Google Scholar] [CrossRef]
- Muniyappa, K.; Radding, C.M. The homologous recombination system of phage lambda. Pairing activities of beta protein. J. Biol. Chem. 1986, 261, 7472–7478. [Google Scholar] [CrossRef] [PubMed]
- Brewster, J.L.; Tolun, G. Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red-beta annealase. IUBMB Life 2020, 72, 1622–1633. [Google Scholar] [CrossRef]
- Mosig, G.; Gewin, J.; Luder, A.; Colowick, N.; Vo, D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc. Natl. Acad. Sci. USA 2001, 98, 8306–8311. [Google Scholar] [CrossRef]
- Kreuzer, K.N. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 2000, 25, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Serwer, P. Fast sedimenting bacteriophage T7 DNA from T7-infected Escherichia coli. Virology 1974, 59, 70–88. [Google Scholar] [CrossRef]
- Leiman, P.G.; Arisaka, F.; van Raaij, M.J.; Kostyuchenko, V.A.; Aksyuk, A.A.; Kanamaru, S.; Rossmann, M.G. Morphogenesis of the T4 tail and tail fibers. Virol. J. 2010, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Wood, W.B.; Eiserling, F.A.; Crowther, R.A. Long tail fibers: Genes, proteins, structure, and assembly. In Molecular Biology of Bacteriophage T4; Karam, J.D., Ed.; American Society for Microbiology: Washington, DC, USA, 1994; pp. 282–290. [Google Scholar]
- Katsura, I.; Hendrix, R.W. Length determination in bacteriophage lambda tails. Cell 1984, 3 Pt 2, 691–698. [Google Scholar] [CrossRef]
- Katsura, I. Determination of bacteriophage lambda tail length by a protein ruler. Nature 1987, 327, 73–75. [Google Scholar] [CrossRef]
- Levin, M.E.; Hendrix, R.W.; Casjens, S.R. A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J. Mol. Biol. 1993, 234, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Karthikeyan, T.; Wadsworth, C.; Lewis, J.A.; Jacobs-Sera, D.; Falbo, J.; Gross, J.; Pannunzio, N.R.; et al. Origins of highly mosaic mycobacteriophage genomes. Cell 2003, 113, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. Titin/connectin and nebulin: Giant protein rulers of muscle structure and function. Adv. Biophys. 1996, 33, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Tskhovrebova, L.; Trinick, J. Titin and nebulin in thick and thin filament length regulation. Subcell. Biochem. 2017, 82, 285–318. [Google Scholar] [CrossRef]
- Matos-Rodrigues, G.; Guirouilh-Barbat, J.; Martini, E.; Lopez, B.S. Homologous recombination, cancer and the ‘RAD51 paradox’. NAR Cancer 2021, 3, zcab016. [Google Scholar] [CrossRef]
- Waters, K.L.; Spratt, D.E. New discoveries on protein recruitment and regulation during the early stages of the DNA damage response pathways. Int. J. Mol. Sci. 2024, 25, 1676. [Google Scholar] [CrossRef]
- San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77, 229–257. [Google Scholar] [CrossRef] [PubMed]
- Socol, Y.; Shaki, Y.Y.; Yanovskiy, M. Interests, bias, and consensus in science and regulation. Dose-Response 2019, 17, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Sig. Transduct. Target Ther. 2023, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules 2022, 27, 1210. [Google Scholar] [CrossRef]
- Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 2015, 18, 794–799. [Google Scholar] [CrossRef]
- Mullane, K.; Williams, M. Alzheimer’s disease (AD) therapeutics—1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem. Pharmacol. 2018, 158, 359–375. [Google Scholar] [CrossRef]
- Selkoe, D.J. Alzheimer Disease and aducanumab: Adjusting our approach. Nat. Rev. Neurol. 2019, 15, 365–366. [Google Scholar] [CrossRef]
- Gottfried, J. History Repeating? Avoiding a Return to the Pre-Antibiotic Age. Available online: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8889467 (accessed on 22 February 2025).
- Baldry, P. The Battle Against Bacteria: A Fresh Look, 2nd ed.; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Hays, J.P.; Ruiz-Alvarez, M.J.; Roson-Calero, N.; Amin, R.; Murugaiyan, J.; van Dongen, M.B.M. Global AMR insights ambassador network. Perspectives on the ethics of antibiotic overuse and on the implementation of (new) antibiotics. Infect. Dis. Ther. 2022, 11, 1315–1326. [Google Scholar] [CrossRef]
- Capuozzo, M.; Zovi, A.; Langella, R.; Ottaiano, A.; Cascella, M.; Scognamiglio, M.; Ferrara, F.O. Optimizing antibiotic use: Addressing resistance through effective strategies and health policies. Antibiotics 2024, 13, 1112. [Google Scholar] [CrossRef] [PubMed]
- Dutescu, I.A.; Hillier, S.A. Encouraging the development of new antibiotics: Are financial incentives the right way forward? A systematic review and case study. Infect. Drug Resist. 2021, 14, 415–434. [Google Scholar] [CrossRef]
- Pfizer. 2022 Annual Review: Breakthroughs Changing More than 1.3 Billion Lives. Available online: https://www.pfizer.com/sites/default/files/investors/financial_reports/annual_reports/2022/files/Pfizer_Annual_Review.pdf (accessed on 23 February 2025).
- Azevedo, M.; Mullis, L.; Agnihothram, S. Viral and bacterial co-infection and its implications. SciFed. Virol. Res. J. 2017, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Ling, L.; Wong, S.H.; Wang, M.H.; Fitzgerald, J.R.; Zou, X.; Fang, S.; Liu, X.; Wang, X.; Hu, W.; et al. Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients. EClinicalMedicine 2021, 37, 100955. [Google Scholar] [CrossRef]
- Centers for Diseases Control and Prevention, US. Department of Health and Human Services. Antibiotic Resistance Threats in the United States 2019, p.40. Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf (accessed on 24 February 2025).
- Shi, Z.; Zhang, J.; Tian, L.; Xin, L.; Liang, C.; Ren, X.; Li, M. A Comprehensive overview of the antibiotics approved in the last two decades: Retrospects and prospects. Molecules 2023, 28, 1762. [Google Scholar] [CrossRef]
- Rusu, A.; Munteanu, A.-C.; Arbănași, E.-M.; Uivarosi, V. Overview of side-effects of antibacterial fluoroquinolones: New drugs versus old drugs, a step forward in the safety profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef] [PubMed]
- Scavone, C.; Mascolo, A.; Ruggiero, R.; Sportiello, L.; Rafaniello, C.; Berrino, L.; Capuano, A. Quinolones-induced musculoskeletal, neurological, and psychiatric ADRs: A pharmacovigilance study based on data from the Italian spontaneous reporting system. Front. Pharmacol. 2020, 11, 428. [Google Scholar] [CrossRef]
- Stahlmann, R.; Lode, H.M. Risks associated with the therapeutic use of fluoroquinolones. Expert Opin. Drug Saf. 2013, 12, 497–505. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef]
- Liu, D.; Van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef]
- Stacey, H.J.; De Soir, S.; Jones, J.D. The safety and efficacy of phage therapy: A systematic review of clinical and safety trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Moriyama, K.; Kinoshita, M. Current status of bacteriophage therapy for severe bacterial infections. J. Intensive Care 2024, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Olsen, N.S.; Hendriksen, N.B.; Hansen, L.H.; Kot, W. A new high-throughput screening method for phages: Enabling crude isolation and fast identification of diverse phages with therapeutic potential. Phage 2020, 1, 137–148. [Google Scholar] [CrossRef]
- Serwer, P.; Hayes, S.J.; Zaman, S.; Lieman, K.; Rolando, M.; Hardies, S.C. Improved isolation of under sampled bacteriophages: Finding of distant terminase genes. Virology 2004, 329, 412–424. [Google Scholar] [CrossRef]
- Dedrick, R.M.; E. Smith, B.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Brown, A.W.; Cohen, K.; Davidson, R.M.; van Duin, D.; et al. Phage therapy of Mycobacterium infections: Compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Chambers, J.P.; Aldis, M.; Thomas, J.A.; Gonzales, C.B.; White, R.A., III; Serwer, P. Biophysical breakthroughs projected for the phage therapy of bacterial disease. Biophysica 2024, 4, 195–206. [Google Scholar] [CrossRef]
- Rojero, M.; Weaver-Rosen, M.; Serwer, P. Bypassing evolution of bacterial resistance to phages: The example of hyper-aggressive phage 0524phi7-1. Int. J. Mol. Sci. 2025, 26, 2914. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.A.; Vidal, R.M.; Velasco, J.; Carreño, L.J.; Torres, J.P.; Benachi O., M.A.; Tovar-Rosero, Y.Y.; Oñate, A.A.; O’Ryan, M. Two centuries of vaccination: Historical and conceptual approach and future perspectives. Front. Public Health 2024, 11, 1326154. [Google Scholar] [CrossRef] [PubMed]
- Offit, P.A. Vaccinated: One Man’s Quest to Defeat the World’s Deadliest Diseases; HarperCollins: New York, NY, USA, 2007. [Google Scholar]
- Claesson, B.A.; Trollfors, B.; Lagergard, T.; Taranger, J.; Bryla, D.; Otterman, G.; Cramton, T.; Yang, Y.; Reimer, C.B.; Robbins, J.B.; et al. Clinical and immunologic responses to the capsular polysaccharide of Haemophilus influenzae type b alone or conjugated to tetanus toxoid in 18- to 23-month-old children. J. Pediatr. 1988, 112, 695–702. [Google Scholar] [CrossRef]
- Tietz, D.; Aldroubi, A.; Schneerson, R.; Unser, M.; Chrambach, A. The distribution of particles characterized by size and free mobility within polydisperse populations of protein-polysaccharide conjugates, determined from two-dimensional agarose electropherograms. Electrophoresis 1991, 12, 46–54. [Google Scholar] [CrossRef]
- Hess, K.L.; Jewell, C.M. Phage display as a tool for vaccine and immunotherapy development. Bioeng. Transl. Med. 2019, 5, e10142. [Google Scholar] [CrossRef] [PubMed]
- Palma, M. Aspects of phage-based vaccines for protein and epitope immunization. Vaccines 2023, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Söderström, B.; Prins, N.; Le, G.H.B.; Hartley-Tassell, L.E.; Evenhuis, C.; Grønnemose, R.; Andersen, T.E.; Møller-Jensen, J.; Iosifidis, G.; et al. The role of bacterial size, shape and surface in macrophage engulfment of uropathogenic E. coli cells. PLoS Pathog. 2024, 20, e1012458. [Google Scholar] [CrossRef] [PubMed]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; van den Bogaart, G. Modulation of immune responses by particle size and shape. Front. Immunol. 2021, 11, 607945. [Google Scholar] [CrossRef]
- NIH, National Cancer Institute. Study Identifies Hundreds of Potential Targets for Cancer Drugs. Available online: https://www.cancer.gov/news-events/cancer-currents-blog/2024/new-cancer-drug-targets-from-proteogenomics-data (accessed on 26 February 2025).
- Garg, P.; Malhotra, J.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers 2024, 16, 2478. [Google Scholar] [CrossRef]
- Eslami, M.; Memarsadeghi, O.; Davarpanah, A.; Arti, A.; Nayernia, K.; Behnam, B. Overcoming chemotherapy resistance in metastatic cancer: A comprehensive review. Biomedicines 2024, 12, 183. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xia, G.; Adilijiang, N.; Li, Y.; Hou, Z.; Fan, Z.; Li, J. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023, 15, 2233. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Jooya, H.; Ghorbanian, K.; Gohari, S.; Dadashpou, M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024, 22, 228. [Google Scholar] [CrossRef]
- Hao, Y.; Li, B.; Huang, D.; Wu, S.; Wang, T.; Fu, L.; Liu, X. Developing a semi-supervised approach using a PU-learning-based data augmentation strategy for multitarget drug discovery. Int. J. Mol. Sci. 2024, 25, 8239. [Google Scholar] [CrossRef]
- Li, Y.; Yang, K.D.; Duan, H.Y.; Du, Y.N.; Ye, J.F. Phage-based peptides for pancreatic cancer diagnosis and treatment: Alternative approach. Front. Microbiol. 2023, 14, 1231503. [Google Scholar] [CrossRef]
- Ju, Z.; Sun, W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv. 2017, 24, 1898–1908. [Google Scholar] [CrossRef]
- Emencheta, S.C.; Onugwu, A.L.; Kalu, C.F.; Ezinkwo, P.N.; Eze, O.C.; Vila, M.M.D.C.; Balcão, V.M.; Attama, A.A.; Onuigbo, E.B. Bacteriophages as nanocarriers for targeted drug delivery and enhanced therapeutic effects. Mater. Adv. 2024, 5, 986–1016. [Google Scholar] [CrossRef]
- Gatto, M.S.; Johnson, M.P.; Najahi-Missaoui, W. Targeted liposomal drug delivery: Overview of the current applications and challenges. Life 2024, 14, 672. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Kouchak, M.; Mirveis, Z.; Hajipour, F.; Khodarahmi, M.; Rahbar, N.; Handali, S. What we need to know about liposomes as drug nanocarriers: An updated review. Adv. Pharm. Bull. 2023, 13, 7–23. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: From basics via CMC, cell culture and animal studies to clinical use. In Nanomedicines: Design, Delivery and Detection; Braddock, M., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2016; Chapter 13; pp. 315–345. [Google Scholar]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 Pt 1, 6387–6392. [Google Scholar] [PubMed]
- Ikeda-Imafuku, M.; Wang, L.L.; Rodrigues, D.; Shaha, S.; Zhao, Z.; Mitragotri, S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J. Control. Release 2022, 345, 512–536. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, H.; Lim, D.K.; Joo, M.K.; Kim, K. Perspectives for improving the tumor targeting of nanomedicine via the EPR effect in clinical tumors. Int. J. Mol. Sci. 2023, 24, 10082. [Google Scholar] [CrossRef]
- Kakkar, A.; Traverso, G.; Farokhzad, O.C.; Weissleder, R.; Langer, R. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 2017, 1, 0063. [Google Scholar] [CrossRef]
- Li, Y.; Ji, T.; Torre, M.; Shao, R.; Zheng, Y.; Wang, D.; Li, X.; Liu, A.; Zhang, W.; Deng, X.; et al. Aromatized liposomes for sustained drug delivery. Nat. Commun. 2023, 14, 6659. [Google Scholar] [CrossRef]
- Serwer, P.; Wright, E.T.; De La Chapa, J.; Gonzales, C.B. Basics for improved use of phages for therapy. Antibiotics 2021, 10, 723. [Google Scholar] [CrossRef]
- Serwer, P.; Wright, E.T. Gated ethidium- and bleomycin-loading in phage T4 that is subsequently purified leak-free. Biophysica 2022, 2, 366–380. [Google Scholar] [CrossRef]
- Koo, E.H.; Lansbury, P.T., Jr.; Kelly, J.W. Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 1999, 96, 9989–9990. [Google Scholar] [CrossRef] [PubMed]
- Candelise, N.; Scaricamazza, S.; Salvatori, I.; Ferri, A.; Valle, C.; Manganelli, V.; Garofalo, T.; Sorice, M.; Misasi, R. Protein aggregation landscape in neurodegenerative diseases: Clinical relevance and future applications. Int. J. Mol. Sci. 2021, 22, 6016. [Google Scholar] [CrossRef] [PubMed]
- Bandea, C.I. Aβ, tau, α-synuclein, huntingtin, TDP-43, PrP and AA are members of the innate immune system: A unifying hypothesis on the etiology of AD, PD, HD, ALS, CJD and RSA as innate immunity disorders. bioRxiv 2013. Available online: http://biorxiv.org/content/early/2013/11/18/000604 (accessed on 27 February 2025).
- Ciurea, A.V.; Mohan, A.G.; Covache-Busuioc, R.-A.; Costin, H.-P.; Glavan, L.-A.; Corlatescu, A.-D.; Saceleanu, V.M. Unraveling molecular and genetic insights into neurodegenerative diseases: Advances in understanding Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2023, 24, 10809. [Google Scholar] [CrossRef]
- Cairns, D.M.; Itzhaki, R.F.; Kaplan, D.L. Potential involvement of Varicella Zoster Virus in Alzheimer’s Disease via reactivation of quiescent Herpes Simplex Virus Type 1. J. Alzheimer’s Dis. 2022, 88, 1189–1200. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Overwhelming evidence for a major role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); Underwhelming evidence against. Vaccines 2021, 9, 679. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Hypothesis: Does the apparent protective action of Green Valley’s drug GV971 against cognitive decline result from antiviral action against Herpes Simplex Virus type 1 in brain? J. Alzheimer’s Dis. 2020, 76, 85–87. [Google Scholar] [CrossRef]
- Eyting, M.; Xie, M.; Michalik, F.; Heß, S.; Chung, S.; Geldsetzer, P. A natural experiment on the effect of herpes zoster vaccination on dementia. Nature 2025. [Google Scholar] [CrossRef]
- Hammarström, P.; Nyström, S. Viruses and amyloids—A vicious liaison. Prion 2023, 17, 82–104. [Google Scholar] [CrossRef]
- Prosswimmer, T.; Heng, A.; Daggett, V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci. Rep. 2024, 14, 5376. [Google Scholar] [CrossRef] [PubMed]
- Bi, T.M.; Daggett, V. The Role of α-sheet in amyloid oligomer aggregation and toxicity. Yale J. Biol. Med. 2018, 91, 247–255. [Google Scholar] [PubMed]
- Al-Beltagi, M.; Saeed, N.K.; Elbeltagi, R.; Bediwy, A.S.; Aftab, S.A.S.; Alhawamdeh, R. Viruses and autism: A bi-mutual cause and effect. World J. Virol. 2023, 12, 172–192. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, D.; Solonko, I.; Sydorenko, O. The assessment of microbial infection in children with autism spectrum disorders and genetic folate cycle deficiency. BMC Pediatr. 2024, 24, 200. [Google Scholar] [CrossRef]
- Feynman, R.P. The Meaning of It All: Thoughts of a Citizen Scientist; Perseus Books: New York, NY, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serwer, P. Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine. Encyclopedia 2025, 5, 58. https://doi.org/10.3390/encyclopedia5020058
Serwer P. Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine. Encyclopedia. 2025; 5(2):58. https://doi.org/10.3390/encyclopedia5020058
Chicago/Turabian StyleSerwer, Philip. 2025. "Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine" Encyclopedia 5, no. 2: 58. https://doi.org/10.3390/encyclopedia5020058
APA StyleSerwer, P. (2025). Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine. Encyclopedia, 5(2), 58. https://doi.org/10.3390/encyclopedia5020058