Quantum-Inspired Statistical Frameworks: Enhancing Traditional Methods with Quantum Principles
Abstract
:1. Introduction
1.1. Historical Context of Quantum Mechanics
1.2. Evolution of Statistical Theory
1.3. Intersection of Quantum Mechanics and Statistics
1.4. Practical Applications
1.5. Research Objectives
- How can quantum mechanical concepts such as superposition, entanglement, and wavefunction dynamics be systematically integrated into statistical methodologies and probability theory to overcome limitations inherent in classical statistical approaches?
- How can classical statistical distributions—including normal, binomial, Poisson, t, and chi-square—be extended with quantum parameters and interference effects to capture a broader spectrum of real-world phenomena where standard statistical assumptions may not hold?
- What fundamental principles of quantum statistics, such as the superposition of distributions, entanglement-induced correlations, quantum-based variance measures, and coherent sampling techniques, can be identified and formalized to guide the consistent application of quantum mechanics within statistical modeling frameworks?
- What are the broader theoretical implications of integrating quantum mechanics with classical statistics for interdisciplinary collaboration and advancements in data analysis?
2. Quantum Mechanics Foundations for Statistical Modeling
2.1. Superposition
2.2. Entanglement
- and represent the spin-up and spin-down states of particle 1.
- and represent the spin-up and spin-down states of particle 2.
- The coefficients ensure normalization of the state.
2.3. Measurement
- with probability ;
- with probability .
2.4. Wavefunctions
2.5. Density Matrices for Describing Quantum States
- Hermiticity: , ensuring that the density matrix is equal to its conjugate transpose.
- Unit Trace: , maintaining the total probability.
- Positivity: For any state , guaranteeing non-negative probabilities.
3. Quantum-Inspired Statistical Principles
3.1. Superposition and Interference in Distributions
- represents the basis wavefunctions, each normalized such that,
- represents complex coefficients satisfying the normalization condition:
3.2. Entanglement and Advanced Correlation Measures
3.3. Amplitude-Based Confidence and Inference
3.4. Enhanced Variance and Uncertainty Principles
- represents the quantum probability distribution.
- is the quantum mean.
3.5. Coherent Sampling and Quantum Resampling Techniques
- are the means of sub-distributions.
- are complex coefficients.
3.6. Quantum Bayesian Inference and Measurement Updates
- the projection operator corresponding to event B.
- represents the state associated with hypothesis A.
3.7. Variational Parameter Optimization in Quantum Models
- η is the learning rate.
- is the gradient of the objective function concerning θ at the current parameter values.
3.8. Quantum-Inspired Data Analysis
3.9. Quantum Mutual Information and Overlap Measures
- is the joint density matrix of variables A and B.
- and are the reduced density matrices for variables A and B, respectively.Wave Packets and Overlap:
- Wave Packets:Wave packets unify position–momentum uncertainty, enabling dynamic distribution modeling in continuous variables.
- State Overlap:
3.10. Spin Correlation and Bell Inequality Adaptations
4. Quantum-Inspired Statistical Distributions
4.1. Quantum Normal Distribution
4.2. Quantum Binomial Distribution
4.3. Quantum Poisson Distribution
4.4. Quantum Student’s t-Distribution
4.5. Quantum Chi-Square Distribution
5. Discussion
5.1. Answers to Research Objectives
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feynman, R.P.; Hey, T. Quantum mechanical computers. In Feynman Lectures on Computation; CRC Press: Boca Raton, FL, USA, 2023; pp. 169–192. [Google Scholar]
- Santamaria, R. Quantization of the Energy. In Molecular Dynamics; Springer Nature: Cham, Switzerland, 2023; pp. 159–178. [Google Scholar]
- Giliberti, M.; Lovisetti, L. The Photoelectric Effect and the Electron Charge. In Old Quantum Theory and Early Quantum Mechanics: A Historical Perspective Commented for the Inquiring Reader; Springer Nature: Cham, Switzerland, 2024; pp. 159–228. [Google Scholar]
- Mohrhoff, U.J. Niels Bohr, objectivity, and the irreversibility of measurements. Quantum Stud. Math. Found. 2020, 7, 373–382. [Google Scholar]
- Capellmann, H. Space-time in quantum theory. Found. Phys. 2021, 51, 44. [Google Scholar] [CrossRef]
- Mussardo, G.; Mussardo, G. Quantum. Erwin’s Version. In The ABC’s of Science; Springer: Cham, Switzerland, 2020; pp. 159–167. [Google Scholar]
- Drago, A. Dirac’s book The principles of quantum mechanics as an alternative way of organizing a theory. Found. Sci. 2023, 28, 551–574. [Google Scholar] [CrossRef]
- McIntyre, D.H. Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Chang, D.C. Review on the physical basis of wave–particle duality: Conceptual connection between quantum mechanics and the Maxwell theory. Mod. Phys. Lett. B 2021, 35, 2130004. [Google Scholar] [CrossRef]
- Aubrun, G.; Lami, L.; Palazuelos, C.; Plávala, M. Entanglement and superposition are equivalent concepts in any physical theory. Phys. Rev. Lett. 2022, 128, 160402. [Google Scholar]
- Chamgordani, M.A. The entanglement properties of superposition of fermionic coherent states. Int. J. Theor. Phys. 2022, 61, 33. [Google Scholar] [CrossRef]
- Stickler, B.A.; Hornberger, K.; Kim, M.S. Quantum rotations of nanoparticles. Nat. Rev. Phys. 2021, 3, 589–597. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Oxford University Press: Oxford, UK, 2021; Volume 171. [Google Scholar]
- Preskill, J. Quantum computing 40 years later. In Feynman Lectures on Computation; CRC Press: Boca Raton, FL, USA, 2023; pp. 193–244. [Google Scholar]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pract. Exp. 2022, 52, 66–114. [Google Scholar]
- Binmore, K.; Binmore, K. Blaise Pascal Versus Pierre de Fermat. In Imaginary Philosophical Dialogues: Between Sages down the Ages; Springer: Cham, Switzerland, 2021; pp. 55–61. [Google Scholar]
- Ghahramani, S. Fundamentals of Probability; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Downey, A.B. Think Bayes; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2021. [Google Scholar]
- Berkson, J. Bayes’ theorem. Ann. Math. Stat. 1930, 1, 42–56. [Google Scholar] [CrossRef]
- Caprio, M.; Sale, Y.; Hüllermeier, E.; Lee, I. A novel Bayes’ theorem for upper probabilities. In International Workshop on Epistemic Uncertainty in Artificial Intelligence; Springer Nature: Cham, Switzerland, 2023; pp. 1–12. [Google Scholar]
- Tafreshi, D. Adolphe Quetelet and the legacy of the “average man” in psychology. Hist. Psychol. 2022, 25, 34. [Google Scholar] [CrossRef]
- Prasad, S. Correlation and Regression. In Elementary Statistical Methods; Springer Nature: Singapore, 2023; pp. 241–279. [Google Scholar]
- Turhan, N.S. Karl Pearson’s Chi-Square Tests. Educ. Res. Rev. 2020, 16, 575–580. [Google Scholar]
- Acree, M.C.; Acree, M.C. The Fisher and Neyman-Pearson Theories of Statistical Inference. In The Myth of Statistical Inference; Springer: Cham, Switzerland, 2021; pp. 187–235. [Google Scholar]
- Stoker, P.; Tian, G.; Kim, J.Y. Analysis of variance (ANOVA). In Basic Quantitative Research Methods for Urban Planners; Routledge: London, UK, 2020; pp. 197–219. [Google Scholar]
- Pan, J.X.; Fang, K.T.; Pan, J.X.; Fang, K.T. Maximum likelihood estimation. In Growth Curve Models and Statistical Diagnostics; Springer: New York, NY, USA, 2002; pp. 77–158. [Google Scholar]
- Thulin, M. Modern Statistics with R: From Wrangling and Exploring Data to Inference and Predictive Modelling; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- López-Castillo, A. Exact Results for Bose–Einstein and Fermi–Dirac Statistics for Finite Generic Systems. J. Low Temp. Phys. 2024, 216, 698–721. [Google Scholar]
- Arsiwalla, X.D.; Chester, D.; Kauffman, L.H. On the operator origins of classical and quantum wave functions. Quantum Stud. Math. Found. 2024, 11, 193–215. [Google Scholar]
- Balamurugan, K.S.; Sivakami, A.; Mathankumar, M.; Ahmad, I. Quantum computing basics, applications and future perspectives. J. Mol. Struct. 2024, 1308, 137917. [Google Scholar]
- Aggarwal, M. An entropy framework for randomness and fuzziness. Expert Syst. Appl. 2024, 243, 122431. [Google Scholar]
- Priyadarshini, I. Swarm-intelligence-based quantum-inspired optimization techniques for enhancing algorithmic efficiency and empirical assessment. Quantum Mach. Intell. 2024, 6, 69. [Google Scholar]
- Lu, Y.; Yang, J. Quantum financing system: A survey on quantum algorithms, potential scenarios and open research issues. J. Ind. Inf. Integr. 2024, 41, 100663. [Google Scholar]
- Whig, P.; Mudunuru, K.R.; Remala, R. Quantum-Inspired Data-Driven Decision Making for Supply Chain Logistics. In Quantum Computing and Supply Chain Management: A New Era of Optimization; IGI Global: Hershey, PA, USA, 2024; pp. 85–98. [Google Scholar]
- Kyriazos, T.; Poga, M. Quantum concepts in Psychology: Exploring the interplay of physics and the human psyche. Biosystems 2024, 235, 105070. [Google Scholar]
- Mandal, A.K.; Chakraborty, B. Quantum computing and quantum-inspired techniques for feature subset selection: A review. Knowl. Inf. Syst. 2024, 67, 2019–2061. [Google Scholar]
- Roy, S.K.; Rudra, B. Quantum-inspired hybrid algorithm for image classification and segmentation: Q-Means++ max-cut method. Int. J. Imaging Syst. Technol. 2024, 34, e23015. [Google Scholar]
- Sharma, D.; Singh, P.; Kumar, A. Quantum-inspired attribute selection algorithms. Quantum Sci. Technol. 2024, 10, 015036. [Google Scholar]
- Faccia, A. Quantum Fintech. In Artificial Intelligence and Beyond for Finance; World Scientific Publishing Co Pte Ltd: Singapore, 2024; pp. 235–263. [Google Scholar]
- Gunjan, A.; Bhattacharyya, S. Quantum-inspired meta-heuristic approaches for a constrained portfolio optimization problem. Evol. Intell. 2024, 17, 3061–3100. [Google Scholar]
- Butt, M.O.; Waheed, N.; Duong, T.Q.; Ejaz, W. Quantum-Inspired Resource Optimization for 6G Networks: A Survey. IEEE Commun. Surv. Tutor. 2024, 1. [Google Scholar] [CrossRef]
- Tian, X.H.; Yang, R.; Liu, H.Y.; Fan, P.; Zhang, J.N.; Gu, C.; Gong, Y.-X.; Zhu, S.-N.; Xie, Z. Experimental Demonstration of Drone-Based Quantum Key Distribution. Phys. Rev. Lett. 2024, 133, 200801. [Google Scholar]
- Aquina, N.; Rommel, S.; Monroy, I.T. Quantum secure communication using hybrid post-quantum cryptography and quantum key distribution. In Proceedings of the 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 14–18 July 2024; pp. 1–4. [Google Scholar]
- Ibrahim, H.K.; Rokbani, N.; Wali, A.; Ouahada, K.; Chabchoub, H.; Alimi, A.M. A Medical Image Classification Model based on Quantum-Inspired Genetic Algorithm. Eng. Technol. Appl. Sci. Res. 2024, 14, 16692–16700. [Google Scholar]
- Yan, F.; Huang, H.; Pedrycz, W.; Hirota, K. Review of medical image processing using quantum-enabled algorithms. Artif. Intell. Rev. 2024, 57, 300. [Google Scholar]
- Swathi, G.; Altalbe, A.; Kumar, R.P. QuCNet: Quantum-Inspired Convolutional Neural Networks for Optimized Thyroid Nodule Classification. IEEE Access 2024, 12, 27829–27842. [Google Scholar]
- Rahman, S.M.; Alkhalaf, O.H.; Alam, M.S.; Tiwari, S.P.; Shafiullah, M.; Al-Judaibi, S.M.; Al-Ismail, F.S. Climate Change Through Quantum Lens: Computing and Machine Learning. Earth Syst. Environ. 2024, 8, 705–722. [Google Scholar]
- Agarwal, P.; Sahoo, A.; Garg, D. An Improved Quantum Inspired Particle Swarm Optimization for Forest Cover Prediction. Ann. Data Sci. 2024, 11, 2217–2233. [Google Scholar]
- Scherrer, R.J. Quantum Mechanics: An Accessible Introduction; World Scientific: Singapore, 2024. [Google Scholar]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3. [Google Scholar]
- Moyal, J.E. Quantum mechanics as a statistical theory. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1949; Volume 45, pp. 99–124. [Google Scholar]
- Levi, A.F.J. Applied Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Takhtadzhian, L.A. Quantum Mechanics for Mathematicians; American Mathematical Society: Providence, RI, USA, 2008; Volume 95. [Google Scholar]
- de Ronde, C. Measuring Quantum Superpositions: (Or, “It Is Only the Theory Which Decides What Can Be Observed.”). In Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics: Essays in Honour of the Philosophy of Décio Krause; Springer International Publishing: Cham, Switzerland, 2023; pp. 261–296. [Google Scholar]
- Annila, A.; Wikström, M. Quantum entanglement and classical correlation have the same form. Eur. Phys. J. Plus 2024, 139, 560. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar]
- Jordan, A.N.; Siddiqi, I.A. Quantum Measurement: Theory and Practice; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Ney, A. The World in the Wave Function: A Metaphysics for Quantum Physics; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Allori, V.; Bassi, A.; Dürr, D.; Zanghi, N. Do wave functions jump? In Fundamental Theories of Physics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Man’ko, M.A.; Man’ko, V.I. Probability Distributions as Alternatives of the Density Operator and Wave Function for Describing Quantum States. In The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov; Springer International Publishing: Cham, Switzerland, 2023; pp. 215–234. [Google Scholar]
- Pomarico, D.; Fanizzi, A.; Amoroso, N.; Bellotti, R.; Biafora, A.; Bove, S.; Didonna, V.; Forgia, D.L.; Pastena, M.I.; Tamborra, P.; et al. A proposal of quantum-inspired machine learning for medical purposes: An application case. Mathematics 2021, 9, 410. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, J.; Zhang, P.; Lin, Q.; Li, Y.; Qian, Y. Quantum-inspired language models based on unitary transformation. Inf. Process. Manag. 2024, 61, 103741. [Google Scholar]
- Tasaki, H. Physics and Mathematics of Quantum Many-Body Systems; Springer: Berlin/Heidelberg, Germany, 2020; Volume 66. [Google Scholar]
- Ullah, A.; Wang, B.; Sheng, J.; Long, J.; Khan, N.; Sun, Z. Identification of nodes influence based on global structure model in complex networks. Sci. Rep. 2021, 11, 6173. [Google Scholar]
- Erhard, M.; Krenn, M.; Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2020, 2, 365–381. [Google Scholar]
- Zhang, J.; Li, Z.; Wang, J.; Wang, Y.; Hu, S.; Xiao, J.; Li, Z. Quantum entanglement inspired correlation learning for classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer International Publishing: Cham, Switzerland, 2022; pp. 58–70. [Google Scholar]
- Di, S.; Xu, J.; Shu, G.; Feng, C.; Ding, X.; Shan, Z. Amplitude transformed quantum convolutional neural network. Appl. Intell. 2023, 53, 20863–20873. [Google Scholar]
- Chen, Y.; Wang, F.; Cai, Y. Partially coherent light beam shaping via complex spatial coherence structure engineering. Adv. Phys. X 2022, 7, 2009742. [Google Scholar]
- Backes, K.M.; Palken, D.A.; Kenany, S.A.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Hilton, G.C.; Ghosh, S.; Jackson, H.; Lamoreaux, S.K.; et al. A quantum enhanced search for dark matter axions. Nature 2021, 590, 238–242. [Google Scholar]
- Zhang, Q. Quantum Inspired Concepts in Decision Making; Missouri University of Science and Technology: Rolla, MO, USA, 2021. [Google Scholar]
- Hangleiter, D.; Eisert, J. Computational advantage of quantum random Sampling. Rev. Mod. Phys. 2023, 95, 035001. [Google Scholar]
- Yuan, Y.; Wei, J.; Huang, H.; Jiao, W.; Wang, J.; Chen, H. Review of resampling techniques for the treatment of imbalanced industrial data classification in equipment condition monitoring. Eng. Appl. Artif. Intell. 2023, 126, 106911. [Google Scholar]
- Casella, G.; Berger, R. Statistical Inference; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Nguyen, N.; Chen, K.C. Bayesian quantum neural networks. IEEE Access 2022, 10, 54110–54122. [Google Scholar]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar]
- Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G.H.; et al. The variational quantum eigensolver: A review of methods and best practices. Phys. Rep. 2022, 986, 1–128. [Google Scholar]
- Jiang, C.; Pan, Y.; Yang, Y.; Dong, D. Interpolation of positive matrices by quantum-inspired optimal control. IET Control Theory Appl. 2024, 18, 877–886. [Google Scholar]
- García-Ripoll, J.J. Quantum-inspired algorithms for multivariate analysis: From interpolation to partial differential equations. Quantum 2021, 5, 431. [Google Scholar]
- Zhang, Z.; Henderson, T.; Karaman, S.; Sze, V. FSMI: Fast computation of Shannon mutual information for information-theoretic mapping. Int. J. Robot. Res. 2020, 39, 1155–1177. [Google Scholar]
- Kuwahara, T.; Kato, K.; Brandão, F.G. Clustering of conditional mutual information for quantum Gibbs states above a threshold temperature. Phys. Rev. Lett. 2020, 124, 220601. [Google Scholar]
- Harvey, S.M.; Wasielewski, M.R. Photogenerated spin-correlated radical pairs: From photosynthetic energy transduction to quantum information science. J. Am. Chem. Soc. 2021, 143, 15508–15529. [Google Scholar]
- Ruzbehani, M. Simulation of the Bell inequality violation based on quantum steering concept. Sci. Rep. 2021, 11, 5647. [Google Scholar]
- Srivastava, A.K.; Müller-Rigat, G.; Lewenstein, M.; Rajchel-Mieldzioć, G. Introduction to quantum entanglement in many-body systems. In New Trends and Platforms for Quantum Technologies; Springer Nature: Cham, Switzerland, 2024; pp. 225–285. [Google Scholar]
- Gupta, S.C.; Kapoor, V.K. Fundamentals of Mathematical Statistics; Sultan Chand & Sons: New Delhi, India, 2020. [Google Scholar]
- Peck, R.; Short, T.; Olsen, C. Introduction to Statistics and Data Analysis; Cengage Learning: Belmont, CA, USA, 2020. [Google Scholar]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moore, M.L.; Pollock, J.R.; Smith, J.F.; Elahi, M.A.; Rosenow, C.S. Distributions. In Translational Orthopedics; Academic Press: Cambridge, MA, USA, 2024; pp. 123–127. [Google Scholar]
- García-García, J.I.; Fernández Coronado, N.A.; Arredondo, E.H.; Imilpán Rivera, I.A. The binomial distribution: Historical origin and evolution of its problem situations. Mathematics 2022, 10, 2680. [Google Scholar] [CrossRef]
- Maurya, S.K.; Nadarajah, S. Poisson generated family of distributions: A review. Sankhya B 2021, 83, 484–540. [Google Scholar] [CrossRef]
- John, D.I.; Stephen MA TH, E.W. Statistical properties and applications of transmuted skew student t distribution. Reliab. Theory Appl. 2024, 19, 144–156. [Google Scholar]
- Hutcheson, A.T.; Brown, K.G. Chi-Square. In Statistics for Psychology Research: A Short Guide Using Excel; Springer Nature: Cham, Switzerland, 2024; pp. 161–177. [Google Scholar]
- Phukan, A.; Pal, S.; Ekbal, A. Hybrid Quantum-Classical Neural Network for Multimodal Multitask Sarcasm, Emotion, and Sentiment Analysis. IEEE Trans. Comput. Soc. Syst. 2024, 11, 5740–5750. [Google Scholar] [CrossRef]
- Jia, K.; Meng, F.; Liang, J. Hierarchical graph contrastive learning framework based on quantum neural networks for sentiment analysis. Inf. Sci. 2025, 690, 121543. [Google Scholar] [CrossRef]
- Xing, Z.; Lam, C.T.; Yuan, X.; Im, S.K.; Machado, P. MMQW: Multimodal Quantum Watermarking Scheme. IEEE Trans. Inf. Forensics Secur. 2024, 19, 5181–5195. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Shapovalova, Y.; Baştürk, N.; Eichler, M. Multivariate Count Data Models for Time Series Forecasting. Entropy 2021, 23, 718. [Google Scholar] [CrossRef]
- Altman, E.; Brown, K.R.; Carleo, G.; Carr, L.D.; Demler, E.; Chin, C.; DeMarco, B.; Economou, S.E.; Eriksson, M.A.; Fu, K.M.C.; et al. Quantum simulators: Architectures and opportunities. PRX Quantum 2021, 2, 017003. [Google Scholar] [CrossRef]
- Cherbal, S.; Zier, A.; Hebal, S.; Louail, L.; Annane, B. Security in internet of things: A review on approaches based on blockchain, machine learning, cryptography, and quantum computing. J. Supercomput. 2024, 80, 3738–3816. [Google Scholar] [CrossRef]
- SaberiKamarposhti, M.; Ng, K.W.; Chua, F.F.; Abdullah, J.; Yadollahi, M.; Moradi, M.; Ahmadpour, S. Post-quantum healthcare: A roadmap for cybersecurity resilience in medical data. Heliyon 2024, 10, e31406. [Google Scholar] [CrossRef]
- Svozil, K. Extending Kolmogorov’s axioms for a generalized probability theory on collections of contexts. Entropy 2022, 24, 1285. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Du, C.; Xue, Z.; Chen, X.; Zhao, H.; Huang, L. What makes multimodal learning better than single (provably). Adv. Neural Inf. Process. Syst. 2021, 34, 10944–10956. [Google Scholar]
- Ling, Z.; Hao, Z.J. Intrusion detection using normalized mutual information feature selection and parallel quantum genetic algorithm. Int. J. Semant. Web Inf. Syst. 2022, 18, 1–24. [Google Scholar]
- Filk, T. The Quantum-like Behavior of Neural Networks. In From Electrons to Elephants and Elections: Exploring the Role of Content and Context; Springer International Publishing: Cham, Switzerland, 2022; pp. 553–575. [Google Scholar]
- Wiersema, R.; Zhou, C.; de Sereville, Y.; Carrasquilla, J.F.; Kim, Y.B.; Yuen, H. Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX Quantum 2020, 1, 020319. [Google Scholar]
- Hakemi, S.; Houshmand, M.; KheirKhah, E.; Hosseini, S.A. A review of recent advances in quantum-inspired metaheuristics. Evol. Intell. 2024, 17, 627–642. [Google Scholar]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Castaño-Moraga, C.A. Quantum-inspired computing technology in operations and logistics management. Int. J. Phys. Distrib. Logist. Manag. 2024, 54, 247–274. [Google Scholar]
- Slongo, F.; Hauke, P.; Faccioli, P.; Micheletti, C. Quantum-inspired encoding enhances stochastic Sampling of soft matter systems. Sci. Adv. 2023, 9, eadi0204. [Google Scholar]
- Abd El-Latif, A.A.; Abd-El-Atty, B.; Mehmood, I.; Muhammad, K.; Venegas-Andraca, S.E.; Peng, J. Quantum-inspired blockchain-based cybersecurity: Securing smart edge utilities in IoT-based smart cities. Inf. Process. Manag. 2021, 58, 102549. [Google Scholar]
- Almotiri, S.H.; Nadeem, M.; Al Ghamdi, M.A.; Khan, R.A. Analytic review of healthcare software by using quantum computing security techniques. Int. J. Fuzzy Log. Intell. Syst. 2023, 23, 336–352. [Google Scholar]
- Lv, X.; Rani, S.; Manimurugan, S.; Slowik, A.; Feng, Y. Quantum-inspired sensitive data measurement and secure transmission in 5G-enabled healthcare systems. Tsinghua Sci. Technol. 2024, 30, 456–478. [Google Scholar]
- Boev, A.S.; Rakitko, A.S.; Usmanov, S.R.; Kobzeva, A.N.; Popov, I.V.; Ilinsky, V.V.; Kiktenko, E.O.; Fedorov, A.K. Genome assembly using quantum and quantum-inspired annealing. Sci. Rep. 2021, 11, 13183. [Google Scholar]
- Muhuri, S.; Singh, S.S. Quantum-Social Network Analysis for Community Detection: A Comprehensive Review. IEEE Trans. Comput. Soc. Syst. 2024, 11, 6795–6806. [Google Scholar]
- Chakraborty, S.; Shaikh, S.H.; Chakrabarti, A.; Ghosh, R. A hybrid quantum feature selection algorithm using a quantum inspired graph theoretic approach. Appl. Intell. 2020, 50, 1775–1793. [Google Scholar]
- Xiang, H. A mixture non-parametric regression prediction model with its application in the fault prediction of rocket engine thrust. J. Qual. Maint. Eng. 2024, 30, 120–132. [Google Scholar]
- Du, Y.; Wang, H.; Hennig, R.; Hulandageri, A.; Kochenberger, G.; Glover, F. New advances for quantum-inspired optimization. Int. Trans. Oper. Res. 2025, 32, 6–17. [Google Scholar]
- Hassija, V.; Chamola, V.; Saxena, V.; Chanana, V.; Parashari, P.; Mumtaz, S.; Guizani, M. Present landscape of quantum computing. IET Quantum Commun. 2020, 1, 42–48. [Google Scholar]
- Nguyen, A.; Ngo, H.N.; Hong, Y.; Dang, B.; Nguyen BP, T. Ethical principles for artificial intelligence in education. Educ. Inf. Technol. 2023, 28, 4221–4241. [Google Scholar]
- Shankar, R. Principles of Quantum Mechanics; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics Volume 2; Hermann: Paris, France, 1986. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, Volume 3: Fermions, Bosons, Photons, Correlations, and Entanglement; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kyriazos, T.; Poga, M. Quantum-Inspired Latent Variable Modeling in Multivariate Analysis. Stats 2025, 8, 20. [Google Scholar] [CrossRef]
- Poga, M.; Kyriazos, T.A. Alice and Bob: Quantum Short Tales; Psychometric Research, Ed.; Amazon: Seattle, WA, USA, 2023; Available online: https://www.amazon.com/dp/B0CM5SXLH7 (accessed on 28 March 2025).
- Kyriazos, T.A.; Poga, M. Quantum Mechanics and Psychological Phenomena: A Metaphorical Exploration; Psychometric Research, Ed.; Amazon: Seattle, WA, USA, 2023; Available online: https://www.amazon.com/dp/B0CKNLL7P7 (accessed on 28 March 2025).
Quantum Principle | Traditional Statistics Approach | Quantum-Inspired Approach | Significance/Innovation |
---|---|---|---|
Superposition | Traditional models assume data points belong to one state or category exclusively. | Models represent data points as superpositions, allowing simultaneous membership in multiple states with varying probabilities. | Enables modeling of overlapping data structures and captures complex, multimodal distributions. |
Entanglement | Classical statistics use covariance matrices to capture linear dependencies between variables. | Utilizes entanglement-inspired correlations to capture non-linear and phase-sensitive dependencies. | Reveals hidden interdependencies and enhances the robustness of models in capturing complex relationships. |
Measurement | Hypothesis testing relies on real-valued probabilities without considering interactions between multiple hypotheses. | Implements amplitude-based confidence measures, allowing for interference between competing hypotheses. | Provides more nuanced confidence measures and improves inference accuracy by accounting for overlapping hypotheses. |
Wavefunctions | Probability distributions are modeled using real-valued functions without interference effects. | Uses wavefunctions with complex amplitudes to model probability distributions, incorporating interference patterns. | Captures wave-like fluctuations and multimodal distributions, offering a richer representation of data variability. |
Density Matrices | Statistical models typically use probability vectors to represent state distributions. | Employs density matrices to represent both pure and mixed states, allowing for modeling statistical ensembles with complex dependencies. | Encodes uncertainties and mixtures of different states more flexibly than classical probability vectors, enhancing model richness. |
Quantum-Inspired Principle | Traditional Approach | Quantum-Inspired Approach | Significance/Innovation |
---|---|---|---|
Superposition and Interference | Hard clustering assigns each data point to one cluster. | Soft clustering allows data points to belong to multiple clusters with probabilities. | Captures overlapping and blended data patterns, improving clustering accuracy. |
Entanglement and Advanced Correlations | Pearson’s correlation captures only linear dependencies. | Entanglement-inspired measures capture non-linear and complex dependencies. | Enhances correlation modeling by identifying hidden, intricate relationships. |
Amplitude-Based Confidence | Real-valued confidence levels in hypothesis testing. | Complex amplitude-based confidence allows for interference among hypotheses. | Enables more nuanced and accurate inference by accounting for hypothesis interactions. |
Enhanced Variance Measures | Classical variance assumes i.i.d. data, possibly underestimating variability. | Quantum variance accounts for correlations and non-linear dependencies. | Provides more accurate uncertainty estimates in complex, correlated datasets. |
Coherent Sampling | Independent bootstrap samples can disrupt data dependencies. | Coherent sampling preserves phase relationships and dependencies during resampling. | Maintains data structure integrity, leading to more realistic synthetic datasets. |
Quantum Bayesian Inference | Bayesian updates treat hypotheses independently. | Quantum Bayesian updates incorporate interference among hypotheses. | Allows for dynamic belief updates considering multiple interacting hypotheses. |
Variational Parameter Optimization | Real-valued gradients in gradient descent algorithms. | Complex gradients enable the optimization of amplitude-phase relationships. | Improves convergence and navigates complex parameter spaces more effectively. |
Density Matrix Transformations | Static parameter models do not account for dynamic interactions. | Unitary operations dynamically evolve data distributions while preserving probabilities. | Enables adaptive modeling of changing data distributions in real-time applications. |
Quantum Mutual Information | Classical mutual information measures shared information. | Quantum mutual information captures both classical and quantum-like dependencies. | Provides a comprehensive measure of total correlations, enhancing data analysis depth. |
Spin Correlation Adaptations | Pearson’s coefficient assesses only linear relationships. | Adapted Bell inequalities detect non-classical, entanglement-like dependencies. | Identifies deeper interdependencies, offering richer insights into data structures. |
Quantum-Inspired Distribution | Traditional Distribution | Quantum-Inspired Modification | Significance/Innovation |
---|---|---|---|
Quantum Normal Distribution | Models unimodal, symmetric data with independence. | Incorporates complex amplitudes, allowing for multimodal distributions and interference. | Captures overlapping signal sources and complex distribution shapes. |
Quantum Binomial Distribution | Models number of successes in independent Bernoulli trials. | Introduces phase terms, enabling interference between trial outcomes and modeling dependencies. | Models correlated trial outcomes, capturing realistic genetic variations. |
Quantum Poisson Distribution | Models independent events in fixed intervals. | Adds phase terms, allowing for interference and modeling of correlated or clustered events. | Represents network traffic with clustered packet arrivals more accurately. |
Quantum Student’s t-Distribution | Used for small sample sizes with unknown variance, exhibits heavy tails. | Incorporates wavefunction-based amplitudes, capturing heavy tails and complex dependencies. | Models asset returns with extreme variability and non-linear dependencies. |
Quantum Chi-Square Distribution | Used for hypothesis testing assuming variable independence. | Utilizes density matrices and operator-based transformations to model dependencies and interactions. | Assesses goodness-of-fit in multivariate models with interdependent variables. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriazos, T.; Poga, M. Quantum-Inspired Statistical Frameworks: Enhancing Traditional Methods with Quantum Principles. Encyclopedia 2025, 5, 48. https://doi.org/10.3390/encyclopedia5020048
Kyriazos T, Poga M. Quantum-Inspired Statistical Frameworks: Enhancing Traditional Methods with Quantum Principles. Encyclopedia. 2025; 5(2):48. https://doi.org/10.3390/encyclopedia5020048
Chicago/Turabian StyleKyriazos, Theodoros, and Mary Poga. 2025. "Quantum-Inspired Statistical Frameworks: Enhancing Traditional Methods with Quantum Principles" Encyclopedia 5, no. 2: 48. https://doi.org/10.3390/encyclopedia5020048
APA StyleKyriazos, T., & Poga, M. (2025). Quantum-Inspired Statistical Frameworks: Enhancing Traditional Methods with Quantum Principles. Encyclopedia, 5(2), 48. https://doi.org/10.3390/encyclopedia5020048