Sustainable Water Management Practices in Agriculture: The Case of East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Literature Selection Process
2.2.2. Data Extraction and Curation
2.2.3. A Bibliometric and Post-Bibliometric Analysis of Water Management Research
3. Results and Discussion
3.1. Identifying Gaps in Research on Sustainable Water Management in East African Agriculture
3.1.1. Insufficient Attention to Gender Dynamics
3.1.2. Lack of Long-Term Impact Assessment
3.1.3. Limited Integration of Indigenous Knowledge
3.1.4. Inadequate Consideration of Climate Change Adaptation
3.1.5. Incomplete Assessment of Water Quality Implications
Case Study | Description | Key Practices | Reference |
---|---|---|---|
1. Socio-economic impact assessment in Uganda | A comprehensive study evaluating the socio-economic impacts of sustainable water management practices. Assessing effects on farmers’ livelihoods, income, and overall well-being | -Socio-economic impact assessment -Community engagement and participatory approaches | [25,96,97,98] |
2. Gender-inclusive water management in Kenya | In-depth exploration of gender dynamics in water management, highlighting women’s roles in water-related activities. Identifying strategies for equitable access to water resources. | -Gender-sensitive water management -Community participation and empowerment | [25,70] |
3. Long-term impact assessment in Ethiopia | Longitudinal study assessing sustainable water management practices’ sustained benefits and drawbacks over extended periods, providing nuanced recommendations for policymakers. | -Long-term impact assessment -Adaptive management strategies | [21,31] |
4. Integration of indigenous knowledge in Tanzania | Exploration of ways to integrate indigenous knowledge systems into sustainable water management practices. Enhancing the relevance and effectiveness of interventions. | -Integration of indigenous knowledge -Collaborative approaches with local communities | [25,78] |
5. Climate-resilient water management in Rwanda | Investigating the synergies between sustainable water management and climate change adaptation. Providing actionable insights for policymakers addressing climate-related shocks. | -Climate-resilient water management -Adaptive strategies for climate change | [31,81] |
6. Policy implementation challenges in Kenya and Uganda | In-depth exploration of challenges associated with policy implementation at the ground level. Identifying barriers and strategies for effective policy translation into actionable practices. | -Policy implementation challenges -Stakeholder engagement and context-specific strategies | [34,40] |
3.2. Economic Implications
3.3. Social and Environmental Impact: Exploring Sustainable Water Management’s Social and Environmental Implications
3.4. Opportunities for Improvement
3.4.1. Enhanced Socio-Economic Integration
3.4.2. Gender-Inclusive Approaches
3.4.3. Long-Term Impact Assessment
3.4.4. Integration of Indigenous Knowledge
3.4.5. Climate Change Adaptation
4. Conclusions
5. Recommendations
6. The Way Forward
7. Limitation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masese, M.A.; Mukhebi, A.; Gor, C. Analysis of Agricultural Extension Service Agents Information Sources and Sorghum Production in Bondo Sub County, Kenya. 2018. Available online: https://afribary.com/works/analysis-of-agricultural-extension-service-agents-information-sources-and-sorghum-production-in-bondo-sub-county-kenya (accessed on 4 March 2018).
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable water management in urban, agricultural, and natural systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Adaptive and sustainable water management: From improved conceptual foundations to transformative change. In Global Water Resources; Routledge: London, UK, 2021; pp. 175–193. [Google Scholar]
- Food and Agriculture Organization (FAO). National gender profile of agriculture and rural livelihoods–Country Gender Assessment Series; Food and Agriculture Organization (FAO): Addis Ababa, Ethiopia, 2019; pp. 1–84. Available online: https://openknowledge.fao.org/items/fcea84cc-958b-4bc3-b01d-5dab475f6e6a (accessed on 25 November 2024).
- Hasan, N.; Pushpalatha, R.; Manivasagam, V.; Arlikatti, S.; Cibin, R. Global sustainable water management: A systematic qualitative review. Water Resour. Manag. 2023, 37, 5255–5272. [Google Scholar] [CrossRef]
- Amede, T.; Konde, A.A.; Muhinda, J.J.; Bigirwa, G. Sustainable farming in practice: Building resilient and profitable smallholder agricultural systems in sub-Saharan Africa. Sustainability 2023, 15, 5731. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Qadir, M.; Boers, T.M.; Schubert, S.; Ghafoor, A.; Murtaza, G. Agricultural water management in water-starved countries: Challenges and opportunities. Agric. Water Manag. 2003, 62, 165–185. [Google Scholar] [CrossRef]
- Jain, S.; Srivastava, A.; Khadke, L.; Chatterjee, U.; Elbeltagi, A. Global-scale water security and desertification management amidst climate change. Environ. Sci. Pollut. Res. 2024, 31, 58720–58744. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 2015, 5, 837–846. [Google Scholar] [CrossRef]
- Nakawuka, P.; Langan, S.; Schmitter, P.; Barron, J. A review of trends, constraints and opportunities of smallholder irrigation in East Africa. Glob. Food Secur. 2018, 17, 196–212. [Google Scholar] [CrossRef]
- Okumu, B.; Kehbila, A.G.; Osano, P. A review of water-forest-energy-food security nexus data and assessment of studies in East Africa. Curr. Res. Environ. Sustain. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Solecki, W.; Roberts, D.; Seto, K.C. Strategies to improve the impact of the IPCC Special Report on Climate Change and Cities. Nat. Clim. Change 2024, 14, 685–691. [Google Scholar] [CrossRef]
- Thalheimer, L. Compounding Risks and Increased Vulnerabilities: Climate Change, Conflict, and Mobility in East Africa. In Environmental Migration in the Face of Emerging Risks: Historical Case Studies, New Paradigms and Future Directions; Springer: Berlin/Heidelberg, Germany, 2023; pp. 137–153. [Google Scholar]
- Bedasa, Y.; Deksisa, K. Food insecurity in East Africa: An integrated strategy to address climate change impact and violence conflict. J. Agric. Food Res. 2024, 15, 100978. [Google Scholar] [CrossRef]
- Njenga, M.K.; Dawa, J.; Nanyingi, M.; Gachohi, J.; Ngere, I.; Letko, M.; Otieno, C.; Gunn, B.M.; Osoro, E. Why is there low morbidity and mortality of COVID-19 in Africa? Am. J. Trop. Med. Hyg. 2020, 103, 564. [Google Scholar] [CrossRef]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, R.I.; Wheeler, K.G.; Gedney, N.; Hickman, J.E.; Madani, N.; Folwell, S.S.; Abdo, G. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- Teweldebrihan, M.; Dinka, M. The effect of irrigation practice and water consumption using aqua-crop. Glob. J. Environ. Sci. Manag. 2024, 40, 2099–2114. [Google Scholar]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable water use in agriculture: A review of worldwide research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Falk, T.; Spangenberg, J.H.; Siegmund-Schultze, M.; Kobbe, S.; Feike, T.; Kuebler, D.; Settele, J.; Vorlaufer, T. Identifying governance challenges in ecosystem services management–Conceptual considerations and comparison of global forest cases. Ecosyst. Serv. 2018, 32, 193–203. [Google Scholar] [CrossRef]
- Luo, Y.; Sophocleous, M. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. J. Arid Land 2011, 3, 164–173. [Google Scholar] [CrossRef]
- Zhao, S.; Schmidt, S.; Gao, H.; Li, T.; Chen, X.; Hou, Y.; Chadwick, D.; Tian, J.; Dou, Z.; Zhang, W. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nat. Food 2022, 3, 741–752. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated water resources management: A reassessment: A water forum contribution. Water Int. 2004, 29, 248–256. [Google Scholar] [CrossRef]
- Kidanemaraim, J. Participatory integrated water resources management (IWRM) planning: Lessons from Berki Catchment, Ethiopia. In Water, Sanitation and Hygiene: Sustainable Development and Multisectoral Approaches, Proceedings of the 34th WEDC International Conference, United Nations Conference Centre, Addis Ababa, Ethiopia, 18–22 May 2009; Loughborough University: Loughborough, UK, 2009; pp. 326–333. [Google Scholar]
- FAO. AQUASTAT Database. 2015. Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 21 June 2015).
- Wada, Y.; Bierkens, M.F.; Roo, A.d.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Müller Schmied, H.; Oki, T. Human–water interface in hydrological modelling: Current status and future directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef]
- Thornton, P.K.; Whitbread, A.; Baedeker, T.; Cairns, J.; Claessens, L.; Baethgen, W.; Bunn, C.; Friedmann, M.; Giller, K.E.; Herrero, M. A framework for priority-setting in climate smart agriculture research. Agric. Syst. 2018, 167, 161–175. [Google Scholar] [CrossRef]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.; Yillia, P.; Ringler, C. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Madajewicz, M.; Pfaff, A.; van Geen, A.; Graziano, J.; Hussein, I.; Momotaj, H.; Sylvi, R.; Ahsan, H. Can information alone both improve awareness and change behavior? Arsenic contamination of groundwater in Bangladesh. J. Dev. Econ. 2007, 84, 731–754. [Google Scholar] [CrossRef]
- Mollinga, P.P. Boundary work and the complexity of natural resources management. Crop Sci. 2010, 50, S-1–S-9. [Google Scholar] [CrossRef]
- Pande, S.; Roobavannan, M.; Kandasamy, J.; Sivapalan, M.; Hombing, D.; Lyu, H.; Rietveld, L. A Socio-Hydrological Perspective on the Economics of Water Resources Development and Management. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Adams, S.; Acheampong, A.O. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Van Meter, K.; Van Cappellen, P.; Basu, N. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 2018, 360, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Masscheleyn, P.H.; Patric, W.H., Jr. Biogeochemical processes affecting selenium cycling in wetlands. Environ. Toxicol. Chem. Int. J. 1993, 12, 2235–2243. [Google Scholar] [CrossRef]
- Providoli, I.; Zeleke, G.; Kiteme, B.; Heinimann, A.; von Dach, S.W. From Fragmented to Integrated Knowledge for Sustainable Water and Land Management and Governance in Highland–Lowland Contexts. Mt. Res. Dev. 2017, 37, 377–380. [Google Scholar] [CrossRef]
- Lankford, A.; Adkins, K.G.; Madfis, E. Are the deadliest mass shootings preventable? An assessment of leakage, information reported to law enforcement, and firearms acquisition prior to attacks in the United States. J. Contemp. Crim. Justice 2019, 35, 315–341. [Google Scholar] [CrossRef]
- Bender, M.V. Water Management in East Africa; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Kolawole, A.S.; Ajayi, F.O.; Ogidi, O.I.; Ogwu, M.C. Sustainable water use and management for agricultural transformation in Africa. In Water Resources Management for Rural Development; Elsevier: Amsterdam, The Netherlands, 2024; pp. 287–300. [Google Scholar]
- Andres, L.; Bryson, J.R.; Bakare, H.; Pope, F. Institutional logics and regional policy failure: Air pollution as a wicked problem in East African cities. Environ. Plan. C Politics Space 2023, 41, 313–332. [Google Scholar] [CrossRef]
- Jayasinghe, G.; Perera, T.; Perera, H.; Karunarathne, H.; Manawadu, L.; Weerasinghe, V.; Sewwandi, B.; Haroon, M.; Malalgoda, C.; Amaratunga, D. A systematic literature review on Integrating disaster risk reduction (DRR) in sustainable tourism (SusT): Conceptual framework for enhancing resilience and minimizing environmental impacts. Int. J. Disaster Risk Reduct. 2024, 111, 104742. [Google Scholar] [CrossRef]
- Gemechu, E.; Arsano, Y. Towards Transboundary Water Management Policy Regime in the Eastern Nile Basin for Sustainable Water Use and Conservation. East Afr. J. Soc. Sci. Humanit. 2023, 8, 17–32. [Google Scholar]
- Tinazzi, I. Water Scarcity, Migrations and Climate Change: An Assessement of Their Nexus; Università Ca’ Foscari Venezia: Venezia, Italy, 2024. [Google Scholar]
- Valjarevic, A. Population Dynamics and Water Stress: Analyzing Impacts on Africa’s River Systems Through GIS and Spatial Analysis. Available online: https://www.researchgate.net/publication/385572749_Population_Dynamics_and_Water_Stress_Analyzing_Impacts_on_Africa%27s_River_Systems_Through_GIS_and_Spatial_Analysis (accessed on 12 January 2024).
- Tuyishimire, A.; Liu, Y.; Yin, J.; Kou, L.; Lin, S.; Lin, J.; Kubwimana, J.J.; Moharrami, K.; Simbi, C.H. Drivers of the increasing water footprint in Africa: The food consumption perspective. Sci. Total Environ. 2022, 809, 152196. [Google Scholar] [CrossRef] [PubMed]
- Nikiel, C.A.; Eltahir, E.A. Past and future trends of Egypt’s water consumption and its sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef]
- du Plessis, A. Water resources from a global perspective. In South Africa’s Water Predicament: Freshwater’s Unceasing Decline; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–25. [Google Scholar]
- Urugo, M.M.; Yohannis, E.; Teka, T.A.; Gemede, H.F.; Tola, Y.B.; Forsido, S.F.; Tessema, A.; Suraj, M.; Abdu, J. Addressing post-harvest losses through agro-processing for sustainable development in Ethiopia. J. Agric. Food Res. 2024, 18, 101316. [Google Scholar] [CrossRef]
- Mbene, K.; Alakeh, N.M.; Asongwe, G.A.; Fomenky, N.N.; Nkenganang, M.C.A.; Tening, A.S. Assessment of the Soil Resources of Sub-Saharan Africa in Relation to Food Security: Perspectives Past, Present, and Future. In Soil Constraints and Productivity; CRC Press: Boca Raton, FL, USA, 2023; pp. 553–580. [Google Scholar]
- Tom, T.; Nirmala, M.; Kumar, N.S.; Reshmi, U. Unveiling the Agricultural Growth Catalyst: A Review on the Importance of Public Expenditure in the Agriculture. In Anticipating Future Business Trends: Navigating Artificial Intelligence Innovations; Springer: Berlin/Heidelberg, Germany, 2024; Volume 2, p. 243. [Google Scholar]
- Ridwan, Q.; Wani, Z.A.; Anjum, N.; Bhat, J.A.; Hanief, M.; Pant, S. Human-wildlife conflict: A bibliometric analysis during 1991–2023. Reg. Sustain. 2023, 4, 309–321. [Google Scholar] [CrossRef]
- Šlibar, B.; Oreški, D.; Begičević Ređep, N. Importance of the open data assessment: An insight into the (meta) data quality dimensions. Sage Open 2021, 11, 21582440211023178. [Google Scholar] [CrossRef]
- Choi, W.; Yoon, H.-M.; Hyun, M.-H.; Lee, H.-J.; Seol, J.-W.; Lee, K.D.; Yoon, Y.J.; Kong, H. Building an annotated corpus for automatic metadata extraction from multilingual journal article references. PLoS ONE 2023, 18, e0280637. [Google Scholar] [CrossRef]
- Nasir, T.; Raina, D.I.; Wani, Z.A.; Ridwan, Q.; Hanief, M.; Pant, S.; Rawat, Y.S. A bibliometric analysis of wildlife tourism research from 1991–2022. Front. Sustain. Tour. 2024, 3, 1393525. [Google Scholar] [CrossRef]
- Nicol, A.; Langan, S.; Victor, M.; Gonsalves, J. Water-Smart Agriculture in East Africa; IWMI: Colombo, Sri Lanka, 2015. [Google Scholar]
- Mekonen, A.; Awualchew, S. Assessment of the performance of selected irrigation schemes in Ethiopia. Z. Für Bewässerungswirtschaft 2009, 44, 121–142. [Google Scholar]
- Ani, K.J.; Jungudo, M.M.; Ojakorotu, V. Aqua-conflicts and hydro-politics in Africa: Unfolding the role of African Union water management interventions. J. Afr. Union Stud. 2018, 7, 5–29. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Dawit, M. A socio-hydrological approach for assessing the Eco-system sustainability of water resource development; Abbay/Blue Nile Basin, Ethiopia. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018; p. 5173. [Google Scholar]
- Zewdie, M.C.; Van Passel, S.; Moretti, M.; Annys, S.; Tenessa, D.B.; Ayele, Z.A.; Tsegaye, E.A.; Cools, J.; Minale, A.S.; Nyssen, J. Pathways how irrigation water affects crop revenue of smallholder farmers in northwest Ethiopia: A mixed approach. Agric. Water Manag. 2020, 233, 106101. [Google Scholar] [CrossRef]
- Dawit, M.; Dinka, M.O.; Leta, O.T.; Muluneh, F.B. Impact of Climate Change on Land Suitability for the Optimization of the Irrigation System in the Anger River Basin, Ethiopia. Climate 2020, 8, 97. [Google Scholar] [CrossRef]
- Teweldebrihan, M.D.; Pande, S.; McClain, M. The dynamics of farmer migration and resettlement in the Dhidhessa River Basin, Ethiopia. Hydrol. Sci. J. 2020, 65, 1985–1993. [Google Scholar] [CrossRef]
- Dawit, M.; Dinka, M.O.; Leta, O.T. Implications of Adopting Drip Irrigation System on Crop Yield and Gender-Sensitive Issues: The Case of Haramaya District, Ethiopia. J. Open Innov. Technol. Mark. Complex. 2020, 6, 96. [Google Scholar] [CrossRef]
- Dawit, M.; Dinka, M. Farmer’s Perception of Climate Change with Gender-Sensitive for Optimized Irrigation in a Compound Surface-Groundwater System. J. Water Land Dev. 2022, 52, 265–271. [Google Scholar] [CrossRef]
- Ambaw, G.; Tadesse, M.; Mungai, C.; Kuma, S.; Radeny, M.; Tamene, L.; Solomon, D. Gender Assessment for Women’s Economic Empowerment in Doyogena Climate-Smart Landscape in Southern Ethiopia. 2019. Available online: https://gender.cgiar.org/publications/gender-assessment-womens-economic-empowerment-doyogena-climate-smart-landscape (accessed on 1 December 2019).
- Ogato, G.S.; Boon, E.K.; Subramani, J. Improving access to productive resources and agricultural services through gender empowerment: A case study of three rural communities in Ambo District, Ethiopia. J. Hum. Ecol. 2009, 27, 85–100. [Google Scholar] [CrossRef]
- Doss, C.R. Women and agricultural productivity: Reframing the Issues. Dev. Policy Rev. 2018, 36, 35–50. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Agriculture: Increase water harvesting in Africa. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J.; Karlberg, L. Present and future water requirements for feeding humanity. Food Secur. 2009, 1, 59–69. [Google Scholar] [CrossRef]
- McDermot, E.; Agdas, D.; Rodríguez Díaz, C.R.; Rose, T.; Forcael, E. Improving performance of infrastructure projects in developing countries: An Ecuadorian case study. Int. J. Constr. Manag. 2022, 22, 2469–2483. [Google Scholar] [CrossRef]
- Molnár, Z.; Berkes, F. Role of traditional ecological knowledge in linking cultural and natural capital in cultural landscapes. In Reconnecting Natural and Cultural Capital: Contributions from Science and Policy; Paracchini, M.L., Zingari, P.C., Blasi, C., Eds.; Publications Office of the European Union: Luxembourg, 2018; pp. 183–193. Available online: https://op.europa.eu/en/publication-detail/-/publication/6a0efd09-0d4d-11e8-966a-01aa75ed71a1 (accessed on 4 July 2018).
- Berkes, F. Sacred Ecology; Routledge: London, UK, 2017. [Google Scholar]
- Reid, R.S.; Nkedianye, D.; Said, M.Y.; Kaelo, D.; Neselle, M.; Makui, O.; Onetu, L.; Kiruswa, S.; Kamuaro, N.O.; Kristjanson, P. Evolution of models to support community and policy action with science: Balancing pastoral livelihoods and wildlife conservation in savannas of East Africa. Proc. Natl. Acad. Sci. USA 2016, 113, 4579–4584. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler Jr, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Makate, C. Local institutions and indigenous knowledge in adoption and scaling of climate-smart agricultural innovations among sub-Saharan smallholder farmers. Int. J. Clim. Change Strateg. Manag. 2020, 12, 270–287. [Google Scholar] [CrossRef]
- Ariom, T.O.; Dimon, E.; Nambeye, E.; Diouf, N.S.; Adelusi, O.O.; Boudalia, S. Climate-smart agriculture in African countries: A Review of strategies and impacts on smallholder farmers. Sustainability 2022, 14, 11370. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bernards, N. The World Bank, Agricultural Credit, and the Rise of Neoliberalism in Global Development. New Political Econ. 2022, 27, 116–131. [Google Scholar] [CrossRef]
- Hagedorn, M.; Karahan, F.; Manovskii, I.; Mitman, K. Unemployment Benefits and Unemployment in the Great Recession: The Role of Macro Effects; National Bureau of Economic Research: Cambridge, MA, USA, 2013. [Google Scholar]
- Wu, L.; Chen, Y.; Zhang, G.; Xu, Y.J.; Tan, Z. Integrating the JRC Monthly Water History Dataset and Geostatistical Analysis Approach to Quantify Surface Hydrological Connectivity Dynamics in an Ungauged Multi-Lake System. Water 2021, 13, 497. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef]
- Calhoun, A.J.; Mushet, D.M.; Bell, K.P.; Boix, D.; Fitzsimons, J.A.; Isselin-Nondedeu, F. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol. Conserv. 2017, 211, 3–11. [Google Scholar] [CrossRef]
- Padhiary, M.; Kumar, R. Assessing the Environmental Impacts of Agriculture, Industrial Operations, and Mining on Agro-Ecosystems. In Smart Internet of Things for Environment and Healthcare; Springer: Berlin/Heidelberg, Germany, 2024; pp. 107–126. [Google Scholar]
- Mvile, B.N.; Bishoge, O.K. Mining and sustainable development goals in Africa. Resour. Policy 2024, 90, 104710. [Google Scholar] [CrossRef]
- Van Emmerik, T.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H.; Chanan, A.; Vigneswaran, S. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia. Hydrol. Earth Syst. Sci. 2014, 18, 4239. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Awulachew, S.B. Irrigation potential in Ethiopia: Constraints and opportunities for enhancing the system. Gates Open Res. 2019, 3, 22. [Google Scholar]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef]
- Adgolign, T.B.; Rao, G.S.; Abbulu, Y. Evaluation of Existing Environmental Protection Policies and Practices vis-à-vis Sustainable Water Resources Development in Didessa Sub-basin, West Ethiopia. Nat. Environ. Pollut. Technol. 2016, 15, 385. [Google Scholar]
- Guido, Z.; Finan, T.; Rhiney, K.; Madajewicz, M.; Rountree, V.; Johnson, E.; McCook, G. The stresses and dynamics of smallholder coffee systems in Jamaica’s Blue Mountains: A case for the potential role of climate services. Clim. Change 2018, 147, 253–266. [Google Scholar] [CrossRef]
- Mekonnen, A. Economic costs of climate change and climate finance with a focus on Africa. J. Afr. Econ. 2014, 23, ii50–ii82. [Google Scholar] [CrossRef]
- Ahmed, Z.S.-Y.; Nigatu, L.; Mekonnen, E. Tree Species Diversity in Smallholder Coffee Farms of Bedeno District, Eastern Hararghe Zone, Oromia Regional State, Ethiopia. Eur. J. Biophys. 2021, 9, 72–85. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozović, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Hunt, R.J.; Hayashi, M.; Batelaan, O. Ecohydrology and Its Relation to Integrated Groundwater Management. In Integrated Groundwater Management; Springer: Berlin/Heidelberg, Germany, 2016; pp. 297–312. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Forliano, C.; De Bernardi, P.; Yahiaoui, D. Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technol. Forecast. Soc. Chang. 2021, 165, 120522. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Sintayehu, G.; Hibu, A.; Andualem, Y. Performance Evaluation of Small-Scale Irrigation Scheme: A Case Study of Golina Small-Scale Irrigation Scheme, North Wollo, Ethiopia. Water Conserv. Sci. Eng. 2022, 7, 491–503. [Google Scholar] [CrossRef]
- Keane, J.; Page, S.; Kennan, J. Climate Change and Developing Country Agriculture; International Centre for Trade and Sustainable Development: Geneva, Switzerland, 2009. [Google Scholar]
- Bannor, F. Agriculture, Climate Change and Technical Efficiency: The Case of Sub-Saharan Africa. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2022. [Google Scholar]
- Noszczyk, T.; Cegielska, K.; Rogatka, K.; Starczewski, T. Exploring green areas in Polish cities in context of anthropogenic land use changes. Anthr. Rev. 2022, 10, 20530196221112137. [Google Scholar] [CrossRef]
- World Bank. Total Estimated Population of Major Towns; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Kiogora, J.; Kagabo, D.M.; Byandaga, L.; Mvuyibwami, P.; Singh, M.; Nchanji, E.; Ngige, C.M.; Gatsinzi, P.; Ntwari, N. Enhancing Climate Change Resilience in East Africa Project (ECREA): Newsletter; CGIAR: Montpellier, France, 2024. [Google Scholar]
- White, S.; Robinson, J.; Cordell, D.; Jha, M.; Milne, G. Urban Water Demand Forecasting and Demand Management: Research Needs Review and Recommendations; Water Services Association of Australia Inc.: Docklands, Victoria, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teweldebrihan, M.D.; Dinka, M.O. Sustainable Water Management Practices in Agriculture: The Case of East Africa. Encyclopedia 2025, 5, 7. https://doi.org/10.3390/encyclopedia5010007
Teweldebrihan MD, Dinka MO. Sustainable Water Management Practices in Agriculture: The Case of East Africa. Encyclopedia. 2025; 5(1):7. https://doi.org/10.3390/encyclopedia5010007
Chicago/Turabian StyleTeweldebrihan, Meseret Dawit, and Megersa Olumana Dinka. 2025. "Sustainable Water Management Practices in Agriculture: The Case of East Africa" Encyclopedia 5, no. 1: 7. https://doi.org/10.3390/encyclopedia5010007
APA StyleTeweldebrihan, M. D., & Dinka, M. O. (2025). Sustainable Water Management Practices in Agriculture: The Case of East Africa. Encyclopedia, 5(1), 7. https://doi.org/10.3390/encyclopedia5010007