Refrigerants for a Sustainable Future
Definition
:1. Introduction
2. History of Refrigerants
3. Refrigerant Selection
Refrigerant | Critical Temperature (°C) a | Critical Pressure (MPa) a | Boiling Point at 101 kPa (°C) a,b | Freezing Point (°C) a | Glide (°C) c | GWP d | Safety Classification e |
---|---|---|---|---|---|---|---|
R-22 | 96.1 | 4.99 | −40.8 | −157.4 | – | 1760 | A1 |
R-32 | 78.1 | 5.78 | −51.7 | −136.8 | – | 677 | A2L |
R-123 | 183.7 | 3.66 | 27.8 | −107.2 | – | 79 | B1 |
R-125 | 66.0 | 3.62 | −48.1 | −100.6 | – | 3170 | A1 |
R-134a | 101.1 | 4.06 | −26.1 | −103.3 | – | 1300 | A1 |
R-143a | 72.7 | 3.76 | −47.2 | −111.8 | – | 4800 | A2L |
R-152a | 113.3 | 4.52 | −24.0 | −118.6 | – | 138 | A2 |
R-1234yf | 94.7 | 3.38 | −29.5 | −53.2 | – | 1 | A2L |
R-1234ze(E) | 109.4 | 3.63 | −19.0 | −104.5 | – | 1 | A2L |
R-290 | 96.7 | 4.25 | −42.1 | −187.6 | – | 3 | A3 |
R-600 | 152.0 | 3.80 | −0.5 | −138.3 | – | 4 | A3 |
R-600a | 134.7 | 3.63 | −11.7 | −159.4 | – | 3 | A3 |
R-1270 | 91.1 | 4.56 | −47.6 | −185.2 | – | 2 | A3 |
R-717 | 132.3 | 11.33 | −33.3 | −77.7 | – | 0 | B2L |
R-744 | 31.0 | 7.38 | −78.5 | −56.6 | – | 1 | A1 |
R-404A | 72.0 | 3.73 | −46.2 | – | 0.5 | 3943 | A1 |
R-407A | 82.3 | 4.52 | −45.0 | – | 5.6 | 1923 | A1 |
R-407C | 86.0 | 4.63 | −43.6 | – | 6.2 | 1624 | A1 |
R-407F | 82.7 | 4.75 | −46.1 | – | 5.6 | 1674 | A1 |
R-410A | 71.3 | 4.90 | −51.4 | – | 0.1 | 1924 | A1 |
R-441A | 117.3 | 4.40 | −41.5 | – | 19.2 | 3 | A3 |
R-444B | 92.1 | 5.21 | −45.4 | – | 8.7 | 295 | A2L |
R-446A | 84.2 | 5.63 | −49.7 | – | 4.3 | 461 | A2L |
R-447A | 82.6 | 5.54 | −49.7 | – | 3.7 | 572 | A2L |
R-447B | 81.3 | 5.50 | −50.0 | – | 3.1 | 714 | A2L |
R-448A | 83.7 | 4.50 | −44.8 | – | 5.8 | 1273 | A1 |
R-449A | 83.9 | 4.39 | −44.0 | – | 5.7 | 1282 | A1 |
R-449B | 83.9 | 4.43 | −44.2 | – | 5.7 | 1296 | A1 |
R-449C | 86.1 | 4.26 | −42.1 | – | 5.6 | 1147 | A1 |
R-450A | 105.6 | 4.08 | −24.9 | – | 0.8 | 547 | A1 |
R-451A | 95.4 | 3.45 | −29.1 | – | 0.0 | 133 | A2L |
R-451B | 95.5 | 3.46 | −29.1 | – | 0.0 | 146 | A2L |
R-452A | 75.6 | 3.91 | −45.8 | – | 3.9 | 1945 | A1 |
R-452B | 79.7 | 5.06 | −49.3 | – | 4.1 | 676 | A2L |
R-452C | 74.8 | 3.97 | −46.4 | – | 3.7 | 2019 | A1 |
R-454A | 85.7 | 4.21 | −42.7 | – | 5.3 | 238 | A2L |
R-454B | 80.9 | 5.04 | −48.7 | – | 4.5 | 467 | A2L |
R-454C | 88.5 | 3.88 | −38.8 | – | 4.2 | 146 | A2L |
R-455A | 87.5 | 4.20 | −49.5 | – | 11.8 | 146 | A2L |
R-457A | 93.0 | 4.02 | −36.9 | – | 4.2 | 139 | A2L |
R-459A | 81.5 | 5.12 | −48.8 | – | 4.4 | 461 | A2L |
R-463A | 76.0 | 5.07 | −58.1 | – | 11.3 | 1377 | A1 |
R-507A | 70.6 | 3.70 | −46.7 | – | 0.0 | 3985 | A1 |
R-511A | 96.9 | 4.29 | −42.0 | – | 0.0 | 3 | A3 |
R-513A | 97.7 | 3.68 | −28.0 | – | 0.0 | 573 | A1 |
R-515A | 108.7 | 3.60 | −19.0 | – | 0.0 | 403 | A1 |
4. Application Specific Refrigerant Selection
- Global warming potential;
- Refrigerating capacity (latent heat of vaporization, critical point);
- High ambient temperature (HAT) capacity;
- Temperature glide;
- Transport properties;
- Flammability and toxicity (safety);
- System efficiency (evaporator pressure, condensing pressure).
4.1. Commercial Refrigeration
4.1.1. Analysis of Refrigerant Options for Commercial Refrigeration
- Class A1: normalized as 1
- Class A2 and A2L: normalized as 0.3
- Class A3: normalized as 0.05
- Class B1: normalized as 0.3
- Class B2 and B2L: normalized as 0.05
- Class B3: normalized as 0
4.1.2. Summary: Commercial Refrigeration
4.2. Air-Conditioning and Heat Pumps
4.2.1. Analysis of Refrigerant Options for Air-Conditioning and Heat Pumps
4.2.2. Summary: Air-Conditioning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | Air-Conditioning |
ASHRAE | American Society of Heating Refrigeration Air-Conditioning Engineers |
CFC | Chlorofluorocarbon |
COP | Coefficient of Performance |
EPA | Environmental Protection Agency |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
HAT | High Ambient Temperature |
HCFC | Hydrochlorofluorocarbon |
HFC | Hydrofluorocarbon |
HFO | Hydrofluoroolefin |
HP | Heat Pump |
HVAC&R | Heating Ventilation Air-Conditioning and Refrigeration |
LT | Low Temperature |
MT | Medium Temperature |
ODP | Ozone Depletion Potential |
UNEP | United National Environment Program |
References
- Heath, E.A. Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment). Int. Leg. Mater. 2017, 56, 193–205. [Google Scholar] [CrossRef]
- Midgley, T.; Henne, A.L. Organic fluorides as refrigerants. Ind. Eng. Chem. 1930, 22, 542–545. [Google Scholar] [CrossRef]
- Glüge, J.; Breuer, K.; Hafner, A.; Vering, C.; Müller, D.; Cousins, I.T.; Lohmann, R.; Goldenman, G.; Scheringer, M. Finding non-fluorinated alternatives to fluorinated gases used as refrigerants. Environ. Sci. Process. Impacts 2024, 26, 1955–1974. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.J.; Rowland, F.S. Predicted present stratospheric abundances of chlorine species from photodissociation of carbon tetrachloride. Geophys. Res. Lett. 1974, 1, 309–312. [Google Scholar] [CrossRef]
- Molina, M.J.; Rowland, F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 1974, 249, 810–812. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook—Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2013. [Google Scholar]
- Vuppaladadiyam, A.K.; Antunes, E.; Vuppaladadiyam, S.S.V.; Baig, Z.T.; Subiantoro, A.; Lei, G.; Leu, S.-Y.; Sarmah, A.K.; Duan, H. Progress in the development and use of refrigerants and unintended environmental consequences. Sci. Total Environ. 2022, 823, 153670. [Google Scholar] [CrossRef]
- UNEP. Alternatives to HCFCs in the Refrigeration and Air-Conditioning Sector: Practical Guidelines and Case Studies for Equipment Retrofit and Replacement; United Nations Environment Programme, Division of Technology, Industry and Economics (UNEP DTIE): Paris, France, 2010. [Google Scholar]
- UNEP. Barriers to the Use of Low-GWP Refrigerants in Developing Countries and Opportunities to Overcome These; United Nations Environment Programme, Division of Technology, Industry and Economics (UNEP DTIE): Paris, France, 2010. [Google Scholar]
- Savitha, D.; Ranjith, P.; Talawar, B.; Rana Pratap Reddy, N. Refrigerants for sustainable environment—A literature review. Int. J. Sustain. Energy 2022, 41, 235–256. [Google Scholar] [CrossRef]
- Fedele, L.; Lombardo, G.; Greselin, I.; Menegazzo, D.; Bobbo, S. Thermophysical properties of low gwp refrigerants: An update. Int. J. Thermophys. 2023, 44, 80. [Google Scholar] [CrossRef]
- McLinden, M.O.; Seeton, C.J.; Pearson, A. New refrigerants and system configurations for vapor-compression refrigeration. Science 2020, 370, 791–796. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, M.-R.; Hung, K.-S.; Liu, C.-C.; Wang, C.-C. A comprehensive review regarding condensation of low-gwp refrigerants for some major alternatives of r-134a. Processes 2022, 10, 1882. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Joybari, M.M.; Navarro-Esbrí, J.; Mateu-Royo, C.; Barragán-Cervera, Á.; Amat-Albuixech, M.; Molés, F. Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact. Int. J. Refrig. 2020, 111, 147–158. [Google Scholar] [CrossRef]
- Alsouda, F.; Bennett, N.S.; Saha, S.C.; Salehi, F.; Islam, M.S. Vapor compression cycle: A state-of-the-art review on cycle improvements, water and other natural refrigerants. Clean Technol. 2023, 5, 584–608. [Google Scholar] [CrossRef]
- Shafiq, Q.N.; Liaw, J.-S.; Wang, C.-C. A comprehensive review on the nucleate/convective boiling of low-gwp refrigerants: Alternatives to hfc refrigerants. Processes 2023, 11, 468. [Google Scholar] [CrossRef]
- Barandier, P.; Cardoso, A.J.M. A review of fault diagnostics in heat pumps systems. Appl. Therm. Eng. 2023, 228, 120454. [Google Scholar] [CrossRef]
- Brendel, L.P.; Bernal, S.N.; Widmaier, P.; Roskosch, D.; Arpagaus, C.; Bardow, A.; Bertsch, S.S. High-glide refrigerant blends in high-temperature heat pumps: Part 1—Coefficient of performance. Int. J. Refrig. 2024, 165, 84–96. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Chen, Q.; Yan, G. Progress of auto-cascade refrigeration systems performance improvement: Composition separation, shift and regulation. Renew. Sustain. Energy Rev. 2023, 187, 113664. [Google Scholar] [CrossRef]
- Prabakaran, R.; Lal, D.M.; Kim, S.C. A state of art review on future low global warming potential refrigerants and performance augmentation methods for vapour compression based mobile air-conditioning system. J. Therm. Anal. Calorim. 2023, 148, 417–449. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, B.; Ma, H.; Zhang, L.; Duan, C.; Liu, B.; Zhang, Y.; Chen, S.; Yang, Z. Analysis of lower gwp and flammable alternative refrigerants. Int. J. Refrig. 2021, 126, 12–22. [Google Scholar] [CrossRef]
- Silva-Romero, J.C.; Belman-Flores, J.M.; Aceves, S.M. A Review of Small-Scale Vapor Compression Refrigeration Technologies. Appl. Sci. 2024, 14, 3069. [Google Scholar] [CrossRef]
- Tangri, H.; Purohit, N.; Sethi, A.; Hulse, R. Solubility, miscibility and compatibility studies of low gwp non-flammable refrigerants and lubricants for refrigeration and air-conditioning applications. Int. J. Refrig. 2023, 148, 45–63. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Wang, S.; Wang, X. Oil solubility effect on evaporation performance with r290 as refrigerant. Int. J. Refrig. 2023, 151, 200–207. [Google Scholar] [CrossRef]
- Kumma, N.; Kruthiventi, S.H. Current status of refrigerants used in domestic applications: A review. Renew. Sustain. Energy Rev. 2023, 189, 114073. [Google Scholar] [CrossRef]
- Bantillo, S.M.R.; Callejo, G.A.C.; Camacho, S.M.K.G.; Montalban, M.A.; Valderin, R.E.; Rubi, R.V.C. Future trends of natural refrigerants: Selection, preparation, and evaluation. Eng. Proc. 2024, 67, 9. [Google Scholar] [CrossRef]
- Cheekatamarla, P.; Sharma, V. Mitigation of safety and environmental challenges posed by refrigerants. Results Eng. 2024, 23, 102381. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Li, X.; Chen, Q.; Wang, S.; Chen, G. Experimental study on the influence of flame retardants under high-temperature conditions on the flammability of r1234ze (e) and r290. Energy 2024, 293, 130569. [Google Scholar] [CrossRef]
- Etemad, A.; Shafaat, A.; Bahman, A.M. A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with variable refrigerant flow system in middle east climates. Renew. Sustain. Energy Rev. 2024, 191, 114131. [Google Scholar]
- EPA. Greenchill Best Practices Guideline—Commercial Refrigeration Leak Prevention & Repairs; Technical Report; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2011.
- Lemmon, E.; McLinden, M.; Huber, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; Standard Reference Data Program, National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2018.
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- ANSI/ASHRAE Standard 34-2013; Designation and Safety Classification of Refrigerants. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2013.
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. Development of environmentally friendly and energy efficient refrigerants for refrigeration systems. Energy Eng. 2021, 118, 411–413. [Google Scholar] [CrossRef]
- Dittus, F.; Boelter, L. Heat Transfer in Automobile Radiators of the Tubular Type; University of California Engineering Publication: Berkeley, CA, USA, 1930; Volume 13. [Google Scholar]
- FMI. Research Resources—Supermarket Facts; Food Marketing Institute (FMI): Arlington, VA, USA, 2017; Available online: www.fmi.org/research-resources/supermarket-facts (accessed on 1 April 2017).
- NACS. US Convenience Store Count; Association for Convenience and Fuel Retailing (NACS): Alexandria, VA, USA, 2017; Available online: www.nacsonline.com/Research/Factsheets/ScopeofIndustry/Pages/IndustryStoreCount.aspx (accessed on 1 April 2017).
- EIA. Annual Energy Outlook 2019; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2019.
- IIR. The Role of Refrigeration in the Global Economy, 29th Informatory Note on Refrigeration Technologies; International Institute of Refrigeration (IIR): Paris, France, 2015. [Google Scholar]
- Kuenzle, C.; Wein, J.; Bienert, S. The underestimated global warming potential of refrigerant losses in retail real estate: The impact of co2 vs co2e. J. Eur. Real Estate Res. 2023, 16, 398–416. [Google Scholar] [CrossRef]
- Liu, R.; Bacellar, D.; Aute, V. Review of systems and refrigerants for ultra-low temperature refrigeration. ASHRAE Trans. 2023, 129, 200–208. [Google Scholar]
- ASHRAE. ASHRAE Handbook—Refrigeration; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2014. [Google Scholar]
- Salehy, Y.; Delahaye, A.; Hoang, H.M.; Fournaison, L.; Cluzel, F.; Leroy, Y.; Yannou, B. Choosing an optimized refrigeration system based on sustainability and operational scenarios applied to four supermarket architectures in three european countries. J. Clean. Prod. 2023, 392, 136307. [Google Scholar] [CrossRef]
- Mihai, A. Shifting to low gwp alternatives in commercial refrigeration. Rom. J. Civ. Eng. Română Ing. Civilă 2024, 15, 367. [Google Scholar] [CrossRef]
- Kujak, S.; Petersen, M. A practical guide to refrigerant global warming potentials and their impacts. ASHRAE Trans. 2024, 130, 302–314. [Google Scholar]
- Hammerling, S. 2023–2024: Ashrae research report. ASHRAE J. 2024, 66, 57. [Google Scholar]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D.; Taherian, H. Heating, Ventilating, and Air-Conditioning: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- IEA. The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning; International Energy Agency (IEA): Paris, France, 2018. [Google Scholar]
- Ritchie, H.; Air-Conditioning Causes Around 3% of Greenhouse Gas Emissions. How Will this Change in the Future?, Our World in Data. 2024. Available online: https://ourworldindata.org/air-conditioning-causes-around-greenhouse-gas-emissions-will-change-future (accessed on 15 April 2020).
- NASA. GISS Surface Temperature Analysis (v4); National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS): New York, NY, USA, 2020. Available online: https://data.giss.nasa.gov/gistemp/graphs_v4/ (accessed on 15 April 2020).
- Rosenow, J.; Gibb, D.; Nowak, T.; Lowes, R. Heating up the global heat pump market. Nat. Energy 2022, 7, 901–904. [Google Scholar] [CrossRef]
- Milnes, J. Global a/c market starting to warm up. Air-Conditioning, Heating and Refrigeration News, 18 August 2014. [Google Scholar]
- European Union. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EU) No 842/2006; European Union: Brussels, Belgium, 2014. [Google Scholar]
Non-Article 5, Group 1 a | Non-Article 5, Group 2 b | Article 5, Group 1 c | Article 5, Group 2 d | |
---|---|---|---|---|
Baseline years | 2011, 2012, 2013 | 2011, 2012, 2013 | 2020, 2021, 2022 | 2024, 2025, 2026 |
Baseline Calculation | Average production/consumption of HFCs in 2011, 2012, 2013, plus 15% of HCFC baseline production/consumption | Average production/consumption of HFCs in 2011, 2012, 2013, plus 25% of HCFC baseline production/consumption | Average production/consumption of HFCs in 2020, 2021, 2022, plus 65% of HCFC baseline production/consumption | Average production/consumption of HFCs in 2024, 2025, 2026, plus 65% of HCFC baseline production/consumption |
Reduction Steps | ||||
Step 1 | 2019, 10% | 2020, 5% | 2029, 10% | 2032, 10% |
Step 2 | 2024, 40% | 2025, 35% | 2035, 30% | 2037, 20% |
Step 3 | 2029, 70% | 2029, 70% | 2040, 50% | 2042, 30% |
Step 4 | 2034, 80% | 2034, 80% | 2045, 80% | 2047, 85% |
Step 5 | 2036, 85% | 2036, 85% |
Application | Refrigerants |
---|---|
Currently Used Refrigerants | |
Self-Contained Refrigeration | R-22, R-134a, R-404A, R-407A, R-407F |
Centralized Refrigeration | R-22, R-404A,R-407A, R-407F |
Alternative Refrigerants | |
Self-Contained Refrigeration | R-32, R-1234yf, R-1234ze(E) |
R-446A, R-447A, R-450A | |
R-451A, R-451B, R-454A, R-454C, R-455A, R-513A | |
R-290, R-600a, R-744 | |
Centralized Refrigeration | R-32, R-1234yf, R-1234ze(E) |
R-448A, R-449A, R-450A | |
R-451A, R-451B, R-454A, R-454C, R-455A, R-513A | |
R-717, R-744 |
Application | Refrigerants |
---|---|
Currently used refrigerants | |
Window and small packaged units | R-22, R-410A |
Split systems | R-22, R-410A |
Large packaged units | R-22, R-410A |
Alternative refrigerants | |
Window and small packaged units | R-32, R-1234yf, R-1234ze(E) |
R-444B, R-446A, R-447A | |
R-447B, R-452B | |
R-454B, R-459A | |
R-511A, R-290, R-600a | |
R-744 | |
Split systems | R-32, R-444B, R-446A |
R-447A, R-447B, R-452B | |
R-454B | |
R-459A, R-511A | |
Large packaged units | R-32, R-444B, R-446A |
R-447A, R-447B, R-452B | |
R-454A, R-454B, R-455A | |
R-459A, R-511A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Fricke, B.; Cheekatamarla, P.; Abdelaziz, O.; Baxter, V. Refrigerants for a Sustainable Future. Encyclopedia 2025, 5, 5. https://doi.org/10.3390/encyclopedia5010005
Sharma V, Fricke B, Cheekatamarla P, Abdelaziz O, Baxter V. Refrigerants for a Sustainable Future. Encyclopedia. 2025; 5(1):5. https://doi.org/10.3390/encyclopedia5010005
Chicago/Turabian StyleSharma, Vishaldeep, Brian Fricke, Praveen Cheekatamarla, Omar Abdelaziz, and Van Baxter. 2025. "Refrigerants for a Sustainable Future" Encyclopedia 5, no. 1: 5. https://doi.org/10.3390/encyclopedia5010005
APA StyleSharma, V., Fricke, B., Cheekatamarla, P., Abdelaziz, O., & Baxter, V. (2025). Refrigerants for a Sustainable Future. Encyclopedia, 5(1), 5. https://doi.org/10.3390/encyclopedia5010005