Fluorescence in Smart Textiles
Definition
:1. Smart Textiles
Brief History
2. Fluorescent Textiles
2.1. Fluorescence
2.2. The Importance of Fluorescent Textiles
2.3. Methods to Develop Fluorescent Fabrics
Fluorescent Polymers in Fluorescent Fabrics
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koncar, V. Introduction to smart textiles and their applications. In Smart Textiles and Their Applications; Koncar, V., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 1–8. ISBN 9780081005835. [Google Scholar]
- Luiz, H.; Júnior, O.; Neves, R.M.; Monticeli, F.M.; Agnol, L.D. Smart fabric textiles: Recent advances and challenges. Textiles 2022, 2, 582–605. [Google Scholar] [CrossRef]
- Ramlow, H.; Andrade, K.L.; Immich, A.P.S. Smart textiles: An overview of recent progress on chromic textiles. J. Text. Inst. 2020, 112, 152–171. [Google Scholar] [CrossRef]
- Hu, J.; Meng, H.; Li, G.; Ibekwe, S.I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 2012, 21, 053001. [Google Scholar] [CrossRef]
- Dang, T.; Zhao, M. The application of smart fibers and smart textiles. J. Phys. Conf. Ser. 2021, 1790, 012084. [Google Scholar] [CrossRef]
- Ji, F.; Zhu, Y.; Hu, J.; Liu, Y.; Yeung, L.-Y.; Ye, G.D. Smart polymer fibers with shape memory effect. Smart Mater. Struct. 2006, 15, 1547. [Google Scholar] [CrossRef]
- Parhizkar, M.; Zhao, Y.; Lin, T. Photochromic fibers and fabrics. In Handbook of Smart Textiles; Tao, X., Ed.; Springer: Singapore, 2015; pp. 155–182. ISBN 9789814451451. [Google Scholar]
- Guo, J.; Zhou, B.; Yang, C.; Dai, Q.; Kong, L. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898. [Google Scholar] [CrossRef]
- Sahoo, A.; Ramasubramani, K.R.T.; Jassal, M.; Agrawal, A.K. Effect of copolymer architecture on the response of pH sensitive fibers based on acrylonitrile and acrylic acid. Eur. Polym. J. 2007, 43, 1065–1076. [Google Scholar] [CrossRef]
- Xu, D.; Ouyang, Z.; Dong, Y.; Yu, H.Y.; Zheng, S.; Li, S.; Tam, K.C. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv. Fiber Mater. 2023, 5, 282–295. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Liu, Y.; Leng, J. Shape memory polymer fibers: Materials, structures, and applications. Adv. Fiber Mater. 2021, 4, 5–23. [Google Scholar] [CrossRef]
- Torbati, A.H.; Mather, R.T.; Reeder, J.E.; Mather, P.T. Fabrication of a light-emitting shape memory polymeric web containing indocyanine green. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Hu, J.L.; Tao, X.M.; Hu, C.P. Preparation of temperature-sensitive polyurethanes for smart textiles. Text. Res. J. 2006, 76, 406–413. [Google Scholar] [CrossRef]
- Van Der Schueren, L.; de Clerck, K. The use of pH-indicator dyes for pH-sensitive textile materials. Text. Res. J. 2009, 80, 590–603. [Google Scholar] [CrossRef]
- Osti, E. Skin pH variations from the acute phase to re-epithelialization in burn patients treated with new materials (Burnshield®, Semipermeable Adhesive Film, Dermasilk®, and Hyalomatrix®). Non-invasive preliminary experimental clinical trial. Ann. Fires Burn Disaster 2008, 21, 73–77. [Google Scholar]
- Adak, B.; Mukhopadhyay, S. Smart and Functional Textiles; De Gruyter: Berlin, Germany, 2023. [Google Scholar]
- Ariyatum, B.; Holland, R.; Harrison, D.; Kazi, T. The future design direction of Smart Clothing development. J. Text. Inst. 2010, 96, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Singha, K.; Kumar, J.; Pandit, P. Recent advancements in wearable & smart textiles: An overview. Mater. Today Proc. 2019, 16, 1518–1523. [Google Scholar] [CrossRef]
- Latour. Almar Philips and Levi Strauss Team Up to Create Ready-to-Wear Electronics—WSJ. Available online: https://www.wsj.com/articles/SB966795198702775516 (accessed on 24 April 2023).
- Kapfunde, M. Clothing Manufacturers—Exploring Technologies Destined to Change the Clothes We Wear. Available online: https://www.suuchi.com/exploring-technologies-destined-to-change-the-clothes-we-wear/ (accessed on 24 April 2023).
- Smart Textiles Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028. Available online: https://www.researchandmarkets.com/reports/5753466/smart-textiles-market-global-industry-trends (accessed on 25 April 2023).
- Ivanoska-Dacikj, A.; Stachewicz, U. Smart textiles and wearable technologies-opportunities offered in the fight against pandemics in relation to current COVID-19 state. Rev. Adv. Mater. Sci. 2020, 59, 487–505. [Google Scholar] [CrossRef]
- DayGlo Fluorescent Pigments National Historic Chemical Landmark—American Chemical Society. Available online: https://www.acs.org/education/whatischemistry/landmarks/dayglo.html (accessed on 24 April 2023).
- Aditya Khatokar, J.; Vinay, N.; Sanjay, B.; Bhargava, S.; Sudhir Bale, A.; Kolekar, T.R.; Singh, S.; Umarani, S.; Huddar, S.A. Carbon nanodots: Chemiluminescence, fluorescence and photoluminescence properties. Mater. Today Proc. 2021, 43, 3928–3931. [Google Scholar] [CrossRef]
- Drummen, G.P.C. Fluorescent probes and fluorescence (microscopy) techniques—Illuminating biological and biomedical research. Molecules 2012, 17, 14067–14090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiatti, C.; Kousis, I.; Fabiani, C.; Pisello, A.L. Luminescence for the built environment: From lighting to urban heat island mitigation purposes. In Global Urban Heat Island Mitigation; Khan, A., Akbari, H., Fiorito, F., Mithun, S., Niyogi, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–69. ISBN 9780323855396. [Google Scholar]
- Yu, L.P.; Zhang, X.; Wei, D.X.; Wu, Q.; Jiang, X.R.; Chen, G.Q. Highly efficient fluorescent material based on rare-earth-modified polyhydroxyalkanoates. Biomacromolecules 2019, 20, 3233–3241. [Google Scholar] [CrossRef]
- Wang, H.; Ji, X.; Page, Z.A.; Sessler, J.L. Fluorescent materials-based information storage. Mater. Chem. Front. 2020, 4, 1024–1039. [Google Scholar] [CrossRef]
- Nie, W.; Wu, J.; Yang, J.; Hu, L. Fabrication of sustainable hydrophobic cotton fabrics with fluorescence-emitting performance using novel 1,8-naphthalimide functional molecules. ACS Sustain. Chem. Eng. 2023, 11, 3873–3881. [Google Scholar] [CrossRef]
- Cai, S.; Hu, S.; Wu, J.; Huang, A.; Geng, L.; Peng, X. Interfacial polyelectrolyte complexation spinning of cellulose nanofibers/CdTe quantum dots for anti-counterfeiting fluorescent textiles. Fibers Polym. 2022, 23, 1235–1243. [Google Scholar] [CrossRef]
- Demchenko, A.P. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc. 2020, 8, 022001. [Google Scholar] [CrossRef]
- Guha, A.; Basu, A. Role of rare earth oxide nanoparticles (CeO2 and La2O3) in suppressing the photobleaching of fluorescent organic dyes. J. Fluoresc. 2014, 24, 683–687. [Google Scholar] [CrossRef]
- Khattab, T.A.; Rehan, M.; Hamouda, T. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment. Carbohydr. Polym. 2018, 195, 143–152. [Google Scholar] [CrossRef]
- Santos, G.; Marques, R.; Silva, S.; Oliveira, J.; Castro, P.; Pereira, C.; Pinheiro, M. Innovative high-visibility protective clothing development. Textiles 2021, 1, 405–418. [Google Scholar] [CrossRef]
- Intertek. High Visibility Clothing & Accessories Requirements for Europe; Intertek: Oak Brook, IL, USA, 2009. [Google Scholar]
- Baatout, K.; Saad, F.; Baffoun, A.; Mahltig, B.; Kreher, D.; Jaballah, N.; Majdoub, M. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications. Mater. Chem. Phys. 2019, 234, 304–310. [Google Scholar] [CrossRef]
- Khattab, T.A.; Rehan, M.; Hamdy, Y.; Shaheen, T.I. Facile Development of photoluminescent textile fabric via spray coating of Eu(II)-doped strontium aluminate. Ind. Eng. Chem. Res. 2018, 57, 11483–11492. [Google Scholar] [CrossRef]
- Saad, F.; Baffoun, A.; Mahltig, B.; Hamdaoui, M. Polyester fabric with fluorescent properties using microwave technology for anti-counterfeiting applications. J. Fluoresc. 2022, 32, 327–345. [Google Scholar] [CrossRef]
- Grabchev, I.; Staneva, D.; Vasileva-Tonkova, E.; Alexandrova, R. Surface functionalization of cotton fabric with fluorescent dendrimers, spectral characterization, cytotoxicity, antimicrobial and antitumor activity. Chemosensors 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lu, M.; Pan, F.; Ning, X.; Ming, J. Influence of fluorescent dyes for dyeing of regenerated cellulose fabric. Text. Res. J. 2020, 90, 1385–1395. [Google Scholar] [CrossRef]
- Czajkowski, W.; Kaźmierska, M. Coumarin-derived fluorescent dyes. Przem. Chem. 2002, 81, 177–180. [Google Scholar]
- Elgemeie, G.H.; Ahmed, K.A.; Ahmed, E.A.; Helal, M.H.; Masoud, D.M. A simple approach for the synthesis of coumarin fluorescent dyes under microwave irradiation and their application in textile printing. Pigment Resin Technol. 2016, 45, 217–224. [Google Scholar] [CrossRef]
- Millington, K.R.; Maurdev, G. The generation of superoxide and hydrogen peroxide by exposure of flourescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. J. Photochem. Photobiol. A Chem. 2004, 165, 177–185. [Google Scholar] [CrossRef]
- Ameuru, U.S.; Yakubu, M.K.; Bello, K.A.; Nkeonye, P.O.; Halimehjani, A.Z. Synthesis of disperse dyes derived from 4-amino-N-decyl-1, 8-naphthalimide and their dyeing properties on polyester fabrics. Dye. Pigment. 2018, 157, 190–197. [Google Scholar] [CrossRef]
- Bojinov, V.; Konstantinova, T. Synthesis of polymerizable 1,8-naphthalimide dyes containing hindered amine fragment. Dye. Pigment. 2002, 54, 239–245. [Google Scholar] [CrossRef]
- Forootan, H.; Gharanjig, K.; Ghasemi, E.; Mazhar, M.; Gharanjik, A.; Jahankaran, S. Investigation of synthesis, application and fluorescent properties of novel acid dyes based on perylene on polyamide fabrics. Fibers Polym. 2023, 24, 627–639. [Google Scholar] [CrossRef]
- Park, Y.K.; Oh, B.M.; Jo, A.R.; Han, J.H.; Lim, J.Y.; Oh, H.J.; Lim, S.J.; Kim, J.H.; Lee, W.S. Fabrication of colorimetric textile sensor based on rhodamine dye for acidic gas detection. Polymers 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Patti, A.; Cicala, G.; Acierno, D. Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers 2020, 13, 134. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Towards the sustainability of the plastic industry through biopolymers: Properties and potential applications to the textiles world. Polymers 2022, 14, 692. [Google Scholar] [CrossRef]
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Popescu, V.; Astanei, D.G.; Burlica, R.; Popescu, A.; Munteanu, C.; Ciolacu, F.; Ursache, M.; Ciobanu, L.; Cocean, A. Sustainable and cleaner microwave-assisted dyeing process for obtaining eco-friendly and fluorescent acrylic knitted fabrics. J. Clean. Prod. 2019, 232, 451–461. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, A.; Sousa-Herves, A.; Tolosa, J.; Navarro, A.; García-Martínez, J.C. Aggregation-induced emission properties in fully π-conjugated polymers, dendrimers, and oligomers. Polymers 2021, 13, 213. [Google Scholar] [CrossRef]
- Jiang, Q.; Yuan, H.; Dong, K.; Lin, J.H.; Wu, L.; Tang, Y. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Mater. Des. 2021, 205, 109761. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Pakhira, M.; Nandi, A.K. Fluorescence in “nonfluorescent” polymers. ACS Omega 2020, 5, 30747–30766. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, S.; Shan, J.; Peng, J.; Wei, L.; Xu, X. Formation and photoluminescence of fluorescent polymers. Int. J. Polym. Sci. 2010, 2010, 526348. [Google Scholar] [CrossRef]
- Wei, Q.; Ge, Z.; Voit, B. Thermally activated delayed fluorescent polymers: Structures, properties, and applications in OLED devices. Macromol. Rapid Commun. 2019, 40, 1800570. [Google Scholar] [CrossRef]
- Thomas, A.; Appidi, T.; Jogdand, A.B.; Ghar, S.; Subramaniyam, K.; Prabusankar, G.; Mohanty, J.R.; Rengan, A.K. Facile synthesis of fluorescent polymer encapsulated metal (PoeM) nanoparticles for imaging and therapeutic applications. ACS Appl. Polym. Mater. 2020, 2, 1388–1397. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, X.; Zhu, J.; Zhu, X. Novel AIEgen-functionalized Diselenide-crosslinked polymer gels as fluorescent probes and drug release carriers. Polymers 2020, 12, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Zheng, B.; Pan, D.; Yang, R.; Xu, Y.; Wang, L.; Yang, M. Unexpected fluorescence from polymers containing dithio/amino-succinimides. Polym. Chem. 2015, 6, 6133–6139. [Google Scholar] [CrossRef]
- Breul, A.M.; Hager, M.D.; Schubert, U.S. Fluorescent monomers as building blocks for dye labeled polymers: Synthesis and application in energy conversion, biolabeling and sensors. Chem. Soc. Rev. 2013, 42, 5366–5407. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, P.; Bai, T.; Kong, J. N,N-dimethyl-substituted boron ketoiminates for multicolor fluorescent initiators and polymers. Macromolecules 2020, 53, 3339–3348. [Google Scholar] [CrossRef]
- Sha, Y.; Zhu, Q.; Wan, Y.; Li, L.; Wang, X.; Xue, G.; Zhou, D. Synthesis of polymer with defined fluorescent end groups via reversible addition fragmentation transfer polymerization for characterizing the conformations of polymer chains in solutions. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2413–2420. [Google Scholar] [CrossRef]
- Zhaoqiang, W.; Lingzhi, M. Progress in fluorescent polymers. Prog. Chem. 2021, 33, 914–925. [Google Scholar] [CrossRef]
- Dong, H.Q.; Wei, T.B.; Ma, X.Q.; Yang, Q.Y.; Zhang, Y.F.; Sun, Y.J.; Shi, B.B.; Yao, H.; Zhang, Y.M.; Lin, Q. 1,8-naphthalimide-based fluorescent chemosensors: Recent advances and perspectives. J. Mater. Chem. C 2020, 8, 13501–13529. [Google Scholar] [CrossRef]
- Dodangeh, M.; Grabchev, I.; Staneva, D.; Gharanjig, K. 1,8-naphthalimide derivatives as dyes for textile and polymeric materials: A review. Fibers Polym. 2021, 22, 2368–2379. [Google Scholar] [CrossRef]
- Philipova, T.; Petkov, I. Synthesis, spectral properties, and application of 1,8-naphthalimide fluorophores for modified polymers. J. Appl. Polym. Sci. 2001, 80, 1863–1869. [Google Scholar] [CrossRef]
- Kaynak, A.; Foitzik, R.C.; Pfeffer, F.M. Fluorescence and conductivity studies on wool. Mater. Chem. Phys. 2009, 113, 480–484. [Google Scholar] [CrossRef]
- Hu, R.; Kang, Y.; Tang, B.Z. Recent advances in AIE polymers. Polym. J. 2016, 48, 359–370. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Wang, M.; Li, R.; Yuan, M.; Feng, X.; He, Y.; Xing, Z.; Hu, J.; Wu, G. Electron beam-induced preparation of AIE non-woven fabric with excellent fluorescence durability. Appl. Surf. Sci. 2021, 541, 148382. [Google Scholar] [CrossRef]
- Lin, N.; Hu, F.; Sun, Y.; Wu, C.; Xu, H.; Liu, X.Y. Construction of white-light-emitting silk protein hybrid films by molecular recognized assembly among hierarchical structures. Adv. Funct. Mater. 2014, 24, 5284–5290. [Google Scholar] [CrossRef]
- Liu, C.; Bai, H.; He, B.; He, X.; Zhang, J.; Chen, C.; Qiu, Y.; Hu, R.; Zhao, F.; Zhang, Y.; et al. Functionalization of silk by AIEgens through facile bioconjugation: Full-color fluorescence and long-term bioimaging. Angew. Chem. Int. Ed. 2021, 60, 12424–12430. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Zhang, M.; Li, R.; Wang, M.; Qiu, L.; Yuan, M.; Feng, X.; Xing, Z.; Hu, J.; et al. Radiation-induced in situ-printed nonconjugated fluorescent nonwoven fabric with superior fluorescent properties. ACS Appl. Mater. Interfaces 2020, 12, 49258–49264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patti, A.; Acierno, D. Fluorescence in Smart Textiles. Encyclopedia 2023, 3, 665-676. https://doi.org/10.3390/encyclopedia3020047
Patti A, Acierno D. Fluorescence in Smart Textiles. Encyclopedia. 2023; 3(2):665-676. https://doi.org/10.3390/encyclopedia3020047
Chicago/Turabian StylePatti, Antonella, and Domenico Acierno. 2023. "Fluorescence in Smart Textiles" Encyclopedia 3, no. 2: 665-676. https://doi.org/10.3390/encyclopedia3020047
APA StylePatti, A., & Acierno, D. (2023). Fluorescence in Smart Textiles. Encyclopedia, 3(2), 665-676. https://doi.org/10.3390/encyclopedia3020047