Cultures of Spalting
Definition
:1. History
1.1. Western Europe
1.2. U.S.A
1.3. Chile
2. Modern Applications
3. Conclusions
Funding
Conflicts of Interest
References
- Robinson, S.C.; Michaelsen, H.; Robinson, J. Spalted Wood: The History, Science, and Art of a Unique Material; Schiffer Publishing: Atglen, PA, USA, 2016. [Google Scholar]
- Vega Gutierrez, P.; Robinson, S.C. Determining the presence of spalted wood in Spanish marquetry woodworks of the 1500s through the 1800s. Coatings 2017, 7, 188. [Google Scholar] [CrossRef]
- Ellis, E.A. British Fungi, Part 2; Jarrold & Sons: Norwich, UK, 1976. [Google Scholar]
- Blanchette, R.A.; Wilmering, A.M.; Baumeister, M. The use of green-stained wood caused by the fungus Chlorociboria in intarsia masterpieces from the 15th century. Holzforschung 1992, 46, 225–232. [Google Scholar] [CrossRef]
- Michaelsen, H.; Unger, A.; Fischer, C.-H. Blaugrüne Färbung an Intarsienhölzern des 16. und 18. Jahrhunderts. Restauro 1992, 98, 17–25. [Google Scholar]
- Robinson, S.C. The Lindquist Legacy; Schiffer Publishing: Atglen, PA, USA, 2021. [Google Scholar]
- Robinson, S.C. Spalting 101; Schiffer Publishing: Atglen, PA, USA, 2021. [Google Scholar]
- Osann, G.W. Chevreul, Versuche mit dem Indig, Weid und Anil, bearbeitet von A.F. Gehlen. In Beiträge zur Chemie und Physik; Schweiger, J.S.C., Ed.; 1813; Volume 9. [Google Scholar]
- Rommier, A. Über das Xylindein, einen aus abgestorbenem Holze dargestellten neuen Farbstoff: Übersetzung aus dem Comptes rendus, t. LXVI. Polytech. J. 1868, 188, 109–110. [Google Scholar]
- Brooks, F.T. Improvements in or Relating to Colouring and/or Preserving Wood. UK Patent 24,595, 29 October 1914. [Google Scholar]
- Campbell, A.H. Zone lines in Plant Tissues: I. The black lines formed by Xylaria polymorpha (Pers.) Grev. in hardwoods. Ann. Appl. Biol. 1933, 20, 123–145. [Google Scholar] [CrossRef]
- Campbell, A.H. Zone lines in Plant Tissues: II. The black lines formed by Armillaria mellea (Vahi) Quel. Ann. Appl. Biol. 1934, 21, 1–22. [Google Scholar] [CrossRef]
- Campbell, A.H.; Munson, R.G. Zone lines in Plant Tissues. III. The black lines formed by Polyporus squamosus (Huds.) Fr. Ann. Appl. Biol. 1936, 23, 453–4646. [Google Scholar] [CrossRef]
- Weber, G.; Chen, H.-L.; Hinsch, E.; Freitas, S.; Robinson, S.C. Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Coloration Technol. 2014, 130, 445–452. [Google Scholar] [CrossRef]
- Hinsch, E.; Weber, G.; Chen, H.-L.; Robinson, S.C. Colorfastness of extracted wood-staining fungal pigments on fabrics—A new potential for textile dyes. J. Text. Appar. Technol. Manag. 2015, 9, 1–11. [Google Scholar]
- Hinsch, E.; Robinson, S.C. Mechanical color reading of wood-stained fungal pigment textile dyes: An alternative method for determining colorfastness. Coatings 2016, 6, 25. [Google Scholar] [CrossRef]
- Robinson, S.C.; Vega Gutierrez, S.M.; Cespedes, R.A.; Iroume, N.; Vorland, N.R.; McClelland, A.; Huber, M.; Stanton, S. Potential for carrying pigments derived from spalting fungi in natural oils. J. Coat. Technol. Res. 2017, 14, 1107–1113. [Google Scholar] [CrossRef]
- Palomino Agurto, M.E.; Vega Gutierrez, S.M.; Chen, H.-L.; Robinson, S.C. Wood-rotting fungal pigments as colorant coatings in oil-based textile dyes. Coatings 2017, 7, 152. [Google Scholar] [CrossRef]
- Robinson, S.C.; Vega Gutierrez, S.M.; Cespedes Garcia, R.A.; Iroume, N.; Vorland, N.R.; Andersen, C.; de Oliveira Xaxa, I.D.; Kramer, O.E.; Huber, M.E. Potential for fungal dyes as colorants in oil and acrylic paints. J. Coat. Technol. Res. 2018, 15, 845–849. [Google Scholar] [CrossRef]
- Palomino Agurto, M.E.; Vega Gutierrez, S.M.; Van Court, R.C.; Chen, H.-L.; Robinson, S.C. Oil-based fungal pigments from Scytalidium cuboideum as a textile dye. J. Fungi 2020, 6, 53. [Google Scholar] [CrossRef]
- Giesbers, G.; Van Schenck, J.; Vega Gutierrez, S.M.; Robinson, S.C.; Ostroverkhova, O. Fungi-derived pigments for sustainable organic (opto)electronics. EP02: Excitonic Materials—Physics, Characterization and Devices. MRS Adv. 2018, 3, 3459–3464. [Google Scholar] [CrossRef]
- Giesbers, G.; Krueger, T.; Van Schenck, J.; Van Court, R.; Morré, J.; Fang, C.; Robinson, S.C.; Ostroverkhova, O. Fungi-derived xylindein: Effect of purity on optical and electronic properties. MRS Adv. 2019, 4, 1769–1777. [Google Scholar] [CrossRef]
- Giesbers, G.; Van Schenck, J.; Quinn, A.; Van Court, R.; Vega Gutierrez, S.M.; Robinson, S.C.; Ostroverkhova, O. Xylindein: Naturally produced fungal compound for sustainable (opto)electronics. ACS Omega 2019, 4, 13309–13318. [Google Scholar] [CrossRef]
- Krueger, T.D.; Geisbers, G.; Van Court, R.; Liangdong, Z.; Kim, R.; Beaudry, C.M.; Robinson, S.C.; Ostroverkova, O.; Fang, C. Ultrafast dynamics and photoresponse of a fungi-derived pigment xylindein from solution to thin films. Chem. Eur. J. 2021, 27, 5627–5631. [Google Scholar] [CrossRef]
- Giesbers, G.; Krueger, T.; Van Schenck, J.; Kim, G.; Van Court, R.; Robinson, S.C.; Beaudry, C.; Fang, C.; Ostroverkhova, O. The role of hydroxyl groups in the photophysics, photostability, and (opto)electronic properties of the fungi-derived pigment xylindein. J. Phys. Chem. 2021, 125, 6534–6545. [Google Scholar] [CrossRef]
- Vega Gutierrez, S.M.; He, Y.; Cao, Y.; Stone, D.W.; Walsh, Z.M.; Malhotra, R.; Chen, H.-L.; Chang, C.-H.; Robinson, S.C. Feasibility and surface evaluation of the pigment from Scytalidium cuboideum for ink-jet printing on textiles. Coatings 2019, 9, 266. [Google Scholar] [CrossRef]
- He, Y.; Cao, Y.; Hwang, H.-J.; Debarajb, H.; Vega Gutierrez, S.M.; Chen, H.-L.; Robinson, S.C.; Malhotra, R.; Chang, C.-H. Inkjet printing and in-situ crystallization of biopigments for eco-friendly and energy-efficient fabric coloration. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 9, 941–953. [Google Scholar] [CrossRef]
- Krueger, T.D.; Tang, L.; Giesbers, G.; Van Court, R.; Zhu, L.; Robinson, S.C.; Ostroverkhova, O.; Fang, C. Ultrafast triplet state formation of a methylated fungi-derived pigment for sustainable optoelectronic materials. J. Phys. Chem. 2021, 125, 17565–17572. [Google Scholar]
- Krueger, T.D.; Solaris, J.; Tang, L.; Zhu, L.; Van Court, R.C.; Robinson, S.C.; Ostroverkhova, O.; Fang, C. Illuminating excited state intramolecular proton transfer of a fungi-derived red pigment for sustainable optoelectronics. J. Phys. Chem. 2021, 126, 459–477. [Google Scholar]
- Rui, H.; Robinson, S.C.; Vega Gutierrez, P.; Stanton, S. Spalting pigments as colorants in wood stabilizers. J. Coat. Technol. Res. 2019, 16, 905–911. [Google Scholar] [CrossRef]
- Stone, D.W.; Vega Gutierrez, S.; Walsh, Z.M.; Robinson, S.C. Potential of the red pigment from Scytalidium cuboideum as a cellulosic pulp colorant. Challenges 2022, 13, 15. [Google Scholar] [CrossRef]
- Vega Gutierrez, S.M.; Stone, D.W.; He, R.; Vega Gutierrez, P.T.; Walsh, Z.M.; Robinson, S.C. Red pigment from the fungus Scytalidium cuboideum helps prevent ‘greying’ in decking and other outdoor wood products. Coatings 2021, 11, 511. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson, S.C. Cultures of Spalting. Encyclopedia 2022, 2, 1395-1407. https://doi.org/10.3390/encyclopedia2030094
Robinson SC. Cultures of Spalting. Encyclopedia. 2022; 2(3):1395-1407. https://doi.org/10.3390/encyclopedia2030094
Chicago/Turabian StyleRobinson, Seri C. 2022. "Cultures of Spalting" Encyclopedia 2, no. 3: 1395-1407. https://doi.org/10.3390/encyclopedia2030094
APA StyleRobinson, S. C. (2022). Cultures of Spalting. Encyclopedia, 2(3), 1395-1407. https://doi.org/10.3390/encyclopedia2030094