Metrology for Virtual Measuring Instruments Illustrated by Three Applications
Abstract
1. Introduction
2. The Virtual Coordinate Measuring Machine (VCMM)
2.1. Application for Uncertainty Evaluation
- The CMM captures the measuring points of all features to be inspected on the workpiece.
- The evaluation software of the CMM calculates the corresponding measurands from the measured point cloud of the features.
- Afterwards, four additional VCMM-specific steps are required to calculate the corresponding measurement uncertainties:
- 3.
- The VCMM generates new 3D point coordinates based on the measured coordinates, which are slightly distorted due to systematic and random measurement deviations.
- 4.
- The coordinates generated in this way are fed to the same evaluation algorithm as the real measured coordinates, and a further measured value is obtained for the feature, which is generated by simulating possible and realistic measurement errors.
- 5.
- Steps 3 and 4 are repeated n times until sufficient statistical stability of the measurement uncertainty calculation is achieved.
- 6.
- After n repetitions, the uncertainties for all measurands are derived from the distribution and the mean values of the simulated measurement results.
2.2. Traceability
2.3. Other Benefits
3. The Tilted-Wave Interferometer (TWI)
4. The Virtual Flow Meter
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
CFD | Computational fluid dynamics |
CMM | Coordinate measuring machine |
DE | Double elbow out-of-plane (configuration) |
D-MT | Digital-metrological twins |
EMN | European Metrology Network |
GUI | Graphical user interface |
GUM | Guide to the Expression of Uncertainty in Measurement |
MCS | Monte Carlo simulations |
SE | Single elbow (configuration) |
TWI | Tilted-wave interferometer |
VCMM | Virtual coordinate measuring machine |
References
- Schulz, M.; Ehret, G.; Stavridis, M.; Elster, C. Concept, design and capability analysis of the new Deflectometric Flatness Reference at PTB. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 616, 134–139. [Google Scholar] [CrossRef]
- Wiegmann, A.; Stavridis, M.; Walzel, M.; Siewert, F.; Zeschke, T.; Schulz, M.; Elster, C. Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments. Precis. Eng. 2011, 35, 183–190. [Google Scholar] [CrossRef]
- Ehret, G.; Schulz, M.; Stavridis, M.; Elster, C. Deflectometric systems for absolute flatness measurements at PTB. Meas. Sci. Technol. 2012, 23, 094007. [Google Scholar] [CrossRef]
- Fortmeier, I.; Stavridis, M.; Wiegmann, A.; Schulz, M.; Osten, W.; Elster, C. Evaluation of absolute form measurements using a tilted-wave interferometer. Opt. Express 2016, 24, 3393–3404. [Google Scholar] [CrossRef]
- Gori, V.; Biddulph, P.; Elwell, C. A Bayesian Dynamic Method to Estimate the Thermophysical Properties of Building Elements in All Seasons, Orientations and with Reduced Error. Energies 2018, 11, 802. [Google Scholar] [CrossRef]
- François, A.; Ibos, L.; Feuillet, V.; Meulemans, J. Estimation of the thermal resistance of a building wall with inverse techniques based on rapid active in situ measurements and white-box or ARX black-box models. Energy Build. 2020, 226, 110346. [Google Scholar] [CrossRef]
- Manzin, A. Modeling of Nanostructured Magnetic Field Sensors. In Compendium on Electromagnetic Analysis; World Scientific: Singapore, 2020; pp. 181–210. [Google Scholar] [CrossRef]
- Schenker, M.; Stavridis, M.; Schulz, M.; Tutsch, R. Effects of misalignments on the modulation transfer function measurement of camera lenses analyzed in optomechanical simulations. Opt. Eng. 2020, 59, 034101. [Google Scholar] [CrossRef]
- Fischedick, M.; Stavridis, M.; Bartl, G.; Elster, C. Investigation of the uncertainty contributions of the alignment of PTB’s double-ended interferometer by virtual experiments. Metrologia 2021, 58, 064001. [Google Scholar] [CrossRef]
- Scholz, G.; Fortmeier, I.; Marschall, M.; Stavridis, M.; Schulz, M.; Elster, C. Experimental Design for Virtual Experiments in Tilted-Wave Interferometry. Metrology 2022, 2, 84–97. [Google Scholar] [CrossRef]
- Fortmeier, I.; Stavridis, M.; Schulz, M.; Elster, C. Development of a metrological reference system for the form measurement of aspheres and freeform surfaces based on a tilted-wave interferometer. Meas. Sci. Technol. 2022, 33, 045013. [Google Scholar] [CrossRef]
- Straka, M.; Weissenbrunner, A.; Koglin, C.; Höhne, C.; Schmelter, S. Simulation Uncertainty for a Virtual Ultrasonic Flow Meter. Metrology 2022, 2, 335–359. [Google Scholar] [CrossRef]
- Weissenbrunner, A.; Ekat, A.; Straka, M.; Schmelter, S. A virtual flow meter downstream of various elbow configurations. Metrologia 2023, 60, 054002. [Google Scholar] [CrossRef]
- Trapet, E.; Wäldele, F. The Virtual CMM Concept. Advanced Mathematical Tools in Metrology; World Scientific Publishing Company: Singapore, 1996; pp. 238–247. [Google Scholar]
- Balsamo, A.; Di Ciommo, M.; Mugno, R.; Rebaglia, B.; Ricci, E.; Grella, R. Evaluation of CMM Uncertainty Through Monte Carlo Simulations. CIRP Ann. 1999, 48, 425–428. [Google Scholar] [CrossRef]
- Irikura, K.K.; Johnson, R.D.; Kacker, R.N. Uncertainty associated with virtual measurements from computational quantum chemistry models. Metrologia 2004, 41, 369–375. [Google Scholar] [CrossRef]
- Sładek, J.; Gąska, A. Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement 2012, 45, 1564–1575. [Google Scholar] [CrossRef]
- Aggogeri, F.; Barbato, G.; Barini, E.M.; Genta, G.; Levi, R. Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation. CIRP J. Manuf. Sci. Technol. 2011, 4, 51–56. [Google Scholar] [CrossRef]
- Schmelter, S.; Fiebach, A.; Model, R.; Bär, M. Numerical prediction of the influence of uncertain inflow conditions in pipes by polynomial chaos. Int. J. Comput. Fluid Dyn. 2015, 29, 411–422. [Google Scholar] [CrossRef]
- Weissenbrunner, A.; Fiebach, A.; Schmelter, S.; Bär, M.; Thamsen, P.U.; Lederer, T. Simulation-based determination of systematic errors of flow meters due to uncertain inflow conditions. Flow Meas. Instrum. 2016, 52, 25–39. [Google Scholar] [CrossRef]
- Rost, K.; Wendt, K.; Härtig, F. Evaluating a task-specific measurement uncertainty for gear measuring instruments via Monte Carlo simulation. Precis. Eng. 2016, 44, 220–230. [Google Scholar] [CrossRef]
- Gąska, A.; Harmatys, W.; Gąska, P.; Gruza, M.; Gromczak, K.; Ostrowska, K. Virtual CMM-based model for uncertainty estimation of coordinate measurements performed in industrial conditions. Measurement 2017, 98, 361–371. [Google Scholar] [CrossRef]
- Heißelmann, D.; Franke, M.; Rost, K.; Wendt, K.; Kistner, T.; Schwehn, C. Determination of measurement uncertainty by Monte Carlo simulation. In Advanced Mathematical and Computational Tools in Metrology and Testing XI; World Scientific: Singapore, 2018; pp. 192–202. [Google Scholar] [CrossRef]
- Doytchinov, I.; Tonnellier, X.; Shore, P.; Nicquevert, B.; Modena, M.; Mainaud Durand, H. Application of probabilistic modelling for the uncertainty evaluation of alignment measurements of large accelerator magnets assemblies. Meas. Sci. Technol. 2018, 29, 054001. [Google Scholar] [CrossRef]
- Thébault, S.; Bouchié, R. Refinement of the ISABELE method regarding uncertainty quantification and thermal dynamics modelling. Energy Build. 2018, 178, 182–205. [Google Scholar] [CrossRef]
- Wübbeler, G.; Marschall, M.; Kniel, K.; Heißelmann, D.; Härtig, F.; Elster, C. GUM-Compliant Uncertainty Evaluation Using Virtual Experiments. Metrology 2022, 2, 114–127. [Google Scholar] [CrossRef]
- Marschall, M.; Fortmeier, I.; Stavridis, M.; Hughes, F.; Elster, C. Bayesian uncertainty evaluation applied to the tilted-wave interferometer. Opt. Express 2024, 32, 18664–18683. [Google Scholar] [CrossRef]
- Maculotti, G.; Genta, G.; Galetto, M. An uncertainty-based quality evaluation tool for nanoindentation systems. Measurement 2024, 225, 113974. [Google Scholar] [CrossRef]
- Maculotti, G.; Marschall, M.; Kok, G.; Chekh, B.A.; van Dijk, M.; Flores, J.; Genta, G.; Puerto, P.; Galetto, M.; Schmelter, S. A Shared Metrological Framework for Trustworthy Virtual Experiments and Digital Twins. Metrology 2024, 4, 337–363. [Google Scholar] [CrossRef]
- Hughes, F.; Marschall, M.; Wübbeler, G.; Elster, C. Uncertainty evaluation using virtual experiments: Bridging JCGM 101 and a Bayesian framework. Tm-Tech. Mess. 2025, 92, 130–137. [Google Scholar] [CrossRef]
- Hughes, F.; Marschall, M.; Wübbeler, G.; Kok, G.; van Dijk, M.; Elster, C. JCGM 101-compliant uncertainty evaluation using virtual experiments. Meas. Sens. 2025, 38, 101731. [Google Scholar] [CrossRef]
- van Dijk, M.; Kok, G. Comparison of uncertainty evaluation methods for virtual experiments with an application to a virtual CMM. Meas. Sens. 2025, 38, 101785. [Google Scholar] [CrossRef]
- Bayazit, N.; Marschall, M.; Straka, M.; Schmelter, S. A Novel Framework for the Uncertainty Evaluation of Virtual Flow Meters. Meas. Sci. Technol. 2025, 36, 076012. [Google Scholar] [CrossRef]
- Garbusi, E.; Pruss, C.; Osten, W. Interferometer for precise and flexible asphere testing. Opt. Lett. 2008, 33, 2973. [Google Scholar] [CrossRef]
- Henn, M.A.; Gross, H.; Scholze, F.; Wurm, M.; Elster, C.; Bär, M. A maximum likelihood approach to the inverse problem of scatterometry. Opt. Express 2012, 20, 12771. [Google Scholar] [CrossRef]
- Baer, G.; Schindler, J.; Pruss, C.; Siepmann, J.; Osten, W. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces. Opt. Express 2014, 22, 31200. [Google Scholar] [CrossRef]
- Heidenreich, S.; Gross, H.; Wurm, M.; Bodermann, B.; Bär, M. The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors. In Proceedings of the Modeling Aspects in Optical Metrology V, Munich, Germany, 23–25 June 2015; Bodermann, B., Frenner, K., Silver, R.M., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9526, p. 95260U. [Google Scholar] [CrossRef]
- Hammerschmidt, M.; Weiser, M.; Garcia Santiago, X.; Zschiedrich, L.; Bodermann, B.; Burger, S. Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion. In Proceedings of the Modeling Aspects in Optical Metrology VI, Munich, Germany, 26–28 June 2017; Bodermann, B., Frenner, K., Silver, R.M., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10330, p. 1033004. [Google Scholar] [CrossRef]
- Iglesias, M.; Sawlan, Z.; Scavino, M.; Tempone, R.; Wood, C. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements. Int. J. Heat Mass Transf. 2018, 116, 417–431. [Google Scholar] [CrossRef]
- Rodler, A.; Guernouti, S.; Musy, M. Bayesian inference method for in situ thermal conductivity and heat capacity identification: Comparison to ISO standard. Constr. Build. Mater. 2019, 196, 574–593. [Google Scholar] [CrossRef]
- Rynn, J.A.J.; Cotter, S.L.; Powell, C.E.; Wright, L. Surrogate accelerated Bayesian inversion for the determination of the thermal diffusivity of a material. Metrologia 2019, 56, 015018. [Google Scholar] [CrossRef]
- Demeyer, S.; Le Sant, V.; Koenen, A.; Fischer, N.; Waeytens, J.; Bouchié, R. Bayesian uncertainty analysis of inversion models applied to the inference of thermal properties of walls. Energy Build. 2021, 249, 111188. [Google Scholar] [CrossRef]
- Kok, G.; Dijk, M.v.; Wübbeler, G.; Elster, C. Virtual experiments for the assessment of data analysis and uncertainty quantification methods in scatterometry. Metrologia 2023, 60, 044001. [Google Scholar] [CrossRef]
- Hu, Y.; Abuseada, M.; Alghfeli, A.; Holdheim, S.; Fisher, T.S. Surrogate-accelerated Bayesian framework for high-temperature thermal diffusivity characterization. Comput. Methods Appl. Mech. Eng. 2024, 418, 116459. [Google Scholar] [CrossRef]
- European Metrology Network (EMN) for Mathematics and Statistics. Strategic Research Agenda, 2023. Version 1.0 (07/2023). Available online: https://www.euramet.org/european-metrology-networks/mathmet/strategy/strategic-research-agenda (accessed on 26 May 2025).
- European Metrology Network (EMN) for Advanced Manufacturing. Strategic Research Agenda, 2024. Version 1.0 (05/2024). Available online: https://www.euramet.org/european-metrology-networks/advanced-manufacturing/strategy/strategic-research-agenda (accessed on 26 May 2025).
- Liu, G.; Xu, Q.; Gao, F.; Guan, Q.; Fang, Q. Analysis of key technologies for virtual instruments metrology. In Proceedings of the Fourth International Symposium on Precision Mechanical Measurements, Hefei, China, 25–29 August 2008; Fei, Y., Fan, K.C., Lu, R., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7130, p. 71305B. [Google Scholar] [CrossRef]
- Kok, G. The digital transformation and novel calibration approaches. Tm-Tech. Mess. 2022, 89, 214–223. [Google Scholar] [CrossRef]
- Kok, G.; Wübbeler, G.; Elster, C. Impact of Imperfect Artefacts and the Modus Operandi on Uncertainty Quantification Using Virtual Instruments. Metrology 2022, 2, 311–319. [Google Scholar] [CrossRef]
- Vlaeyen, M.; Haitjema, H.; Dewulf, W. Digital twin of an optical measurement system. Sensors 2021, 21, 6638. [Google Scholar] [CrossRef]
- VDI/VDE 2617 Part 7; Accuracy of Coordinate Measuring Machines—Parameters and Their Reverification—Estimation of Measurement Uncertainty of Coordinate Measuring Machines by Means of Simulation. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Düsseldorf, Germany, 2008.
- ISO/TS 15530-4; Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement—Part 4: Evaluating Task-Specific Measurement Uncertainty Using Simulation. ISO: Geneva, Switzerland, 2008.
- Oberkampf, W.; Hirsch, C.; Trucano, T. Verification, Validation, and Predictive Capability in Computational Engineering and Physics. 2003. Available online: https://www.osti.gov/servlets/purl/918370/ (accessed on 26 May 2025).
- Oberkampf, W.L.; Trucano, T.G.; Hirsch, C. Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 2004, 57, 345–384. [Google Scholar] [CrossRef]
- Babuska, I.; Oden, J. Verification and validation in computational engineering and science: Basic concepts. Comput. Methods Appl. Mech. Eng. 2004, 193, 4057–4066. [Google Scholar] [CrossRef]
- Competence Center “Metrology for Virtual Measuring Instruments (VirtMet)”. Available online: https://www.ptb.de/cms/en/ptb/competence-centers/virtual-measuring-instruments/competence-centre-virtmet.html (accessed on 21 May 2025).
- ISO 14253-1:2017-1; Geometrical Product Specifications (GPS)—Inspection by Measurement of Workpieces and Measuring Equipment—Part 1: Decision Rules for Verifying Conformity or Nonconformity with Specifications. ISO: Geneva, Switzerland, 2017.
- ISO 1101; Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out. ISO: Geneva, Switzerland, 2017.
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; International Bureau of Weights and Measures (BIPM): Sèvres, France, 2008; Available online: https://www.bipm.org/en/publications/guides/gum.html (accessed on 27 August 2025). [CrossRef]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method; International Bureau of Weights and Measures (BIPM): Sèvres, France, 2008; Available online: https://www.bipm.org/en/publications/guides/gum.html (accessed on 27 August 2025). [CrossRef]
- Trapet, E.; Wäldele, F. A reference object based method to determine the parametric error components of coordinate measuring machines and machine tools. Measurement 1991, 9, 17–22. [Google Scholar] [CrossRef]
- Wäldele, F.; Schwenke, H. Automatische Bestimmung der Messunsicherheiten auf KMGs auf dem Weg in die industrielle Praxis. Tm-Tech. Messen/Sensoren Geräte Syst. 2002, 69, 550–557. [Google Scholar] [CrossRef]
- Trenk, M.; Franke, M.; Schwenke, H. The “Virtual CMM” a software tool for uncertainty evaluation–practical application in an accredited calibration lab. Proc. ASPE Uncertain. Anal. Meas. Des. 2004, 9, 68–75. [Google Scholar]
- Härtig, F.; Kniel, K.; Heißelmann, D. Das Virtuelle Koordinatenmessgerät—Ein Digitaler Metrologischer Zwilling. Tm-Tech. Mess. 2023, 90, 548–556. [Google Scholar] [CrossRef]
- Application of Digital-Metrological Twins for Emerging Measurement Technology in Advanced Manufacturing—ADAM. Available online: https://www.adam.ptb.de/home (accessed on 23 May 2025).
- Savio, E.; De Chiffre, L.; Schmitt, R. Metrology of freeform shaped parts. CIRP Ann. 2007, 56, 810–835. [Google Scholar] [CrossRef]
- Sỳkora, J.; Linkeová, I.; Skalník, P. Freeform digital twin approach to develop the HP 300 freeform verification standard. Measurement 2023, 218, 113227. [Google Scholar] [CrossRef]
- Busch, K.; Kunzmann, H.; Wäldele, F. Calibration of coordinate measuring machines. Precis. Eng. 1985, 7, 139–144. [Google Scholar] [CrossRef]
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann.-Manuf. Technol. 2008, 57, 660–675. [Google Scholar] [CrossRef]
- Keck, C.; Franke, M.; Schwenke, H. Werkstückeinflüsse in der Koordinatenmesstechnik (Workpiece Influence in Coordinate Metrology). Tm-Tech. Messen/Sensoren Geräte Syst. 2004, 71, 81–92. [Google Scholar] [CrossRef]
- ISO 10360-2; Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM) Part 2: CMMs Used for Measuring Linear Dimensions. ISO: Geneva, Switzerland, 2009.
- ISO 10360-5; Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Systems (CMS) Part 5: Coordinate Measuring Machines (CMMs) Using Single and Multiple Stylus Contacting Probing Systems Using Discrete Point and/or Scanning Measuring Mode. ISO: Geneva, Switzerland, 2020.
- Schwenke, H.; Franke, M.; Hannaford, J.; Kunzmann, H. Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann.-Manuf. Technol. 2005, 54, 475–478. [Google Scholar] [CrossRef]
- Garbusi, E.; Osten, W. Perturbation methods in optics: Application to the interferometric measurement of surfaces. J. Opt. Soc. Am. A 2009, 26, 2538–2549. [Google Scholar] [CrossRef]
- Schindler, J.; Baer, G.; Pruss, C.; Osten, W. The tilted-wave-interferometer: Freeform surface reconstruction in a non-null setup. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; Fiber Optic Sensors, Beijing, China, 13–15 May 2014; Czarske, J., Zhang, S., Sampson, D., Wang, W., Liao, Y., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2014; Volume 9297, p. 92971R. [Google Scholar] [CrossRef]
- Pruss, C.; Baer, G.B.; Schindler, J.; Osten, W. Measuring aspheres quickly: Tilted wave interferometry. Opt. Eng. 2017, 56, 111713. [Google Scholar] [CrossRef]
- Fortmeier, I.; Stavridis, M.; Wiegmann, A.; Schulz, M.; Baer, G.; Pruss, C.; Osten, W.; Elster, C. Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments. In Proceedings of the Modeling Aspects in Optical Metrology IV, Munich, Germany, 13–14 May 2013; Bodermann, B., Frenner, K., Silver, R.M., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2013; Volume 8789, pp. 62–73. [Google Scholar] [CrossRef]
- Harsch, A.; Pruss, C.; Baer, G.; Osten, W. Monte Carlo simulations: A tool to assess complex measurement systems. In Proceedings of the Sixth European Seminar on Precision Optics Manufacturing, Teisnach, Germany, 9–10 April 2019; Rascher, R., Schopf, C., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2019; Volume 11171, p. 111710C. [Google Scholar] [CrossRef]
- Fortmeier, I.; Stavridis, M.; Wiegmann, A.; Schulz, M.; Osten, W.; Elster, C. Analytical Jacobian and its application to tilted-wave interferometry. Optics Express 2014, 22, 21313–21325. [Google Scholar] [CrossRef] [PubMed]
- Schindler, J.; Pruss, C.; Osten, W. Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry. Opt. Eng. 2019, 58, 1–9. [Google Scholar] [CrossRef]
- Schober, C.; Beisswanger, R.; Gronle, A.; Pruss, C.; Osten, W. Tilted Wave Fizeau Interferometer for flexible and robust asphere and freeform testing. Light. Adv. Manuf. 2022, 3, 687. [Google Scholar] [CrossRef]
- Malacara, D. Optical Shop Testing; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- de Groot, P.; Dresel, T.; Truax, B. Axial alignment for high-precision interferometric measurements of steeply-curved spheres. Surf. Topogr. Metrol. Prop. 2015, 3, 044004. [Google Scholar] [CrossRef]
- Schachtschneider, R.; Stavridis, M.; Fortmeier, I.; Schulz, M.; Elster, C. SimOptDevice: A library for virtual optical experiments. J. Sens. Sens. Syst. 2019, 8, 105–110. [Google Scholar] [CrossRef]
- Gronle, A.; Pruss, C.; Herkommer, A. Misalignment of spheres, aspheres and freeforms in optical measurement systems. Opt. Express 2022, 30, 797–814. [Google Scholar] [CrossRef]
- Scholz, G.; Evers, D.; Fortmeier, I. Investigation of the positioning accuracy of the Cat’s Eye as a reference position in asphere-measuring interferometry. J. Eur. Opt. Soc.-Rapid Publ. 2025, 21, 19. [Google Scholar] [CrossRef]
- Selberg, L.A. Radius measurement by interferometry. Opt. Eng. 1992, 31, 1961–1966. [Google Scholar] [CrossRef]
- Schmitz, T.; Evans, C.; Davies, A.; Estler, W. Displacement Uncertainty in Interferometric Radius Measurements. CIRP Ann. 2002, 51, 451–454. [Google Scholar] [CrossRef]
- Trustworthy Virtual Experiments and Digital Twins—ViDiT. Available online: https://www.vidit.ptb.de/home (accessed on 31 March 2025).
- Fortmeier, I.; Schulz, M.; Meeß, R. Traceability of form measurements of freeform surfaces: Metrological reference surfaces. Opt. Eng. 2019, 58, 092602. [Google Scholar] [CrossRef]
- Holm, M.; Stang, J.; Delsing, J. Simulation of flow meter calibration factors for various installation effects. Measurement 1995, 15, 235–244. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, S.; Seshadri, V. CFD prediction of the effects of the upstream elbow fittings on the performance of cone flowmeters. Flow Meas. Instrum. 2010, 21, 88–97. [Google Scholar] [CrossRef]
- Tawackolian, K. Fluiddynamische Auswirkungen auf die Messabweichung von Ultraschall-Durchflussmessgeräten. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Weissenbrunner, A.; Steinbock, J.; Fiebach, A.; Lederer, T. Uncertainty quantification of velocity area methods inside a Venturi nozzle withuncertain inflow conditions. In Proceedings of the Fachtagung “Lasermethoden in der Strömungsmesstechnik”, Dresden, Germany, 8–10 September 2015. (In German). [Google Scholar]
- Weissenbrunner, A.; Fiebach, A.; Juling, M.; Thamsen, P. A coupled numerical and laser optical method for on-site calibration of flow meters. In Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), Rhodes Island, Greece, 15–17 June 2017; UNCECOMP 2017. pp. 576–587. [Google Scholar] [CrossRef]
- Hallanger, A.; Saetre, C.; Frøysa, K.E. Flow profile effects due to pipe geometry in an export gas metering station—Analysis by CFD simulations. Flow Meas. Instrum. 2018, 61, 56–65. [Google Scholar] [CrossRef]
- Straka, M.; Fiebach, A.; Eichler, T.; Koglin, C. Hybrid simulation of a segmental orifice plate. Flow Meas. Instrum. 2018, 60, 124–133. [Google Scholar] [CrossRef]
- Weissenbrunner, A. Simulation Based Uncertainty Analysis of Flow Rate Prediction. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Hilgenstock, A.; Ernst, R. Analysis of installation effects by means of computational fluid dynamics—CFD vs experiments? Flow Meas. Instrum. 1996, 7, 161–171. [Google Scholar] [CrossRef]
- Yeh, T.T.; Mattingly, G.E. Computer Simulations of Ultrasonic Flow Meter Performance in Ideal and Non-Ideal Pipeflows. In Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting (FEDSM’97), Vancouver, CA, USA, 22–26 June 1997. number FEDSM97-3012. [Google Scholar]
- Geršl, J.; Knotek, S.; Belligoli, Z.; Dwight, R.; Robinson, R.; Coleman, M. Flow rate measurement in stacks with cyclonic flow—Error estimations using CFD modelling. Measurement 2018, 129, 167–183. [Google Scholar] [CrossRef]
- Martins, R.S.; Andrade, J.R.; Ramos, R. On the effect of the mounting angle on single-path transit-time ultrasonic flow measurement of flare gas: A numerical analysis. J. Braz. Soc. Mech. Sci. Eng. 2019, 42. [Google Scholar] [CrossRef]
- Alaeddin, M.A.; Hashemabadi, S.H.; Mousavi, S.F. Numerical study on the effect of circumferential position of ultrasonic transducers on ultrasonic cross-correlation flowmeter performance under asymmetric air flow profile. Ultrasonics 2021, 115, 106479. [Google Scholar] [CrossRef] [PubMed]
- Siqueira de Aquino, G.; Silva Martins, R.; Ferreira Martins, M.; Ramos, R. An Overview of Computational Fluid Dynamics as a Tool to Support Ultrasonic Flow Measurements. Metrology 2025, 5, 11. [Google Scholar] [CrossRef]
- Weissenbrunner, A. Graphical User Interface for Virtual Flow Meters. 2023. Available online: https://gitlab1.ptb.de/AndreasWeissenbrunner/virtflow_gui (accessed on 24 March 2025).
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. Rech. Aerosp. 1994, 1, 5–21. [Google Scholar] [CrossRef]
Test Case | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Flow case | SE | SE | DE | DE |
Curvature radius | ||||
Distance betw. elbows | – | – | ||
Downstream distance | ||||
Installation angle | ||||
Reynolds number | ||||
Wall roughness | ||||
Predicted error |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmelter, S.; Fortmeier, I.; Heißelmann, D. Metrology for Virtual Measuring Instruments Illustrated by Three Applications. Metrology 2025, 5, 54. https://doi.org/10.3390/metrology5030054
Schmelter S, Fortmeier I, Heißelmann D. Metrology for Virtual Measuring Instruments Illustrated by Three Applications. Metrology. 2025; 5(3):54. https://doi.org/10.3390/metrology5030054
Chicago/Turabian StyleSchmelter, Sonja, Ines Fortmeier, and Daniel Heißelmann. 2025. "Metrology for Virtual Measuring Instruments Illustrated by Three Applications" Metrology 5, no. 3: 54. https://doi.org/10.3390/metrology5030054
APA StyleSchmelter, S., Fortmeier, I., & Heißelmann, D. (2025). Metrology for Virtual Measuring Instruments Illustrated by Three Applications. Metrology, 5(3), 54. https://doi.org/10.3390/metrology5030054