Digital Enrollment and Survey Response of Diverse Kidney Transplant Seekers in a Remote Trial (KidneyTIME): An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Implementation Process
2.4. Predictors and Outcomes
2.5. Data Analysis
3. Results
3.1. Enrollment
3.2. Early Enrollment
3.3. Survey Response
3.4. Enrollment Barriers and Facilitators Uncovered
3.5. Survey Response Barriers and Facilitators Uncovered
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KT | Kidney Transplantation |
ECMC | Erie County Medical Center |
LDKT | Living-Donor Kidney Transplantation |
References
- Lentine, K.L.; Smith, J.M.; Lyden, G.R.; Miller, J.M.; Dolan, T.G.; Bradbrook, K.; Larkin, L.; Temple, K.; Handarova, D.K.; Weiss, S.; et al. OPTN/SRTR 2022 Annual Data Report: Kidney. Am. J. Transpl. 2024, 24, S19–S118. [Google Scholar] [CrossRef]
- Kayler, L.K.; Nie, J.; Solbu, A.; Handmacher, M.; Feeley, T.H.; Noyes, K. Feasibility of providing web-based education to patients prior to kidney transplant evaluation. Clin. Transplant. 2023, 38, e15174. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, J.W.; Weiland, A.K.; Frenzel, R.M.; Mueller, M.; Brunner-Jackson, B.M.; Taber, D.J.; Baliga, P.K.; Treiber, F.A. Patient attitudes toward mobile phone-based health monitoring: Questionnaire study among kidney transplant recipients. J. Med. Internet Res. 2013, 15, e6. [Google Scholar] [CrossRef]
- Smith, S.; Haseley, N.; Keller, M.; Cadzow, R.; Feeley, T.H.; Kayler, L.K. Development and Preliminary Evaluation of a Patient-facing Educational Video About Live Kidney Donor Surgical Complications. Transplant. Direct 2021, 7, e744. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, I.M.A.; Zhou, L.; Alfikri, Z.; Saptono, A.; Fairman, A.D.; Dicianno, B.E.; Parmanto, B. An Adaptive Mobile Health System to Support Self-Management for Persons with Chronic Conditions and Disabilities: Usability and Feasibility Studies. JMIR Form. Res. 2019, 3, e12982. [Google Scholar] [CrossRef]
- Bossola, M.; Arena, M.; Urciuolo, F.; Antocicco, M.; Pepe, G.; Calabrò, G.E.; Cianfrocca, C.; Stasio, E.D. Fatigue in Kidney Transplantation: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 833. [Google Scholar] [CrossRef] [PubMed]
- Leach, L.S.; Butterworth, P.; Poyser, C.; Batterham, P.J.; Farrer, L.M. Online Recruitment: Feasibility, Cost, and Representativeness in a Study of Postpartum Women. J. Med. Internet Res. 2017, 19, e61. [Google Scholar] [CrossRef]
- Johansen, B.; Wedderkopp, N. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview. Chiropr. Osteopat. 2010, 18, 10. [Google Scholar] [CrossRef]
- Heiervang, E.; Goodman, R. Advantages and limitations of web-based surveys: Evidence from a child mental health survey. Soc. Psychiatry Psychiatr. Epidemiol. 2011, 46, 69–76. [Google Scholar] [CrossRef]
- Lieberman, D.Z. Evaluation of the stability and validity of participant samples recruited over the Internet. Cyberpsychol. Behav. 2008, 11, 743–745. [Google Scholar] [CrossRef]
- Fenner, Y.; Garland, S.M.; Moore, E.E.; Jayasinghe, Y.; Fletcher, A.; Tabrizi, S.N.; Gunasekaran, B.; Wark, J.D. Web-based recruiting for health research using a social networking site: An exploratory study. J. Med. Internet Res. 2012, 14, e20. [Google Scholar] [CrossRef] [PubMed]
- Hatch, E.E.; Hahn, K.A.; Wise, L.A.; Mikkelsen, E.M.; Kumar, R.; Fox, M.P.; Brooks, D.R.; Riis, A.H.; Sorensen, H.T.; Rothman, K.J. Evaluation of Selection Bias in an Internet-based Study of Pregnancy Planners. Epidemiology 2016, 27, 98–104. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Galan, P.; Julia, C.; Castetbon, K.; Kesse-Guyot, E.; Hercberg, S. Assessment of response consistency and respective participant profiles in the Internet-based NutriNet-Santé Cohort. Am. J. Epidemiol. 2014, 179, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.G.; Maher, C.G.; Latimer, J.; McAuley, J.H. Feasibility of using short message service to collect pain outcomes in a low back pain clinical trial. Spine 2012, 37, 1151–1155. [Google Scholar] [CrossRef]
- Ramsetty, A.; Adams, C. Impact of the digital divide in the age of COVID-19. J. Am. Med. Inform. Assoc. 2020, 27, 1147–1148. [Google Scholar] [CrossRef]
- Rothwell, E.; Brassil, D.; Barton-Baxter, M.; Brownley, K.A.; Dickert, N.W.; Ford, D.E.; Kraft, S.A.; McCormick, J.B.; Wilfond, B.S. Informed consent: Old and new challenges in the context of the COVID-19 pandemic. J. Clin. Transl. Sci. 2021, 5, e105. [Google Scholar] [CrossRef]
- Schrauben, S.J.; Appel, L.; Rivera, E.; Lora, C.M.; Lash, J.P.; Chen, J.; Hamm, L.L.; Fink, J.C.; Go, A.S.; Townsend, R.R.; et al. Mobile Health (mHealth) Technology: Assessment of Availability, Acceptability, and Use in CKD. Am. J. Kidney Dis. 2021, 77, 941–950.e941. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, M.; Saunders, M.; Josephson, M.A.; Becker, Y.T.; Lee, C. Determinants of Frequent Internet Use in an Urban Kidney Transplant Population in the United States: Characterizing the Digital Divide. Prog. Transplant. 2015, 25, 9–17. [Google Scholar] [CrossRef]
- Bonner, A.; Gillespie, K.; Campbell, K.L.; Corones-Watkins, K.; Hayes, B.; Harvie, B.; Kelly, J.T.; Havas, K. Evaluating the prevalence and opportunity for technology use in chronic kidney disease patients: A cross-sectional study. BMC Nephrol. 2018, 19, 28. [Google Scholar] [CrossRef]
- Hussein, W.F.; Bennett, P.N.; Pace, S.; Chen, S.; Legg, V.; Atwal, J.; Sun, S.; Schiller, B. The Mobile Health Readiness of People Receiving In-Center Hemodialysis and Home Dialysis. Clin. J. Am. Soc. Nephrol. 2020, 16, 98–106. [Google Scholar] [CrossRef]
- Markanday, S.; Brennan, S.L.; Gould, H.; Pasco, J.A. Sex-differences in reasons for non-participation at recruitment: Geelong Osteoporosis Study. BMC Res. Notes 2013, 6, 104. [Google Scholar] [CrossRef]
- Wu, M.-J.; Zhao, K.; Fils-Aime, F. Response rates of online surveys in published research: A meta-analysis. Comput. Hum. Behav. Rep. 2022, 7, 100206. [Google Scholar] [CrossRef]
- Bexelius, C.; Merk, H.; Sandin, S.; Ekman, A.; Nyrén, O.; Kühlmann-Berenzon, S.; Linde, A.; Litton, J.E. SMS versus telephone interviews for epidemiological data collection: Feasibility study estimating influenza vaccination coverage in the Swedish population. Eur. J. Epidemiol. 2009, 24, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Capili, B.; Anastasi, J.K. Ethical Research and the Institutional Review Board: An Introduction. Am. J. Nurs. 2024, 124, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Millar, M.M.; Dillman, D.A. Improving Response to Web and Mixed-Mode Surveys. Public Opin. Q. 2011, 75, 249–269. [Google Scholar] [CrossRef]
- Keller, M.M.; Dolph, B.; Cavuoto, L.; Ranahan, M.; Feeley, T.H.; Kayler, L.K. Formative Usability of the KidneyTIME Online Live Donor Kidney Transplant Education Tool Among Transplant Candidates. Prog. Transplant. 2021, 31, 314–322. [Google Scholar] [CrossRef]
- Kind, A.J.; Jencks, S.; Brock, J.; Yu, M.; Bartels, C.; Ehlenbach, W.; Greenberg, C.; Smith, M. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: A retrospective cohort study. Ann. Intern. Med. 2014, 161, 765–774. [Google Scholar] [CrossRef]
- Singh, G.K. Area deprivation and widening inequalities in US mortality, 1969–1998. Am. J. Public Health 2003, 93, 1137–1143. [Google Scholar] [CrossRef]
- Chew, L.D.; Griffin, J.M.; Partin, M.R.; Noorbaloochi, S.; Grill, J.P.; Snyder, A.; Bradley, K.A.; Nugent, S.M.; Baines, A.D.; Vanryn, M. Validation of screening questions for limited health literacy in a large VA outpatient population. J. Gen. Intern. Med. 2008, 23, 561–566. [Google Scholar] [CrossRef]
- Beutel, M.E.; Brähler, E.; Wiltink, J.; Michal, M.; Klein, E.M.; Jünger, C.; Wild, P.S.; Münzel, T.; Blettner, M.; Lackner, K.; et al. Emotional and tangible social support in a German population-based sample: Development and validation of the Brief Social Support Scale (BS6). PLoS ONE 2017, 12, e0186516. [Google Scholar] [CrossRef]
- Natale, P.; Gutman, T.; Howell, M.; Dansie, K.; Hawley, C.M.; Cho, Y.; Viecelli, A.K.; Craig, J.C.; Jesudason, S.; Chapman, J.R.; et al. Recruitment and retention in clinical trials in chronic kidney disease: Report from national workshops with patients, caregivers and health professionals. Nephrol. Dial. Transplant. 2020, 35, 755–764. [Google Scholar] [CrossRef]
- Washington, V.; Franklin, J.B.; Huang, E.S.; Mega, J.L.; Abernethy, A.P. Diversity, Equity, and Inclusion in Clinical Research: A Path Toward Precision Health for Everyone. Clin. Pharmacol. Ther. 2023, 113, 575–584. [Google Scholar] [CrossRef]
- Rodrigue, J.R.; Cornell, D.L.; Lin, J.K.; Kaplan, B.; Howard, R.J. Increasing live donor kidney transplantation: A randomized controlled trial of a home-based educational intervention. Am. J. Transplant. 2007, 7, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Arriola, K.R.; Powell, C.L.; Thompson, N.J.; Perryman, J.P.; Basu, M. Living donor transplant education for African American patients with end-stage renal disease. Prog. Transplant. 2014, 24, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Boulware, L.E.; Ephraim, P.L.; Ameling, J.; Lewis-Boyer, L.; Rabb, H.; Greer, R.C.; Crews, D.C.; Jaar, B.G.; Auguste, P.; Purnell, T.S.; et al. Effectiveness of informational decision aids and a live donor financial assistance program on pursuit of live kidney transplants in African American hemodialysis patients. BMC Nephrol. 2018, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Barnieh, L.; McLaughlin, K.; Manns, B.J.; Klarenbach, S.; Yilmaz, S.; Taub, K.; Hemmelgarn, B.R.; Network, A.K.D. Evaluation of an education intervention to increase the pursuit of living kidney donation: A randomized controlled trial. Prog. Transplant. 2011, 21, 36–42. [Google Scholar] [CrossRef]
- Waterman, A.D.; Peipert, J.D. An Explore Transplant Group Randomized Controlled Education Trial to Increase Dialysis Patients’ Decision-Making and Pursuit of Transplantation. Prog. Transplant. 2018, 28, 174–183. [Google Scholar] [CrossRef]
- Waterman, A.D.; Peipert, J.D.; Cui, Y.; Beaumont, J.L.; Paiva, A.; Lipsey, A.F.; Anderson, C.S.; Robbins, M.L. Your Path to Transplant: A randomized controlled trial of a tailored expert system intervention to increase knowledge, attitudes, and pursuit of kidney transplant. Am. J. Transplant. 2021, 21, 1186–1196. [Google Scholar] [CrossRef]
- Patzer, R.E.; McPherson, L.; Basu, M.; Mohan, S.; Wolf, M.; Chiles, M.; Russell, A.; Gander, J.C.; Friedewald, J.J.; Ladner, D.; et al. Effect of the iChoose Kidney decision aid in improving knowledge about treatment options among transplant candidates: A randomized controlled trial. Am. J. Transplant. 2018, 18, 1954–1965. [Google Scholar] [CrossRef]
- Basu, M.; Petgrave-Nelson, L.; Smith, K.D.; Perryman, J.P.; Clark, K.; Pastan, S.O.; Pearson, T.C.; Larsen, C.P.; Paul, S.; Patzer, R.E. Transplant Center Patient Navigator and Access to Transplantation among High-Risk Population: A Randomized, Controlled Trial. Clin. J. Am. Soc. Nephrol. 2018, 13, 620–627. [Google Scholar] [CrossRef]
- Boulware, L.E.; Hill-Briggs, F.; Kraus, E.S.; Melancon, J.K.; Falcone, B.; Ephraim, P.L.; Jaar, B.G.; Gimenez, L.; Choi, M.; Senga, M.; et al. Effectiveness of educational and social worker interventions to activate patients’ discussion and pursuit of preemptive living donor kidney transplantation: A randomized controlled trial. Am. J. Kidney Dis. 2013, 61, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Sieverdes, J.C.; Mueller, M.; Nemeth, L.S.; Patel, S.; Baliga, P.K.; Treiber, F.A. A distance-based living donor kidney education program for Black wait-list candidates: A feasibility randomized trial. Clin. Transplant. 2021, 35, e14426. [Google Scholar] [CrossRef]
- Wesselman, H.; Ford, C.G.; Leyva, Y.; Li, X.; Chang, C.H.; Dew, M.A.; Kendall, K.; Croswell, E.; Pleis, J.R.; Ng, Y.H.; et al. Social Determinants of Health and Race Disparities in Kidney Transplant. Clin. J. Am. Soc. Nephrol. 2021, 16, 262–274. [Google Scholar] [CrossRef]
- Killian, A.C.; Shelton, B.; MacLennan, P.; McLeod, M.C.; Carter, A.; Reed, R.; Qu, H.; Orandi, B.; Kumar, V.; Sawinski, D.; et al. Evaluation of Community-Level Vulnerability and Racial Disparities in Living Donor Kidney Transplant. JAMA Surg. 2021, 156, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Snyder, J.J.; Matas, A.J.; Ellison, M.D.; Gill, J.S.; Kausz, A.T. Preemptive kidney transplantation: The advantage and the advantaged. J. Am. Soc. Nephrol. 2002, 13, 1358–1364. [Google Scholar] [CrossRef]
- Gordon, E.J.; Feinglass, J.; Carney, P.; Vera, K.; Olivero, M.; Black, A.; O’Connor, K.; MacLean, J.; Nichols, S.; Sageshima, J.; et al. A Culturally Targeted Website for Hispanics/Latinos About Living Kidney Donation and Transplantation: A Randomized Controlled Trial of Increased Knowledge. Transplantation 2016, 100, 1149–1160. [Google Scholar] [CrossRef]
- Smith, S.; Nie, J.; Noyes, K.; Keller, M.; Kayler, L. Technology access and use among kidney transplant candidates vulnerable to health disparities. Clin. Transplant. 2020, 34, e14012. [Google Scholar] [CrossRef]
- Cassidy, R. Attitudes Towards Digital Health Technology: Introducing the Digital Health Scale. medRxiv 2021. [Google Scholar] [CrossRef]
- Mahajan, S.; Lu, Y.; Spatz, E.S.; Nasir, K.; Krumholz, H.M. Trends and Predictors of Use of Digital Health Technology in the United States. Am. J. Med. 2021, 134, 129–134. [Google Scholar] [CrossRef]
- Kayler, L.K.; Nie, J.; Solbu, A.; Keller, M.; Handmacher, M. Use of Educational Animated Videos by Kidney Transplant Seekers and Social Network Members in a Randomized Trial (KidneyTIME). Kidney Dial. 2025, 5, 4. [Google Scholar] [CrossRef]
- Millar, M.; Dillman, D. Encouraging Survey Response via Smartphones. Surv. Pract. 2012, 5, 1–6. [Google Scholar] [CrossRef]
- Holtom, B.; Baruch, Y.; Aguinis, H.; A Ballinger, G. Survey response rates: Trends and a validity assessment framework. Hum. Relat. 2022, 75, 1560–1584. [Google Scholar] [CrossRef]
- Bosnjak, M.; Neubarth, W.; Couper, M.P.; Bandilla, W.; Kaczmirek, L. Prenotification in web-based access panel surveys: The influence of mobile text messaging versus e-mail on response rates and sample composition. Soc. Sci. Comput. Rev. 2008, 26, 213–223. [Google Scholar] [CrossRef]
- Cabrera-Álvarez, P.; Lynn, P. Text Messages to Facilitate the Transition to Web-First Sequential Mixed-Mode Designs in Longitudinal Surveys. J. Surv. Stat. Methodol. 2024, 12, 651–673. [Google Scholar] [CrossRef]
- Millar, M.M.; Elena, J.W.; Gallicchio, L.; Edwards, S.L.; Carter, M.E.; Herget, K.A.; Sweeney, C. The feasibility of web surveys for obtaining patient-reported outcomes from cancer survivors: A randomized experiment comparing survey modes and brochure enclosures. BMC Med. Res. Methodol. 2019, 19, 208. [Google Scholar] [CrossRef] [PubMed]
- Millar, M.M.; Olson, L.M.; VanBuren, J.M.; Richards, R.; Pollack, M.M.; Holubkov, R.; Berg, R.A.; Carcillo, J.A.; McQuillen, P.S.; Meert, K.L.; et al. Incentive delivery timing and follow-up survey completion in a prospective cohort study of injured children: A randomized experiment comparing prepaid and postpaid incentives. BMC Med. Res. Methodol. 2021, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.; Queiroga, A.C.; Freitas, A.I.; Lorthe, E.; Santos, A.C.; Moreira, C.; Barros, H. Completeness of Retention Data and Determinants of Attrition in Birth Cohorts of Very Preterm Infants: A Systematic Review. Front. Pediatr. 2021, 9, 529733. [Google Scholar] [CrossRef]
- Naz-McLean, S.; Kim, A.; Zimmer, A.; Laibinis, H.; Lapan, J.; Tyman, P.; Hung, J.; Kelly, C.; Nagireddy, H.; Narayanan-Pandit, S.; et al. Feasibility and lessons learned on remote trial implementation from TestBoston, a fully remote, longitudinal, large-scale COVID-19 surveillance study. PLoS ONE 2022, 17, e0269127. [Google Scholar] [CrossRef]
LDKT Knowledge: Living kidney donors must go on a special diet for the rest of their lives. Living kidney donors will have to take medications for the rest of their lives. Kidneys from living donors last longer than kidneys from deceased donors. A living donor who needs a kidney transplant later in life is given priority for transplantation. Even if your living donor doesn’t match you, they can still help you get a transplant by being part of a kidney exchange. A living donor must use their insurance or pay out of pocket for the donation surgery. A living donor can decide not to donate at any time. Living donors must be under 50 years old. Female living donors have trouble getting pregnant. Most living donors will develop kidney disease later in life. Living donors have a shorter life expectancy because of donation. There is a program that will pay for some of the living donor’s costs (travel, meals, and lodging). |
LDKT Concerns: I am concerned that the costs of donating a kidney would be too high. I am concerned that the evaluation process to be a living donor is too complicated. I am concerned that the living donor will not be able to stay healthy with only one kidney. I am concerned that something bad could happen to the living donor. I am concerned people in my life may not be healthy enough to donate a kidney to me. There’s no point in finding a living kidney donor because I can get a kidney from someone who has passed away. |
LDKT Readiness: I’m not thinking about living donors. I’m beginning to think about living donors. I’m seriously considering living donors. I have someone willing to be evaluated as a possible donor. I have someone who is approved to be a donor. |
Characteristics | Trial Sample (n = 422) |
---|---|
Pre-evaluation phase at study entry | 51% (214) |
Post-evaluation phase at study entry | 49% (208) |
Enrolled using email | 65% (274) |
Enrolled using text | 35% (148) |
Completed baseline survey with phone | 67% (263) |
Age, years mean ± SD | 54 ± 14 |
Sex, Male | 57% (241) |
Black or African American | 36% (151) |
non-Hispanic White | 52% (220) |
Hispanic or Latino | 5% (21) |
Other race or ethnicity | 7% (30) |
Education, less than college degree | 61% (256) |
Single adult household | 27% (114) |
Prior kidney transplant | 12% (51) |
Chronic dialysis, none | 25% (104) |
Chronic dialysis < 1 year | 31% (130) |
Chronic dialysis 1–3 years | 25% (106) |
Chronic dialysis > 3 years | 19% (82) |
EPTS a, continuous median (25th, 75th percentile) | 42 (21, 68) |
Medicaid, State or VA insurance | 51% (213) |
Employed | 22% (93) |
Total annual household income ≤ $30,000 | 44% (187) |
Area Deprivation Index, mean ± SD | 74 ± 23 |
Number of close friends or relatives None | 2% (10) |
Number of close friends or relatives 1–3 | 46% (193) |
Number of close friends or relatives 4+ | 52% (216) |
Has working computer | 68% (285) |
Has working internet-capable cell phone | 95% (396) |
Sends or receives text messages | 97% (408) |
Uses email | 91% (380) |
Watches videos online | 89% (372) |
Uses social media | 79% (331) |
Has active Facebook account. | 77% (321) |
Health Literacy median (25th, 75th percentile) | 7 (6, 8) |
Social Supportc median (25th, 75th percentile) | 20 (15, 23) |
Characteristics | Enrolled | |||
---|---|---|---|---|
Crude Model | Adjusted Model | |||
OR (95% CI) | p Value | aOR (95% CI) | p Value | |
Pre-evaluation phase (post-evaluation) | 1.03 (0.06, 16.56) | 0.984 | - | - |
Enrolled using text (email) | 0.75 (0.55, 1.02) | 0.069 | - | - |
Age, decreasing by year | 1.02 (1.01, 1.03) | <0.001 | 1.02 (1.01, 1.03) | <0.001 |
Sex, Male (Female) | 0.74 (0.56, 0.97) | 0.029 | 0.77 (0.58, 1.01) | 0.060 |
Race, Black or African American (other) | 0.76 (0.57, 1.01) | 0.054 | - | - |
Prior kidney transplant | 1.01 (0.62, 1.65) | 0.960 | - | - |
Dialysis duration < 1 year (none) | 0.85 (0.65, 1.12) | 0.248 | - | - |
Dialysis duration 1–3 years (none) | 1.58 (0.44, 5.64) | 0.481 | ||
Dialysis duration > 3 years (none) | 1.15 (0.88, 1.50) | 0.318 | ||
Estimated post-transplant survival > median | 0.77 (0.59, 1.01) | 0.065 | - | - |
Medicaid, State or VA insurance | 0.94 (0.71, 1.24) | 0.643 | - | - |
Area deprivation index, increasing | 1.00 (1.00, 1.01) | 0.820 | - | - |
Characteristics | Early Consent | |
---|---|---|
OR (95% CI) | p Value | |
Pre-evaluation phase (post-evaluation) | 2.29 (0.82, 6.46) | 0.116 |
Enrolled using text (email) | 2.69 (1.22, 5.94) | 0.014 |
Completed baseline survey with phone (not phone) | 1.27 (0.52, 3.13) | 0.602 |
Age, decreasing by year | 0.98 (0.94, 1.01) | 0.179 |
Sex, Male (Female) | 1.25 (0.56, 2.80) | 0.590 |
Race, Black or African American (other) | 1.29 (0.58, 2.87) | 0.527 |
Education, less than college degree (college) | 0.64 (0.29, 1.41) | 0.265 |
Single adult household | 0.56 (0.25, 0.80) | 0.170 |
Prior kidney transplant | 2.55 (0.90, 7.20) | 0.078 |
Dialysis duration < 1 year (none) | 0.82 (0.33, 1.99) | 0.653 |
Dialysis duration 1–3 years (none) | 0.89 (0.35, 2.27) | 0.799 |
Dialysis duration > 3 years (none) | 1.96 (0.82, 4.68) | 0.130 |
Estimated post-transplant survival (EPTS) > median | 2.34 (0.98, 5.56) | 0.054 |
Medicaid, State or Veterans insurance | 1.72 (0.77, 3.85) | 0.189 |
Employment status | ||
Retired (full or part-time job) | 1.37 (0.43, 4.34) | 0.591 |
Disability (full or part-time job) | 1.13 (0.38, 3.36) | 0.824 |
Unemployed (full or part-time job) | 1.39 (0.25, 7.56) | 0.707 |
Total annual household income ≤ $30,000 | 1.46 (0.64, 3.33) | 0.373 |
Number of close friends or relatives < 4 (4+) | 1.08 (0.49, 2.40) | 0.842 |
Has working computer | 1.05 (0.45, 2.48) | 0.911 |
Watches videos online | 3.29 (0.44, 24.83) | 0.249 |
Uses social media | 1.11 (0.41, 3.04) | 0.834 |
Has active Facebook account | 1.02 (0.40, 2.62) | 0.962 |
Low Health Literacy (<25th percentile) | 0.55 (0.19, 1.64) | 0.284 |
Low Basic Social Support (<25th percentile) | 0.59 (0.20, 1.77) | 0.346 |
Characteristics | Survey Completed Month 1 | Survey Completed Month 6 | Survey Completed Month 12 | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | Crude OR (95% CI) | p Value | Adjusted aOR (95% CI) | p Value | |
Intervention (control) | 0.70 (0.46, 1.06) | 0.090 | 1.18 (0.74, 1.88) | 0.491 | 0.99 (0.54, 1.81) | 0.960 | - | - |
Pre-evaluation phase (post-evaluation) | 0.83 (0.55, 1.25) | 0.370 | 0.96 (0.60, 1.54) | 0.870 | 0.99 (0.54, 1.83) | 0.987 | - | - |
Enrolled using text (email) | 0.66 (0.42, 1.01) | 0.056 | 0.98 (0.60, 1.59) | 0.930 | 0.49 (0.26, 0.92) | 0.027 | 0.55 (0.27, 1.13) | 0.104 |
Age, decreasing by year | 1.00 (0.99, 1.02) | 0.666 | 0.99 (0.98, 1.01) | 0.333 | 0.98 (0.95, 0.99) | 0.036 | 0.99 (0.97, 1.02) | 0.678 |
Sex, Male (Female) | 0.95 (0.62, 1.44) | 0.799 | 0.78 (0.49, 1.25) | 0.306 | 0.50 (0.27, 0.95) | 0.033 | 0.45 (0.22, 0.92) | 0.028 |
Black or African American (other) | 0.68 (0.44, 1.04) | 0.076 | 0.55 (0.34, 0.89) | 0.015 | 0.36 (0.19, 0.68) | 0.002 | 0.37 (0.18, 0.78) | 0.008 |
Less than college degree (college) | 0.72 (0.47, 1.11) | 0.138 | 0.92 (0.57, 1.49) | 0.736 | 0.70 (0.36, 1.33) | 0.275 | - | - |
Single adult household | 0.73 (0.46, 1.16) | 0.179 | 0.76 (0.46, 1.27) | 0.291 | 0.82 (0.42, 1.62) | 0.572 | - | - |
Prior kidney transplant | 1.08 (0.57, 2.04) | 0.822 | 0.77 (0.35, 1.68) | 0.509 | 1.73 (0.71, 4.25) | 0.231 | - | - |
Dialysis duration <1 year (none) Dialysis duration 1–3 years (none) Dialysis duration >3 years (none) | 1.12 (0.65, 1.95) 1.34 (0.74, 2.43) 1.04 (0.56, 1.94) | 0.681 0.332 0.896 | 1.27 (0.68, 2.38) 0.99 (0.51, 1.92) 0.70 (0.35, 1.38) | 0.449 0.979 0.301 | 0.64 (0.28, 1.44) 0.80 (0.32, 2.03) 0.30 (0.12, 0.75) | 0.279 0.638 0.010 | 0.88 (0.35, 2.21) 1.40 (0.49, 4.05) 0.46 (0.16, 1.34) | 0.778 0.532 0.154 |
EPTS, increasing | 1.00 (0.99, 1.01) | 0.997 | 1.01 (1.00, 1.02) | 0.162 | 1.01 (0.99, 1.02) | 0.111 | - | - |
Medicaid, State or Veterans insurance | 1.04 (0.69, 1.58) | 0.838 | 0.81 (0.51, 1.30) | 0.383 | 0.37 (0.19, 0.71) | 0.003 | 0.52 (0.23, 1.19) | 0.120 |
Employment status Retired (full or part-time job) Disability (full or part-time job) Unemployed (full or part-time job) | 0.96 (0.53, 1.75) 0.90 (0.53, 1.55) 0.65 (0.26, 1.59) | 0.902 0.713 0.342 | 0.68 (0.34, 1.35) 0.87 (0.46, 1.66) 0.41 (0.16, 1.08) | 0.264 0.679 0.072 | 2.31 (0.89, 5.99) 0.75 (0.34, 1.65) 0.45 (0.12, 1.67) | 0.084 0.473 0.230 | - | - |
Total annual household income ≤ $30,000 | 0.71 (0.47, 1.08) | 0.112 | 0.90 (0.56, 1.43) | 0.652 | 0.39 (0.21, 0.73) | 0.003 | 0.70 (0.31, 1.59) | 0.397 |
Number close friends or relatives < 4 (4+) | 1.05 (0.69, 1.59) | 0.822 | 0.78 (0.49, 1.25) | 0.299 | 0.52 (0.28, 0.96) | 0.036 | 0.60 (0.29, 1.22) | 0.155 |
Has working computer | 1.33 (0.85, 2.07) | 0.207 | 1.49 (0.92, 2.43) | 0.107 | 1.30 (0.68, 2.50) | 0.434 | - | - |
Watches videos online | 1.72 (0.90, 3.30) | 0.104 | 1.34 (0.67, 2.71) | 0.412 | 1.70 (0.60, 4.75) | 0.316 | - | - |
Uses social media | 1.23 (0.74, 2.06) | 0.418 | 1.34 (0.75, 2.39) | 0.320 | 2.11 (0.93, 4.77) | 0.073 | - | - |
Has active Facebook account | 1.30 (0.80, 2.11) | 0.298 | 1.72 (0.99, 3.01) | 0.056 | 1.32 (0.61, 2.87) | 0.483 | - | - |
Low Health Literacy <25th percentile | 0.72 (0.44, 1.17) | 0.182 | 1.07 (0.62, 1.86) | 0.807 | 0.53 (0.26, 1.07) | 0.075 | - | - |
Low Basic Social Support <25th percentile | 1.06 (0.66, 1.71) | 0.808 | 0.95 (0.55, 1.61) | 0.839 | 1.45 (0.69, 3.06) | 0.324 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendel, R.; Nie, J.; Keller, M.; Aly, Y.; Sandhu, H.; Handmacher, M.; Kayler, L. Digital Enrollment and Survey Response of Diverse Kidney Transplant Seekers in a Remote Trial (KidneyTIME): An Observational Study. Kidney Dial. 2025, 5, 19. https://doi.org/10.3390/kidneydial5020019
Mendel R, Nie J, Keller M, Aly Y, Sandhu H, Handmacher M, Kayler L. Digital Enrollment and Survey Response of Diverse Kidney Transplant Seekers in a Remote Trial (KidneyTIME): An Observational Study. Kidney and Dialysis. 2025; 5(2):19. https://doi.org/10.3390/kidneydial5020019
Chicago/Turabian StyleMendel, Rhys, Jing Nie, Maria Keller, Yasmin Aly, Harneet Sandhu, Matthew Handmacher, and Liise Kayler. 2025. "Digital Enrollment and Survey Response of Diverse Kidney Transplant Seekers in a Remote Trial (KidneyTIME): An Observational Study" Kidney and Dialysis 5, no. 2: 19. https://doi.org/10.3390/kidneydial5020019
APA StyleMendel, R., Nie, J., Keller, M., Aly, Y., Sandhu, H., Handmacher, M., & Kayler, L. (2025). Digital Enrollment and Survey Response of Diverse Kidney Transplant Seekers in a Remote Trial (KidneyTIME): An Observational Study. Kidney and Dialysis, 5(2), 19. https://doi.org/10.3390/kidneydial5020019