A Case Definition of a New Disease: A Review of the US Working Definition (USG) and 2024 NASEM Definition for Long COVID
Abstract
1. Introduction
2. Methods, Scope and Rationale
3. Results and Outcomes
3.1. US Working Definition of Long COVID (USG)
“Long COVID is broadly defined as signs, symptoms, and conditions that continue or develop after initial COVID-19 or SARS-CoV-2 infection. The signs, symptoms, and conditions are present four weeks or more after the initial phase of infection. Long COVID may be multisystemic; and may present with a relapsing–remitting pattern and progression or worsening over time, with the possibility of severe and life-threatening events even months or years after infection. Long COVID is not one condition. Long COVID represents many potentially overlapping entities, likely with different biological causes and different sets of risk factors and outcomes.”
3.2. Observations on the US Working Definition of Long COVID (USG)
“Long COVID is broadly defined as signs, symptoms, and conditions that continue or develop after initial COVID-19 or SARS-CoV-2 infection.” (USG definition first sentence)
“The signs, symptoms, and conditions are present four weeks or more after the initial phase of infection.” (second sentence of the USG definition)
“Long COVID may be multisystemic; and may present with a relapsing–remitting pattern and progression or worsening over time, with the possibility of severe and life-threatening events even months or years after infection.” (third sentence of the USG definition)
“Long COVID is not one condition.” (fourth sentence of the USG definition)
“Long COVID represents many potentially overlapping entities, likely with different biological causes and different sets of risk factors and outcomes.” (fifth sentence of the USG definition)
3.3. Long COVID: Pressing Issues to Address
3.3.1. Tests and Diagnostics: Recognize Issues Around Access and Quality of the Tests Available
3.3.2. Concerns over Excessively Narrow Definitions
- “Hasty” diagnoses, namely, diagnoses made too fast, especially in a time of crisis like a pandemic, in the context of emergency medicine, and when facing imperfect scientific knowledge about an emerging disease entity [6].
- Overly restrictive, specific or narrow clinical case definitions, for example, based on a few symptoms only [84]. Overly narrow definitions could exclude people from a diagnosis of Long COVID and any potential diagnostics or treatments.
- Overly “firm”, inflexible classifications in sub-types (such as phenotypes and endotypes), which could constrain any treatment options for patients and lead to imprecise clinical case definitions, when (i) knowledge about Long COVID remains incomplete; (ii) each patient can face their own specific clinical challenges, which might not necessarily fit into predetermined classifications; (iii) the course of illness can be fluid, relapsing-remitting and progressive (e.g., the clinical presentation of patients might change in time) [19,45]; and (iv) not everyone with Long COVID has access to adequate investigations to prove they have a specific manifestation of the disease entity (Section 3.3.1).
3.3.3. Heterogeneous Manifestations and Personalized Approaches
3.3.4. Hospitalization and Disease Severity
3.3.5. Early Treatment
3.3.6. Long COVID as a Framework to Approach Novelty and Associated Conditions
3.3.7. Differential Diagnosis and Diagnosis of Exclusion
3.3.8. Long-Term Sequelae from Infections Including Cancer and Neurodegenerative Conditions; SARS; Existing Knowledge
3.3.9. Omicron and Reinfections
3.3.10. Long COVID in Children and COVID-19 in Pregnancy
3.3.11. Advocacy and Patient-Driven Research
3.4. 2024 NASEM Long COVID Definition
3.5. Observations on the 2024 NASEM Long COVID Definition
“Long COVID (LC) is an infection-associated chronic condition (IACC) that occurs after SARS-CoV-2 infection and is present for at least 3 months as a continuous, relapsing and remitting, or progressive disease state that affects one or more organ systems.” (NASEM definition’s first sentence)
“[Long COVID] manifests in multiple ways. A complete enumeration of possible signs, symptoms, and diagnosable conditions of [Long COVID] would have hundreds of entries. Any organ system can be involved, and [Long COVID] patients can present with single or multiple symptoms, such as shortness of breath, cough, persistent fatigue, post-exertional malaise, difficulty concentrating, memory changes, recurring headache, lightheadedness, fast heart rate, sleep disturbance, problems with taste or smell, bloating, constipation, and diarrhea.” (NASEM definition’s second sentence)
“[Long COVID patients can present with] single or multiple diagnosable conditions, such as interstitial lung disease and hypoxemia, cardiovascular disease and arrhythmias, cognitive impairment, mood disorders, anxiety, migraine, stroke, blood clots, chronic kidney disease, postural orthostatic tachycardia syndrome (POTS) and other forms of dysautonomia, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), mast cell activation syndrome (MCAS), fibromyalgia, connective tissue diseases, hyperlipidemia, diabetes, and autoimmune disorders such as lupus, rheumatoid arthritis, and Sjogren’s syndrome.” (NASEM definition’s second sentence, continued)
“[Long COVID] can follow asymptomatic, mild, or severe SARS-CoV-2 infection. Previous infections may have been recognized or unrecognized.” (NASEM definition’s first important feature)
“[Long COVID] can be continuous from the time of acute SARS-CoV-2 infection or can be delayed in onset for weeks or months following what had appeared to be full recovery from acute infection.” (NASEM definition’s second important feature)
“[Long COVID] can affect children and adults, regardless of health, disability, or socioeconomic status, age, sex, gender, sexual orientation, race, ethnicity, or geographic location.” (NASEM definition’s third important feature)
“[Long COVID] can exacerbate pre-existing health conditions or present as new conditions.” (NASEM definition’s fourth important feature)
“[Long COVID] can range from mild to severe. It can resolve over a period of months or can persist for months or years.” (NASEM definition’s fifth important feature)
“[Long COVID] can be diagnosed on clinical grounds. No biomarker currently available demonstrates conclusively the presence of [Long COVID].” (NASEM definition’s sixth important feature)
“[Long COVID] can impair individuals’ ability to work, attend school, take care of family, and care for themselves. It can have a profound emotional and physical impact on patients and their families and caregivers.” (NASEM definition’s seventh important feature)
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIDS | Acquired Immunodeficiency Syndrome |
COVID-19 | Coronavirus Disease 2019 |
HIV | Human Immunodeficiency Virus |
LitCovid | A literature hub for tracking up-to-date scientific information about the 2019 Novel Coronavirus https://www.ncbi.nlm.nih.gov/research/coronavirus/ |
ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome |
NASEM | US National Academies of Sciences, Engineering, and Medicine |
PCR | Polymerase Chain Reaction |
USG | US Government Working Definition of Long COVID |
RAT | Rapid Antigen Test |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
VOC | Variant of Concern |
WHO | World Health Organization |
ICU | Intensive Care Unit |
FDG-PET scan | (Whole-Body) 18-Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography (PET) CT |
MRI | Magnetic Resonance Imaging |
References
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Sig Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef]
- WHO. 2025 COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 16 June 2025).
- Economist 2022 The Pandemic’s True Death Toll. Available online: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates?fsrc=core-app-economist?utm_medium=social-media.content.np&utm_source=twitter&utm_campaign=editorial-social&utm_content=discovery.content (accessed on 16 June 2025).
- COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef] [PubMed]
- Perego, E. Long COVID Perspectives: History, paradigm shifts, global challenges. SocArXiv 2023. [Google Scholar] [CrossRef]
- Perego, E.; Callard, F.; Stras, L.; Melville-Jóhannesson, B.; Pope, R.; Alwan, N. Why the patient made term Long COVID is needed. Wellcome Open Res. 2020, 5, 224. [Google Scholar] [CrossRef]
- Callard, F.; Perego, E. How and why patients made Long COVID. Soc. Sci. Med. 2021, 268, 113426. [Google Scholar] [CrossRef]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023, 23, 618–634. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Dennis, A.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Eichert, N.; Mouchti, S.; Pansini, M.; Roca-Fernandez, A.; Tho-maides-Brears; et al. Multi-organ impairment and long COVID: A 1-year prospective, longitudinal cohort study. J. R. Soc. Med. 2023, 116, 97–112. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Sivan, M.; Perlowski, A.; Nikolich, J.Ž. Long COVID: A clinical update. Lancet 2024, 404, 707–724. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Davis, H.; McCorkell, L.; Soares, L.; Wulf-Hanson, S.; Iwasaki, A.; Topol, E.J. Long COVID science, research and policy. Nat. Med. 2024, 30, 2148–2164. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2023 Tedros Adhanom Ghebreyesus 2023 from the WHO Account. Twitter/X. 26 April 2023. “An Estimated 1 in 10 Infections Results in Post #COVID19 Condition, Suggesting that Hundreds of Millions of People will Need Longer-Term Care”. Available online: https://twitter.com/WHO/status/1651227079684358151?t=yN_8PTU7Zf8whIqcktFBFQ&s=19 (accessed on 10 June 2025).
- Perego, E. 2025 ME/CFS care must be grounded in lived experience and biomedical research. BMJ 2025, 389, r977. [Google Scholar]
- Perego, E.; Callard, F. Patient-made Long COVID changed COVID-19 (and the production of science, too). SocArXiv 2021. [Google Scholar] [CrossRef]
- Perego, E. Long COVID: The critical role of patient advocacy-research in disease recognition. In Long COVID and Society: International Perspectives; Lupton, D., Ed.; Palgrave: London, UK, 2025; in press. [Google Scholar]
- Turner, M.; Beckwith, H.; Spratt, T.; Vallejos, E.P.; Coughlan, B. The #longcovid revolution: A reflexive thematic analysis. Soc. Sci. Med. 2023, 333, 116130. [Google Scholar] [CrossRef]
- NASEM 2024 A Long COVID Definition|National Academies. Available online: https://nap.nationalacademies.org/catalog/27768/a-long-covid-definition-a-chronic-systemic-disease-state-with (accessed on 16 June 2025).
- Ely, E.W.; Brown, L.M.; Fineberg, H.V.; National Academies of Sciences, Engineering, and Medicine Committee on Examining the Working Definition for Long COVID. Long COVID Defined. N. Engl. J. Med. 2024, 391, 1746–1753. [Google Scholar] [CrossRef]
- Krishnan, J.A.; Cao, B.; Chotirmall, S.H.; Ely, E.W.; Openshaw, P.; Roche, N.; Waterer, G. Using the 2024 NASEM Definition of Long COVID: Implications for Pulmonary and Critical Care Medicine. Am. J. Respir. Crit. Care Med. 2025, 211, 391–1396. [Google Scholar] [CrossRef]
- NASEM 2023 Examining the Working Definition for Long COVID|National Academies. Available online: https://www.nationalacademies.org/our-work/examining-the-working-definition-for-long-covid (accessed on 23 June 2023).
- Perego, E. Observations on the US working definition for Long COVID as of May 2023. SocArXiv 2023. [Google Scholar] [CrossRef]
- Inui, S.; Fujikawa, A.; Jitsu, M.; Kunishima, N.; Watanabe, S.; Suzuki, Y.; Umeda, S.; Uwabe, Y.; Chest, C.T. Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19). Radiol. Cardiothorac. Imaging 2020, 2, e200110. [Google Scholar] [CrossRef]
- Mahaletchumy, T.; Muhamad, M.; Mohammad Kazmin, N.E.; Kori, N.; Periyasamy, P. Pulmonary Embolism in an Asymptomatic COVID-19 Patient Detected on Ventilation/Perfusion SPECT/CT. Clin. Nucl. Med. 2021, 46, e360–e362. [Google Scholar] [CrossRef] [PubMed]
- Evbuomwan, O.; Endres, W.; Tebeila, T.; Engelbrecht, G. Identification and Follow-up of COVID-19 Related Matching Ventilation and Perfusion Defects on Functional Imaging Using VQ SPECT/CT. Nucl. Med. Mol. Imaging 2023, 57, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Assaf, G.; Davis, H.; McCorkell, L.; Wei, H.; Brooke, O.; Akrami, A.; Low, R.; Mercier, J.; Adetutu, A. COVID-19 Prolonged Symptoms Survey—Analysis Report. 2020. Available online: https://patientresearchcovid19.com/research/report-1/ (accessed on 19 June 2025).
- Alwan, N.A.; Johnson, L. Defining long COVID: Going back to the start. Med 2021, 2, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infect. Dis. 2021, 21, 187. [Google Scholar] [CrossRef]
- García-Abellán, J.; Padilla, S.; Fernández-González, M.; García, J.A.; Agulló, V.; Andreo, M.; Ruiz, S.; Galiana, A.; Gutiérrez, F.; Masiá, M. Antibody Response to SARS-CoV-2 is Associated with Long-term Clinical Outcome in Patients with COVID-19: A Longitudinal Study. J. Clin. Immunol. 2021, 41, 1490–1501. [Google Scholar] [CrossRef]
- Liu, W.; Russell, R.M.; Bibollet-Ruche, F.; Skelly, A.N.; Sherrill-Mix, S.; Freeman, D.A.; Stoltz, R.; Lindemuth, E.; Lee, F.H.; Sterrett, S.; et al. Predictors of Nonseroconversion after SARS-CoV-2 Infection. Emerg. Infect. Dis. 2021, 27, 2454–2458. [Google Scholar] [CrossRef]
- Orban, Z.S.; Visvabharathy, L.; Perez Giraldo, G.S.; Jimenez, M.; Koralnik, I.J. SARS-CoV-2-Specific Immune Responses in Patients With Postviral Syndrome After Suspected COVID-19. Neurol. Neuroimmunol. Neuroinflamm 2023, 10, e200159. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021, 110, 914–921. [Google Scholar] [CrossRef]
- Buonsenso, D.; Di Giuda, D.; Sigfrid, L.; Pizzuto, D.A.; Di Sante, G.; De Rose, C.; Lazzareschi, I.; Sali, M.; Baldi, F.; Chieffo, D.P.R.; et al. Evidence of lung perfusion defects and ongoing inflammation in an adolescent with post-acute sequelae of SARS-CoV-2 infection. Lancet Child Adolesc. Health 2021, 5, 677–680. [Google Scholar] [CrossRef]
- Del Nonno, F.; Colombo, D.; Nardacci, R.; Falasca, L. Fatal pulmonary arterial thrombosis in a COVID-19 patient, with asymptomatic history, occurred after swab negativization. Thromb. J. 2021, 19, 1. [Google Scholar] [CrossRef]
- Hagiwara, J.; Bunya, N.; Harada, K.; Nakase, H.; Narimatsu, E. 2023 Fatal Gastrointestinal Disorders Due to COVID-19: A Case Series. Cureus 2023, 15, e40286. [Google Scholar] [PubMed]
- Huang, L.; Li, X.; Gu, X.; Zhang, H.; Ren, L.; Guo, L.; Liu, M.; Wang, Y.; Cui, D.; Wang, Y.; et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: A longitudinal cohort study. Lancet Respir. Med. 2022, 10, 863–876. [Google Scholar] [CrossRef] [PubMed]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long COVID among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef] [PubMed]
- Perego, E.; Callard, F.; Stras, L.; Melville-Jóhannesson, B.; Pope, R.; Alwan, N. Why we need to keep using the patient made term Long COVID. BMJ 2020. Available online: https://blogs.bmj.com/bmj/2020/10/01/why-we-need-to-keep-using-the-patient-made-term-long-covid/ (accessed on 22 June 2025).
- Olivia, F.; Jennifer, L.; Mangala, R.; Brandon, S.; Peter, M.; Manuel, H.; Samuel, Y.; Laura, P.; Shah Manish, A. Long COVID in Cancer: A Matched Cohort Study of 1-year Mortality and Long COVID Prevalence Among Patients With Cancer Who Survived an Initial Severe SARS-CoV-2 Infection. Am. J. Clin. Oncol. 2023, 46, 300–305. [Google Scholar] [CrossRef]
- Sullivan, D.L.; Goddard, K.; Kurth, N.K.; Hall, J.P. “I’m in Hell …”: Experiences of Unmet Health Care Needs Among People with Pre-Existing Disability and Long COVID. J. Health Care Poor Underserved 2025, 36, 572–589. [Google Scholar] [CrossRef]
- Munblit, D.; O’Hara, M.E.; Akrami, A.; Perego, E.; Olliaro, P.; Needham, D.M. Long COVID: Aiming for a consensus. Lancet Respir. Med. 2022, 10, 632–634. [Google Scholar] [CrossRef]
- Touré, A.; Donamou, J.; Camara, A.; Dramé, B.; BAH, O. Post-COVID-19 Late Pulmonary Embolism in a Young Woman about a Case. Open J. Emerg. Med. 2020, 8, 79–85. [Google Scholar] [CrossRef]
- Tu, T.M.; Seet, C.Y.H.; Koh, J.S.; Tham, C.H.; Chiew, H.J.; De, L.J.A.; Chua, C.Y.K.; Hui, A.C.; Tan, S.S.Y.; Vasoo, S.S.; et al. Acute Ischemic Stroke During the Convalescent Phase of Asymptomatic COVID-2019 Infection in Men. JAMA Netw. Open 2021, 4, e217498. [Google Scholar] [CrossRef]
- Sadiq, A.M.; Hassanali, Z.R.; Nziku, E.B.; Sadiq, A.M.; Dekker, M.C.J. Long COVID? Fatal case report of ischemic stroke and pulmonary embolism post COVID-19 infection. Rad. Case Rep. 2023, 18, 1913–1917. [Google Scholar] [CrossRef]
- Ghenu, M.I.; Manea, M.M.; Timofte, D.; Balcangiu-Stroescu, A.E.; Ionescu, D.; Tulin, R.; Ciornei, M.C.; Dragoş, D. Critical Damage of Lung Parenchyma Complicated with Massive Pneumothorax in COVID-19 Pneumonia. Clin. Med. Insights Case Rep. 2023, 16, 11795476231175644. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.P.; Cisewski, J.A.; Sutton, P. Identification of Deaths with Post-Acute Sequelae of COVID-19 Identified from Death Certificate Literal Text: United States, January 1, 2020–June 30, 2022. 2022. Available online: https://stacks.cdc.gov/view/cdc/121968 (accessed on 6 December 2023).
- Bowe, B.; Xie, Y.; Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023, 29, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- DeVries, A.; Shambhu, S.; Sloop, S.; Overhage, J.M. One-Year Adverse Outcomes Among US Adults With Post–COVID-19 Condition vs Those Without COVID-19 in a Large Commercial Insurance Database. JAMA Health Forum. 2023, 4, e230010. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.F.; Mathur, S.; Zhang, R.; Yan, V.K.C.; Lai, F.T.T.; Chui, C.S.L.; Li, X.; Wong, C.K.H.; Chan, E.W.Y.; Yiu, K.H.; et al. Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: A prospective cohort in UK Biobank. Cardiovasc. Res. 2023, 119, 1718–1727. [Google Scholar] [CrossRef]
- Cai, M.; Xie, Y.; Topol, E.J.; Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 2024, 30, 1564–1573. [Google Scholar] [CrossRef]
- García-Ortiz, H.; Barajas-Olmos, F.M.; Contreras-Cubas, C.; Martínez-Hernández, A.; Orozco, L. From genomics to precision medicine in type 2 diabetes. Gac. Med. Mex. 2025, 161, 3–8. [Google Scholar] [CrossRef]
- Lang, C.; Jaksch, P.; Hoda, M.A.; Lang, G.; Staudinger, T.; Tschernko, E.; Zapletal, B.; Geleff, S.; Prosch, H.; Gawish, R.; et al. Lung transplantation for COVID-19-associated acute respiratory distress syndrome in a PCR-positive patient. Lancet Respir. Med. 2020, 8, 1057–1060. [Google Scholar] [CrossRef]
- Goldman, I.A.; Ye, K.; Scheinfeld, M.H. Lower-extremity Arterial Thrombosis Associated with COVID-19 Is Characterized by Greater Thrombus Burden and Increased Rate of Amputation and Death. Radiology 2020, 297, E263–E269. [Google Scholar] [CrossRef]
- Peter, R.S.; Nieters, A.; Göpel, S.; Merle, U.; Steinacker, J.M.; Deibert, P.; Friedmann-Bette, B.; Nieß, A.; Müller, B.; Schilling, C.; et al. EPILOC Phase 2 Study Group. Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: A population-based, nested case-control study. PLoS Med. 2025, 22, e1004511. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L. Addressing the Long-term Effects of COVID-19. JAMA 2022, 328, 823–824. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, J.; Lee, J.; Lee, M.; Kim, H.J.; Son, Y.; Rhee, S.Y.; Smith, L.; Rahmati, M.; Kang, J.; et al. Long-term gastrointestinal and hepatobiliary outcomes of COVID-19: A multinational population-based cohort study from South Korea, Japan, and the UK. Clin. Mol. Hepatol. 2024, 30, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, H.J.; Park, J.; Lee, M.; Kim, S.; Koyanagi, A.; Smith, L.; Kim, M.S.; Rahmati, M.; Lee, H.; et al. Acute and post-acute respiratory complications of SARS-CoV-2 infection: Population-based cohort study in South Korea and Japan. Nat. Commun. 2024, 15, 4499. [Google Scholar] [CrossRef]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’Sullivan, J.M.; et al. Irish COVID-19 Vasculopathy Study (iCVS) investigators. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef]
- Grist, J.T.; Collier, G.J.; Walters, H.; Kim, M.; Chen, M.; Abu Eid, G.; Laws, A.; Matthews, V.; Jacob, K.; Cross, S.; et al. Lung Abnormalities Detected with Hyperpolarized 129Xe MRI in Patients with Long COVID. Radiology 2022, 305, 709–717. [Google Scholar] [CrossRef]
- Heiss, R.; Tan, L.; Schmidt, S.; Regensburger, A.P.; Ewert, F.; Mammadova, D.; Buehler, A.; Vogel-Claussen, J.; Voskrebenzev, A.; Rauh, M.; et al. Pulmonary Dysfunction after Pediatric COVID-19. Radiology 2023, 306, e221250. [Google Scholar] [CrossRef]
- Pizzuto, D.A.; Buonsenso, D.; Morello, R.; De Rose, C.; Valentini, P.; Fragano, A.; Baldi, F.; Di Giuda, D. Lung perfusion assessment in children with long-COVID: A pilot study. Pediatr. Pulmonol. 2023, 58, 2059–2067. [Google Scholar] [CrossRef]
- Kaminski, A.; Albus, M.; Mohseni, M.; Mirzan, H.; Harrison, M.F. A Delayed Case of Pericarditis Following Recovery From COVID-19 Infection. Cureus 2021, 13, e14397. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Martin, S.; Shchendrygina, A.; Hoffmann, J.; Ka, M.M.; Giokoglu, E.; Vanchin, B.; Holm, N.; Karyou, A.; Laux, G.S.; et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat. Med. 2022, 28, 2117–2123. [Google Scholar] [CrossRef]
- Sen, S.; Kannan, N.B.; Kumar, J.; Rajan, R.P.; Kumar, K.; Baliga, G.; Reddy, H.; Upadhyay, A.; Ramasamy, K. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: A systematic review. Int. Ophthalmol. 2022, 42, 323–336. [Google Scholar] [CrossRef]
- Szarpak, L.; Pruc, M.; Najeeb, F.; Jaguszewski, M.J. POST-COVID-19 and the pancreas. Am. J. Emerg. Med. 2022, 59, 174–175. [Google Scholar] [CrossRef]
- Qurban, Z.; Mullan, D. COVID-19-Related Incidental Pancreatitis Detected on FDG-PET Scan. Cureus 2022, 14, e31730. [Google Scholar] [CrossRef] [PubMed]
- Cocciolillo, F.; Di Giuda, D.; Morello, R.; De Rose, C.; Valentini, P.; Buonsenso, D. Orbito-Frontal Cortex Hypometabolism in Children With Post-COVID Condition (Long COVID): A Preliminary Experience. Pediatr. Infect. Dis. J. 2022, 41, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Guedj, E.; Campion, J.Y.; Dudouet, P.; Kaphan, E.; Bregeon, F.; Tissot-Dupont, H.; Guis, S.; Barthelemy, F.; Habert, P.; Ceccaldi, M.; et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Morand, A.; Campion, J.Y.; Lepine, A.; Bosdure, E.; Luciani, L.; Cammilleri, S.; Chabrol, B.; Guedj, E. Similar patterns of [18F]-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: A paediatric case series. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 913–920. [Google Scholar] [CrossRef]
- Cooper, S.; Tobar, A.; Konen, O.; Orenstein, N.; Kropach Gilad, N.; Landau, Y.E.; Mozer-Glassberg, Y.; Bar-Lev, M.R.; Shaoul, R.; Shamir, R.; et al. Long COVID-19 Liver Manifestation in Children. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 244–251. [Google Scholar] [CrossRef]
- Pérez-Gómez, A.; Vitallé, J.; Gasca-Capote, C.; Gutierrez-Valencia, A.; Trujillo-Rodriguez, M.; Serna-Gallego, A.; Muñoz-Muela, E.; Jiménez-Leon, M.L.R.; Rafii-El-Idrissi, B.M.; Rivas-Jeremias, I.; et al. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell Mol. Immunol. 2021, 18, 2128–2139. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. 2023. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 2023, 14, 983. [Google Scholar] [CrossRef]
- Yende, S.; Parikh, C.R. Long COVID and kidney disease. Nat. Rev. Nephrol. 2021, 17, 792–793. [Google Scholar] [CrossRef] [PubMed]
- McMahon, D.E.; Gallman, A.E.; Hruza, G.J.; Rosenbach, M.; Lipoff, J.B.; Desai, S.R.; French, L.E.; Lim, H.; Cyster, J.G.; Fox, L.P.; et al. Long COVID in the skin a registry analysis of COVID-19 dermatological duration. Lancet Infect. Dis. 2021, 21, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: A cohort study. Lancet Diabetes Endocrinol. 2022, 10, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with COVID-19. N. Engl. J. Med. 2021, 384, 481–483. [Google Scholar] [CrossRef]
- Wadman, M.; Couzin-Frankel, J.; Kaiser, J.; Matacic, C. A rampage through the body. Science 2020, 368, 356–360. [Google Scholar] [CrossRef]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef]
- The Royal Society 2020. Long COVID: What Is It and What Is Needed? Paper Provided to SAGE and UKRI, 23 October 2020. Available online: https://royalsociety.org/news/2020/10/urgent-need-to-understand-long-covid/ (accessed on 20 June 2025).
- Weiss, A.; Donnachie, E.; Beyerlein, A.; Ziegler, A.; Bonifacio, E. Type 1 Diabetes Incidence and Risk in Children With a Diagnosis of COVID-19. JAMA 2023, 329, 2089–2091. [Google Scholar] [CrossRef]
- Gorna, R.; MacDermott, N.; Rayner, C.; O’Hara, M.; Evans, S.; Agyen, L.; Nutland, W.; Rogers, N.; Hastie, C. Long COVID guidelines need to reflect lived experience. Lancet 2021, 397, 455–457. [Google Scholar] [CrossRef]
- Ghosh, S.; Panda, P.; Sharma, Y.P.; Handa, N. COVID-19 presenting as acute pericarditis. BMJ Case Rep. 2022, 15, e243768. [Google Scholar] [CrossRef]
- Venturelli, S.; Benatti, S.V.; Casati, M.; Binda, F.; Zuglian, G.; Imeri, G.; Conti, C.; Biffi, A.M.; Spada, M.S.; Bondi, E.; et al. Surviving COVID-19 in Bergamo province: A post-acute outpatient re-evaluation. Epidemiol. Infect. 2021, 149, e32. [Google Scholar] [CrossRef]
- Bandirali, M.; Sconfienza, L.M.; Serra, R.; Brembilla, R.; Albano, D.; Pregliasco, F.E.; Messina, C. Chest Radiograph Findings in Asymptomatic and Minimally Symptomatic Quarantined Patients in Codogno, Italy during COVID-19 Pandemic. Radiology 2020, 295, E7. [Google Scholar] [CrossRef] [PubMed]
- Baz, S.A.; Fang, C.; Carpentieri, J.D.; Sheard, L. ‘I don’t know what to do or where to go’. Experiences of accessing healthcare support from the perspectives of people living with Long COVID and healthcare professionals: A qualitative study in Bradford, UK. Health Expect. 2023, 26, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Turk, F.; Sweetman, J.; Chew-Graham, C.A.; Gabbay, M.; Shepherd, J.; van der Feltz-Cornelis, C.; STIMULATE-ICP Consortium. Accessing care for Long COVID from the perspectives of patients and healthcare practitioners: A qualitative study. Health Expect. 2024, 27, e14008. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. NEJM 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.R.; Ramelli, S.C.; Grazioli, A.; Chung, J.Y.; Singh, M.; Yinda, C.K.; Winkler, C.W.; Sun, J.; Dickey, J.M.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022, 612, 758–763. [Google Scholar] [CrossRef]
- Proal, A.D.; VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 2023, 24, 1616–1627. [Google Scholar] [CrossRef]
- Lawler, N.G.; Yonker, L.M.; Lodge, S.; Nitschke, P.; Leonard, M.M.; Gray, N.; Whiley, L.; Masuda, R.; Holmes, E.; Wist, J.; et al. Children with Post COVID-19 Multisystem Inflammatory Syndrome Display Unique Pathophysiological Metabolic Phenotypes. J. Proteome Res. 2025, 24, 3470–3483. [Google Scholar] [CrossRef]
- Cai, M.; Xu, E.; Xie, Y.; Al-Aly, Z. Rates of infection with other pathogens after a positive COVID-19 test versus a negative test in US veterans (November, 2021, to December, 2023): A retrospective cohort study. Lancet Infect Dis. 2025, 25, 847–860. [Google Scholar] [CrossRef]
- Baimukhamedov, C.; Barskova, T.; Matucci-Cerinic, M. Arthritis after SARS-CoV-2 infection. Lancet Rheumatol. 2021, 3, e324–e325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubino, F.; Amiel, S.A.; Zimmet, P.; Alberti, G.; Bornstein, S.; Eckel, R.H.; Mingrone, G.; Boehm, B.; Cooper, M.E.; Chai, Z.; et al. New-Onset Diabetes in COVID-19. NEJM 2020, 383, 789–790. [Google Scholar] [CrossRef]
- Saini, G.; Aneja, R. Cancer as a prospective sequela of long COVID-19. Bioessays 2021, 43, e2000331. [Google Scholar] [CrossRef]
- Amiama-Roig, A.; Pérez-Martínez, L.; Rodríguez Ledo, P.; Verdugo-Sivianes, E.M.; Blanco, J.R. Should We Expect an Increase in the Number of Cancer Cases in People with Long COVID? Microorganisms 2023, 11, 713. [Google Scholar] [CrossRef]
- Chia, S.B.; Johnson, B.J.; Hu, J.; Valença-Pereira, F.; Chadeau-Hyam, M.; Guntoro, F.; Montgomery, H.; Boorgula, M.P.; Sreekanth, V.; Goodspeed, A.; et al. Respiratory viral infections awaken metastatic breast cancer cells in lungs. Nature 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Wang, L.; Davis, P.B.; Volkow, N.D.; Berger, N.A.; Kaelber, D.C.; Xu, R. Association of COVID-19 with New-Onset Alzheimer’s Disease. J. Alzheimers Dis. 2022, 89, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Krump, N.A.; You, J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol. 2018, 16, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Levine, K.S.; Leonard, H.L.; Blauwendraat, C.; Iwaki, H.; Johnson, N.; Bandres-Ciga, S.; Ferrucci, L.; Faghri, F.; Singleton, A.B.; Nalls, M.A. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron 2023, 111, 1086–1093.e2. [Google Scholar] [CrossRef] [PubMed]
- Coleon, A.; Larrous, F.; Kergoat, L.; Tichit, M.; Hardy, D.; Obadia, T.; Kornobis, E.; Bourhy, H.; de Melo, G.D. Hamsters with long COVID present distinct transcriptomic profiles associated with neurodegenerative processes in brainstem. Nat. Commun. 2025, 16, 6714. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Bjornevik, K.; Münz, C.; Cohen, J.I.; Ascherio, A. 2023. Epstein–Barr virus as a leading cause of multiple sclerosis: Mechanisms and implications. Nat. Rev. Neurol. 2023, 19, 160–171. [Google Scholar] [CrossRef]
- Soldan, S.S.; Lieberman, P.M. Epstein–Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Shing, L.H.; Chipika, R.H.; Finegan, E.; Murray, D.; Hardiman, O.; Bede, P. Post-polio Syndrome: More Than Just a Lower Motor Neuron Disease. Front Neurol. 2019, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, A.; Foucat, E.; Hocini, H.; Lefebvre, C.; Hejblum, B.P.; Durand, M.; Krüger, M.; Keita, A.K.; Ayouba, A.; Mély, S.; et al. 2020. Long-lasting severe immune dysfunction in Ebola virus disease survivors. Nat. Commun. 2020, 11, 3730. [Google Scholar] [CrossRef] [PubMed]
- Keita, A.K.; Koundouno, F.R.; Faye, M.; Düx, A.; Hinzmann, J.; Diallo, H.; Ayouba, A.; Le Marcis, F.; Soropogui, B.; Ifono, K.; et al. 2021. Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature 2021, 597, 539–543. [Google Scholar] [CrossRef]
- García, G.; González, N.; Pérez, A.B.; Sierra, B.; Aguirre, E.; Rizo, D.; Izquierdo, A.; Sánchez, L.; Díaz, D.; Lezcay, M.; et al. Long-term persistence of clinical symptoms in dengue-infected persons and its association with immunological disorders. Int. J. Infect. Dis. 2011, 15, e38–e43. [Google Scholar] [CrossRef]
- Li, K.; Wu, Q.; Li, H.; Sun, H.; Xing, Z.; Li, L.; Chen, H. Multiomic characterisation of the long-term sequelae of SARS survivors: A clinical observational study. EClinicalMedicine 2023, 58, 101884. [Google Scholar] [CrossRef]
- Olson, J. Five Years Later Long COVID Remains a Frustrating Medical Mystery. 2025. Available online: https://www.seattletimes.com/nation-world/five-years-later-long-covid-remains-a-frustrating-medical-mystery/ (accessed on 15 June 2025).
- Proust, A.; Queval, C.J.; Harvey, R.; Adams, L.; Bennett, M.; Wilkinson, R.J. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J. Neuroinflamm. 2023, 20, 184. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. 2022, 28, 2398–2405. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Nemati, H.; Shahisavandi, M.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; et al. Long COVID in children and adolescents. World J. Pediatr. 2021, 17, 495–499. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Bull-Otterson, L.; Boehmer, T.K.; Baca, S.; Alvarez, P.; Hong, K.; Hsu, J.; Harris, A.M.; Gundlapalli, A.V.; Saydah, S. Post-COVID-19 Symptoms and Conditions Among Children and Adolescents—United States, March 1, 2020–January 31, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 993–999. [Google Scholar] [CrossRef]
- Matteudi, T.; Luciani, L.; Fabre, A.; Minodier, P.; Boucekine, M.; Bosdure, E.; Dubus, J.C.; Colson, P.; Chabrol, B.; Morand, A. Clinical characteristics of paediatric COVID-19 patients followed for up to 13 months. Acta Paediatr. 2021, 110, 3331–3333. [Google Scholar] [CrossRef]
- Bruiners, N.; Ukey, R.; Konvinse, K.C.; Harris, M.; Kalaycioglu, M.; Yang, J.H.; Yang, E.; Ganapathi, U.; Honnen, W.; Andrews, T.; et al. Antibody repertoire associated with clinically diverse presentations of pediatric SARS-CoV-2 infection. medRxiv. 2025. [Google Scholar] [CrossRef]
- Stoecklein, S.; Koliogiannis, V.; Prester, T.; Kolben, T.; Jegen, M.; Hübener, C.; Hasbargen, U.; Flemmer, A.; Dietrich, O.; Schinner, R.; et al. Effects of SARS-CoV-2 on prenatal lung growth assessed by fetal MRI. Lancet Respir. Med. 2022, 10, e36–e37. [Google Scholar] [CrossRef]
- Garrido-Pontnou, M.; Navarro, A.; Camacho, J.; Crispi, F.; Alguacil-Guillén, M.; Moreno-Baró, A.; Hernandez-Losa, J.; Sesé, M.; Ramón, C.; Garcia Ruíz, I.; et al. Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associated fetal demise. Mod. Pathol. 2021, 34, 1704–1709. [Google Scholar] [CrossRef]
- Connor, C.; Kranert, M.; Mckelvie, S.; Clutterbuck, D.; McFarland, S.; Alwan, N.A. A critical analysis of UK media characterisations of Long COVID in children and young people. PLOS Glob. Public Health 2024, 4, e0003126. [Google Scholar] [CrossRef]
Proposed and Putative Mechanisms of Long COVID |
---|
Viral persistence |
Immune dysfunction Autoimmunity Vascular pathology including vasculitis, microvascular dysfunction and endothelial dysfunction Coagulation abnormalities Macro- and micro-thrombi Gut and oral dysbiosis Lung perfusion defects Tissue damage Fibrosis Apoptosis (cell death) Inflammation Reactivation of latent pathogens like herpesviruses DNA modifications The list is not exhaustive. More than one mechanisms can be present in a patient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perego, E. A Case Definition of a New Disease: A Review of the US Working Definition (USG) and 2024 NASEM Definition for Long COVID. COVID 2025, 5, 135. https://doi.org/10.3390/covid5080135
Perego E. A Case Definition of a New Disease: A Review of the US Working Definition (USG) and 2024 NASEM Definition for Long COVID. COVID. 2025; 5(8):135. https://doi.org/10.3390/covid5080135
Chicago/Turabian StylePerego, Elisa. 2025. "A Case Definition of a New Disease: A Review of the US Working Definition (USG) and 2024 NASEM Definition for Long COVID" COVID 5, no. 8: 135. https://doi.org/10.3390/covid5080135
APA StylePerego, E. (2025). A Case Definition of a New Disease: A Review of the US Working Definition (USG) and 2024 NASEM Definition for Long COVID. COVID, 5(8), 135. https://doi.org/10.3390/covid5080135