Assessment of SARS-CoV-2 Infection, Vaccination, and Immunity Status Among a Population of Dentists/Academic Professors in a Clinical Setting: One-Year Findings
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Polulation, Sample, Inclusion and Exclusion Criteria
2.2. Data Collection
2.3. Data Statistical Analysis
3. Results
3.1. Prevalence of SARS-CoV-2 Infection
3.2. SARS-CoV-2 Vaccination Status
3.3. Analysis of SARS-CoV-2 Infection and Participants Vaccination Status
3.4. Analysis of Immunity Status, IgM and IgG Antibody Titration Values and Participants Age, Gender, SARS-CoV-2 Infection and Vaccination Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- del Rio, C.; Collins, L.F.; Malani, P. Long-term Health Consequences of COVID-19. JAMA 2020, 324, 1723. [Google Scholar] [CrossRef]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 16 December 2024).
- Chen, J.; Zhang, Q.; Liu, X.; Han, Y.; Gong, Q. Knowledge mapping of COVID-19 and dentistry: A bibliometric analysis. Front. Public Health 2023, 10, 1040175. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Molinari, J.A.; Suzuki, J.B. Current SARS-CoV-2 Protective Strategies for Healthcare Professionals. Biomedicines 2023, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Caggiano, M.; Amato, M.; Moccia, G.; Capunzo, M.; De Caro, F. Infection Control in Dental Practice During the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 4769. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef]
- Melo, P.; Manarte-Monteiro, P.; Veiga, N.; de Almeida, A.B.; Mesquita, P. COVID-19 Management in Clinical Dental Care Part III: Patients and the Dental Office. Int. Dent. J. 2021, 71, 271–277. [Google Scholar] [CrossRef]
- Melo, P.; Barbosa, J.M.; Jardim, L.; Carrilho, E. COVID-19 Management in Clinical Dental Care. Part I: Epidemiology, Public Health Implications, and Risk Assessmen. Int. Dent. J. 2021, 71, 251–262. [Google Scholar] [CrossRef]
- Goriuc, A.; Sandu, D.; Tatarciuc, M.; Luchian, I. The Impact of the COVID-19 Pandemic on Dentistry and Dental Education: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 2537. [Google Scholar] [CrossRef]
- Angeli, F.; Spanevello, A.; Reboldi, G.; Visca, D.; Verdecchia, P. SARS-CoV-2 vaccines: Lights and shadows. Eur. J. Intern. Med. 2021, 88, 1–8. [Google Scholar] [CrossRef]
- Erbak Yılmaz, H.; Iscan, E.; Oz, O.; Batur, T.; Erdoğan, A.; Kılıç, S.; Mutlu, Z.; Yılmaz, M.; Spring, K.J. Considerations for the selection of tests for SARS-CoV-2 molecular diagnostics. Mol. Biol. Rep. 2022, 49, 9725–9735. [Google Scholar] [CrossRef]
- La Jeon, Y.; Lee, S.G.; Lee, E.H.; Song, S.; Go, U.Y.; Chun, G.-Y. Different interpretations of inconclusive results of SARS-CoV-2 real-time RT PCR. Diagn. Microbiol. Infect. Dis. 2023, 106, 115888. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol. Biol. 2023, 2612, 1–17. [Google Scholar] [PubMed]
- Trabucchi, A.; Bombicino, S.S.; Marfía, J.I.; Sabljic, A.V.; Iacono, R.F.; Smith, I.; Mc callum, G.J.; Targovnik, A.M.; Wolman, F.J.; Fingermann, M.; et al. Novel bridge multi-species ELISA for detection of SARS-CoV-2 antibodies. J. Immunol. Methods 2022, 511, 113365. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.; Acquila, M.; Tripodi, G.; Spiazzi, R.; Castagnola, E. Antibodies against Receptor Binding Domain of SARS-CoV-2 spike protein induced by BNT162b2 vaccine: Results from a pragmatic, real-life study. J. Infect. Public Health 2021, 14, 1560–1562. [Google Scholar] [CrossRef] [PubMed]
- Manak, M.; Gagnon, L.; Phay-Tran, S.; Levesque-Damphousse, P.; Fabie, A.; Daugan, M.; Khan, S.T.; Proud, P.; Hussey, B.; Knott, D.; et al. Standardised quantitative assays for anti-SARS-CoV-2 immune response used in vaccine clinical trials by the CEPI Centralized Laboratory Network: A qualification analysis. Lancet Microbe 2024, 5, e216–e225. [Google Scholar] [CrossRef]
- Malik, Y.S.; Kumar, P.; Ansari, M.I.; Hemida, M.G.; El Zowalaty, M.E.; Abdel-Moneim, A.S.; Ganesh, B.; Salajegheh, S.; Natesan, S.; Sircar, S.; et al. SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development. Front. Mol. Biosci. 2021, 8, 607886. [Google Scholar] [CrossRef]
- Hadj Hassine, I. COVID-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022, 32, e2313. [Google Scholar] [CrossRef]
- Siemens Healthcare Diagnostics Inc. Understanding SARS-CoV-2 IgG Immunity Thresholds and the Process of Standardization. Available online: https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/b2406e708bf287c5/506564e9207f/Understanding-SARS-CoV-2-IgG-Immunity-Thresholds-and-the-Process-of-Standardization.pdf (accessed on 25 June 2025).
- Yoonjoo, K.; Ji Hyun, L.; Geon Young, K.; Ji Hyeong, R.; Joo Hee, J.; Hyunjoo, B.; Seung-Hyo, Y.; Ae-Ran, C.; Jin, J.; Jongmin, L.; et al. Quantitative SARS-CoV-2 Spike Antibody Response in COVID-19 Patients Using Three Fully Automated Immunoassays and a Surrogate Virus Neutralization Test. Diagnostics 2021, 11, 1496. [Google Scholar] [CrossRef]
- Siemens. SARS-CoV-2 Total Assay_Atellica_IM Analyzer. Available online: https://www.siemens-healthineers.com/en-za/laboratory-diagnostics/assays-by-diseases-conditions/infectious-disease-assays/cov2t-assay (accessed on 12 September 2021).
- IBM. IBM SPSS Statistics for macOS, Version 29.0; IBM Corp.: Armonk, NY, USA, 2022.
- Grant, J.J.; Wilmore, S.M.S.; McCann, N.S.; Donnelly, O.; Lai, R.W.L.; Kinsella, M.J.; Rochford, H.L.; Patel, T.; Kelsey, M.C.; Andrews, J.A. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. Infect. Control. Hosp. Epidemiol. 2021, 42, 212–214. [Google Scholar] [CrossRef]
- Hall, V.J.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.J.M.; Simmons, R.; Wellington, E.; Cole, M.J.; Saei, A.; Oguti, B.; et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: A large, multicentre, prospective cohort study (SIREN). Lancet 2021, 397, 1459–1469. [Google Scholar] [CrossRef]
- Jungo, S.; Moreau, N.; Mazevet, M.E.; Ejeil, A.-L.; Biosse Duplan, M.; Salmon, B.; Smail-Faugeron, V. Prevalence and risk indicators of first-wave COVID-19 among oral health-care workers: A French epidemiological survey. PLoS ONE 2021, 16, e0246586. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.M.; Farias, S.J.d.S.; Souza, T.A.C.d.; Stefani, C.M.; Lima, A.d.A.d.; Lia, E.N. SARS-CoV-2 infection among Brazilian dentists: A seroprevalence study. Braz. Oral Res. 2022, 36, e035. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Shi, Z.; Zhang, Y.; Wang, C.; Do Vale Moreira, N.C.; Zuo, H.; Hussain, A. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: A meta-analysis. Diabetes Res. Clin. Pract. 2020, 166, 108346. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052. [Google Scholar] [CrossRef]
- Ebinger, J.E.; Achamallah, N.; Ji, H.; Claggett, B.L.; Sun, N.; Botting, P.; Nguyen, T.-T.; Luong, E.; Kim, E.H.; Park, E.; et al. Pre-existing traits associated with Covid-19 illness severity. PLoS ONE 2020, 15, e0236240. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for COVID-19 severity and fatality: A structured literature review. Infection 2021, 49, 15–28. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Gao, Y.d.; Ding, M.; Dong, X.; Zhang, J.j.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.l.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- DGS. Relatório De Monitorização Da Situação Epidemiológica Da COVID-19. 4 October 2022. Available online: https://www.insa.min-saude.pt/wp-content/uploads/2022/03/20220325_Monitorizacao_COVID-19.pdf (accessed on 23 October 2022).
- Estrich, C.G.; Mikkelsen, M.; Morrissey, R.; Geisinger, M.L.; Ioannidou, E.; Vujicic, M.; Araujo, M.W.B. Estimating COVID-19 prevalence and infection control practices among US dentists. J. Am. Dent. Assoc. 2020, 151, 815–824. [Google Scholar] [CrossRef]
- Campus, G.; Diaz Betancourt, M.; Cagetti, M.G.; Giacaman, R.A.; Manton, D.J.; Douglas, G.V.A.; Carvalho, T.S.; Carvalho, J.C.; Vukovic, A.; Cortés-Martinicorena, F.J.; et al. The COVID-19 pandemic and its global effects on dental practice. An International survey. J. Dent. 2021, 114, 103749. [Google Scholar] [CrossRef]
- Galicia, J.C.; Mungia, R.; Taverna, M.V.; Mendoza, M.J.; Estrela, C.; Gaudin, A.; Zhang, C.; Vaughn, B.A.; Khan, A.A. Response by Endodontists to the SARS-CoV-2 (COVID−19) Pandemic: An International Survey. Front. Dent. Med. 2021, 1, 617440. [Google Scholar] [CrossRef]
- Nasr, L.; Saleh, N.; Hleyhel, M.; El-Outa, A.; Noujeim, Z. Acceptance of COVID-19 vaccination and its determinants among Lebanese dentists: A cross-sectional study. BMC Oral Health 2021, 21, 484. [Google Scholar] [CrossRef]
- Schmidt, J.; Perina, V.; Suchanek, J.; Treglerova, J.; Pilbauerova, N.; Sanca, O.; Muzik, J.; Smucler, R. Comparison of COVID-19 epidemic among Czech dentists and the Czech general population. Sci. Rep. 2023, 13, 13104. [Google Scholar] [CrossRef] [PubMed]
- Zigron, A.; Dror, A.A.; Morozov, N.G.; Shani, T.; Haj Khalil, T.; Eisenbach, N.; Rayan, D.; Daoud, A.; Kablan, F.; Marei, H.; et al. COVID-19 Vaccine Acceptance Among Dental Professionals Based on Employment Status During the Pandemic. Front. Med. 2021, 8, 618403. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, D.; Rachiotis, G.; Malli, F.; Papathanasiou, I.V.; Kotsiou, O.; Fradelos, E.C.; Giannakopoulos, K.; Gourgoulianis, K.I. Acceptability of COVID-19 Vaccination among Greek Health Professionals. Vaccines 2021, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Verger, P.; Scronias, D.; Dauby, N.; Adedzi, K.A.; Gobert, C.; Bergeat, M.; Gagneur, A.; Dubé, E. Attitudes of healthcare workers towards COVID-19 vaccination: A survey in France and French-speaking parts of Belgium and Canada, 2020. Eurosurveillance 2021, 26, 2002047. [Google Scholar] [CrossRef]
- Lin, G.S.S.; Lee, H.Y.; Leong, J.Z.; Sulaiman, M.M.; Loo, W.F.; Tan, W.W. COVID-19 vaccination acceptance among dental students and dental practitioners: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0267354. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Bartsch, Y.C.; Fischinger, S.; Siddiqui, S.M.; Chen, Z.; Yu, J.; Gebre, M.; Atyeo, C.; Gorman, M.J.; Zhu, A.L.; Kang, J.; et al. Discrete SARS-CoV-2 antibody titers track with functional humoral stability. Nat. Commun. 2021, 12, 1018. [Google Scholar] [CrossRef]
- Haque, A.; Pant, A.B. Mitigating COVID-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. J. Autoimmun. 2022, 127, 102792. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, H.; Zhan, M.; Jiang, J.; Yin, H.; Dauphars, D.J.; Li, S.-Y.; Li, Y.; He, Y.-W. Antibody response and therapy in COVID-19 patients: What can be learned for vaccine development? Sci. China Life Sci. 2020, 63, 1833–1849. [Google Scholar] [CrossRef]
- Beretta, A.; Cranage, M.; Zipeto, D. Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis? Front. Immunol. 2020, 15, 567710. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Najjar-Debbiny, R.; Hanna, A.; Jabbour, A.; Abu Ahmad, Y.; Saffuri, A.; Abu-Sinni, M.; Shkeiri, R.; Elemy, A.; Hakim, F. COVID-19 vaccine—Long term immune decline and breakthrough infections. Vaccine 2021, 39, 6984–6989. [Google Scholar] [CrossRef] [PubMed]
- Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N. Engl. J. Med. 2021, 384, 533–540. [Google Scholar] [CrossRef]
- Dinc, H.O.; Saltoglu, N.; Can, G.; Balkan, I.I.; Budak, B.; Ozbey, D.; Caglar, B.; Karaali, R.; Mete, B.; Tuyji Tok, Y.; et al. Inactive SARS-CoV-2 vaccine generates high antibody responses in healthcare workers with and without prior infection. Vaccine 2022, 40, 52–58. [Google Scholar] [CrossRef]
- Hansen, C.B.; Jarlhelt, I.; Hasselbalch, R.B.; Hamm, S.R.; Fogh, K.; Pries-Heje, M.M.; Møller, D.L.; Heftdal, L.D.; Pérez-Alós, L.; Sørensen, E.; et al. Antibody-dependent neutralizing capacity of the SARS-CoV-2 vaccine BNT162b2 with and without previous COVID-19 priming. J. Intern. Med. 2021, 290, 1272–1274. [Google Scholar] [CrossRef]
- Souan, L.; Sughayer, M.A.; Abu Alhowr, M.; Ammar, K.; Bader, S.A. An update on the impact of SARS-CoV-2 pandemic public awareness on cancer patients’ COVID-19 vaccine compliance: Outcomes and recommendations. Front. Public Health 2022, 10, 923815. [Google Scholar] [CrossRef]
- Shields, A.M.; Faustini, S.E.; Kristunas, C.A.; Cook, A.M.; Backhouse, C.; Dunbar, L.; Ebanks, D.; Emmanuel, B.; Crouch, E.; Kröger, A.; et al. COVID-19: Seroprevalence and Vaccine Responses in UK Dental Care Professionals. J. Dent. Res. 2021, 100, 1220–1227. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Ceci, S.; Patano, A.; Corriero, A.; Azzollini, D.; Marinelli, G.; Coloccia, G.; Piras, F.; Barile, G.; et al. Antispike Immunoglobulin-G (IgG) Titer Response of SARS-CoV-2 mRNA-Vaccine (BNT162b2): A Monitoring Study on Healthcare Workers. Biomedicines 2022, 10, 2402. [Google Scholar] [CrossRef]
- Duś-Ilnicka, I.; Szczygielska, A.; Kuźniarski, A.; Szymczak, A.; Pawlik-Sobecka, L.; Radwan-Oczko, M. SARS-CoV-2 IgG Amongst Dental Workers During the COVID-19 Pandemic. Int. Dent. J. 2022, 72, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Duś-Ilnicka, I.; Mazur, M.; Rybińska, A.; Radwan-Oczko, M.; Jurczyszyn, K.; Paradowska-Stolarz, A. SARS CoV-2 IgG seropositivity post-vaccination among dental professionals: A prospective study. BMC Infect. Dis. 2023, 23, 539. [Google Scholar] [CrossRef] [PubMed]
- Public Health Englang. Evaluation of Siemens Atellica-IM IgG (sCOVG) SARS-CoV-2 Serology Assay for the Detection of anti-SARS-CoV-2 IgG Antibodies. Available online: https://assets.publishing.service.gov.uk/media/605097d0d3bf7f04528c53b7/Evaluation_of_Siemens_Atellica-IM_IgG__sCOVG__SARS-CoV-2_serology_assay_for_the_detection_of_anti-SARS-CoV-2_IgG_antibodies.pdf (accessed on 25 June 2025).
- Halfon, P.; Jordana, S.; Blachier, S.; Cartlamy, P.; Kbaier, L.; Psomas, C.K.; Philibert, P.; Antoniotti, G.; Allemand-Sourrieu, J.; Rebaudet, S.; et al. Anti-spike protein to determine SARS-CoV-2 antibody levels: Is there a specific threshold conferring protection in immunocompromised patients? PLoS ONE 2023, 18, e0281257. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, E.O.; Martignon, S.; Coronel-Ruiz, C.; Velandia-Romero, M.L.; Romero-Sanchez, C.; Avila, V.; Castellanos, J.E. Seroprevalence, infection, and personal protective equipment use among Colombian healthcare workers during the COVID-19 pandemic. Front. Public Health 2023, 11, 1225037. [Google Scholar] [CrossRef]
- Cintora, P.; Rojo, R.; Martínez, A.; Ruíz, B.; Aragoneses, J.M. Seroprevalence of SARS-CoV-2 in a Fully Operative Dentistry Academic Center in Madrid (Spain) During the De-escalation Phase of the COVID-19 Pandemic. Are Our Dentists at Greater Risk. Oral Health Prev. Dent. 2022, 20, 349–354. [Google Scholar]
- Gallus, S.; Paroni, L.; Re, D.; Aiuto, R.; Battaglia, D.M.; Crippa, R.; Carugo, N.; Beretta, M.; Balsano, L.; Paglia, L. SARS-CoV-2 Infection among the Dental Staff from Lombardy Region, Italy. Int. J. Environ. Res. Public Health 2021, 18, 3711. [Google Scholar] [CrossRef]
- Mksoud, M.; Ittermann, T.; Holtfreter, B.; Söhnel, A.; Söhnel, C.; Welk, A.; Ulm, L.; Becker, K.; Hübner, N.-O.; Rau, A.; et al. Prevalence of SARS-CoV-2 IgG antibodies among dental teams in Germany. Clin. Oral Investig. 2022, 26, 3965–3974. [Google Scholar] [CrossRef]
- Nishida, T.; Iwahashi, H.; Yamauchi, K.; Kinoshita, N.; Okauchi, Y.; Suzuki, N.; Inada, M.; Abe, K. Seroprevalence of SARS-CoV-2 antibodies among 925 staff members in an urban hospital accepting COVID-19 patients in Osaka prefecture, Japan. Medicine 2021, 100, e26433. [Google Scholar] [CrossRef]
Reactive IgG Antibody Categorization and IgG and IgM Median and Level Titration Values (AU/mL)—July 2021 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Participants (Subjects) | SARS-CoV-2 Infection July 2021 | Vaccine Status July 2021 | N | IgG | IgM | ||||
Age (Years) | Gender | Pos/Neg * | Median Value (AU/mL) | Ig G Level or Min–Max (AU/mL) | Median Value (AU/mL) | IgM Level or Min–Max (AU/mL) | |||
<30 years | F | No | Yes | 1 | Pos | - | 29.900 | - | 0.300 |
M | Yes | Yes | 1 | Pos | - | 105.500 | - | 0.400 | |
No | Yes | 1 | Pos | - | 84.100 | - | 0.100 | ||
30–39 years | F | No | Yes | 5 | Pos | 8.100 | 1.4–73.0 | 0.200 | 0.100–0.400 |
No | 2 | Neg | 0.500 | 0.500 | 0.300 | 0.300 | |||
M | No | Yes | 4 | Pos | 29.500 | 2.2–142.4 | 0.250 | 0.200–0.400 | |
40–49 years | F | Yes | Yes | 1 | Pos | - | 84.100 | - | 0.100 |
No | Yes | 18 | Pos | 18.100 | 1.1–308.9 | 0.400 a | <0.10–1.20 a | ||
M | Yes | Yes | 1 | Pos | - | 10.300 | - | 0.900 | |
No | Yes | 6 | Pos | 32.050 | 6.2–65.6 | 0.200 b | <0.10–1.30 b | ||
≥50 years | F | Yes | Yes | 1 | Pos | - | 288.100 | - | 0.400 |
No | Yes | 2 | Pos | 5.950 | 4.5–7.4 | 0.850 c | 0.30–1.40 c | ||
No | 2 | Neg | 0.500 | 0.500 | 0.250 | 0.100–0.400 | |||
M | No | Yes | 2 | Pos | 8.350 | 6.8–9.9 | 0.149 | <0.10–0.200 |
Reactive IgG Antibody Categorization and IgG and IgM Median and Titration Values (AU/mL)—June 2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Participant’s (Subjects) | SARS-CoV-2 Infection June 2022 | No. of Vaccines Doses June 2022 | N | IgG Value (AU/mL) | IgM Value (AU/mL) | ||||
Age (Years) | Gender | Pos/Neg * | Me | Level Min–Max | Me | Level Min–Max | |||
<30 year | F | No | 3 | 1 | Pos | - | 244.00 | - | 0.200 |
M | Yes | 2 | 1 | Pos | - | 118.10 | - | 0.400 | |
No | 3 | 1 | Pos | - | 66.40 | - | 0.100 | ||
30–39 years | F | Yes | 2 | 1 | Pos | - | 75.40 | - | 0.400 |
3 | 2 | Pos | 152.60 | 39–266.2 | 0.3 | 0.200–0.400 | |||
No | 0 | 1 | Pos | - | 29.00 | - | 0.300 | ||
3 | 3 | Pos | 157.10 | 77.5–173.6 | 0.3 | 0.100–0.300 | |||
M | Yes | 3 | 2 | Pos | 191.70 | 151.4–232 | 0.2 | 0.200 | |
No | 2 | 1 | Pos | - | 163.20 | - | 0.600 | ||
3 | 1 | Pos | - | 13.00 | - | 0.300 | |||
40–49 years | F | Yes | 2 | 2 | Pos | 84.30 | 73.4–95.2 | 0.2 | 0.200 |
3 | 7 | Pos | 109.70 | 66.7–560.1 | 0.30 b | 0.200–1.100 b | |||
No | 3 | 10 | Pos | 101.05 | 18.6–480.2 | 0.50 a | 0.100–2.200 a | ||
M | Yes | 2 | 4 | Pos | 475.65 | 67–730.7 | 0.2 | <0.100–0.900 | |
3 | 2 | Pos | 162.45 | 114.4–210.5 | 0.15 | 0.100–0.200 | |||
No | 3 | 1 | Pos | - | 4.50 | - | 0.20 | ||
≥50 years | F | Yes | 0 | 1 | Neg | - | 0.50 | - | 0.30 |
3 | 1 | Pos | - | 110.20 | - | 0.50 | |||
No | 0 | 1 | Neg | - | <0.50 | - | 0.10 | ||
3 | 2 | Pos | 86.60 | 21.5–151.7 | 0.5 | 0.400–0.600 | |||
M | Yes | 3 | 1 | Pos | - | 302.80 | - | 0.30 | |
No | 3 | 1 | Pos | - | 332.5 | - | 0.10 |
Participant’s Gender, Age, SARS-CoV-2 Infection and Number of Vaccine Doses (June 2022 yr.) | IgG (AU/mL) Reactive * | IgG (AU/mL) | p Value | |
---|---|---|---|---|
No Reactive * | ||||
n (%) | n (%) | |||
Age (years) | <50 years | 40 (88.9%) | 0 (0%) | 0.019 1 |
≥50 years | 5 (11.1%) | 2 (100%) | ||
Median (Q1–Q3) | 42 (37–46) | 57.5 | 0.017 2 | |
Min-Max | 26–65 | 57–58 | ||
Gender | Female | 30 (66.7%) | 2 (100%) | 1.000 1 |
Male | 15 (33.3%) | 0 (0%) | ||
SARS-CoV-2 Infection history | No | 22 (48.9%) | 1 (50%) | 1.000 1 |
Yes | 23 (51.1%) | 1 (50%) | ||
No. of vaccine doses | 0 | 1 (2.2%) | 2 (100%) | 0.003 1 |
1 to 3 | 44 (97.8%) | 0 (0%) | ||
Median (Q1–Q3) | 3 (3–3) | 0 | 0.004 2 | |
Min-Max | 0–3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manarte-Monteiro, P.; Marques, G.; Alves, D.; Duro, M.; Domingues, J.; Gavinha, S.; da Silva, L.P.; Teixeira, L. Assessment of SARS-CoV-2 Infection, Vaccination, and Immunity Status Among a Population of Dentists/Academic Professors in a Clinical Setting: One-Year Findings. COVID 2025, 5, 120. https://doi.org/10.3390/covid5080120
Manarte-Monteiro P, Marques G, Alves D, Duro M, Domingues J, Gavinha S, da Silva LP, Teixeira L. Assessment of SARS-CoV-2 Infection, Vaccination, and Immunity Status Among a Population of Dentists/Academic Professors in a Clinical Setting: One-Year Findings. COVID. 2025; 5(8):120. https://doi.org/10.3390/covid5080120
Chicago/Turabian StyleManarte-Monteiro, Patricia, Gabriella Marques, Dina Alves, Mary Duro, Joana Domingues, Sandra Gavinha, Lígia Pereira da Silva, and Liliana Teixeira. 2025. "Assessment of SARS-CoV-2 Infection, Vaccination, and Immunity Status Among a Population of Dentists/Academic Professors in a Clinical Setting: One-Year Findings" COVID 5, no. 8: 120. https://doi.org/10.3390/covid5080120
APA StyleManarte-Monteiro, P., Marques, G., Alves, D., Duro, M., Domingues, J., Gavinha, S., da Silva, L. P., & Teixeira, L. (2025). Assessment of SARS-CoV-2 Infection, Vaccination, and Immunity Status Among a Population of Dentists/Academic Professors in a Clinical Setting: One-Year Findings. COVID, 5(8), 120. https://doi.org/10.3390/covid5080120