On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments
Abstract
:1. Introduction
- We explore digital and transformative technologies that have firmly contributed to constraining the spread of COVID-19, and we identify opportunities to highlight and thoroughly discuss those underrated technologies along with their unique services.
- We identify the ten latest technologies (i.e., IoT, AI, NLP, computer vision, blockchain, federated learning, robotics, TinyML, edge computing, and synthetic data) through rigorous analysis of research papers, developed tools, blogs, and industry leader talks.
- We identify and present the services offered by these digital technologies in a systematic way that remained unexplored in the current literature.
- We extract and present the heterogeneous data that have played a vital role in the management and containment of COVID-19 when used in the above-cited technologies.
- We identify challenges faced by these technologies and pinpoint various promising research trajectories that can enable rapid development to contain future pandemics/epidemics.
- To the best of our knowledge, this is the first work that targets COVID-19-fighting technologies, unique services provided by them, and heterogeneous data used in COVID-19-fighting technologies. With this article, we aim to provide comprehensive coverage of the technical developments of the past 2.5 years in the COVID-19 context that will provide a ground-breaking foundation for future research.
2. Community Beneficial Digitial Technologies in the Context of COVID-19
3. Top Ten COVID-19-Fighting Digital Technologies: An Insightful Analysis
3.1. Internet of Things (IoT)
3.2. Artificial Intelligence (AI)
3.3. Computer Vision (CV)
3.4. Blockchain
3.5. Federated Learning (FL)
3.6. Robotics
3.7. Tiny Machine Learning (TinyML)
3.8. Edge Computing
3.9. Natural Language Processing
3.10. Synthetic Data (SD)
- (1)
- SD can be shared on a large scale that may not be possible with real data due to growing privacy concerns and legal enforcement measures.
- (2)
- SD can augment the performance of AI models in most real-world scenarios by supplying large amounts, and a variety of, SD for training ML/DL models [233].
- (3)
- It can be a pertinent solution for the data island problem (e.g., lower performance of AI models due to higher differences in sizes and distributions of data at each site).
- (4)
- It can provide early access to data when real data cannot be accessed due to a small size or unexpected circumstances (taking COVID-19 as an example).
- (5)
- SD can be generated in different formats, such as medical images, electronic health records, in time series, as biomedical signals or activity data, that can be vital for research (or policy-making) and analytical tasks [234].
- (6)
- It can be a leading PET (like FL) by restricting access to the real data but still permitting analytics of various kinds (e.g., drawing pictures out of the data).
Promising SD Application | Data Used | AI Model Used | Ref. |
---|---|---|---|
Data augmentation | CT scans data | Conditional GAN | Das et al. [259] |
COVID-19 detection | X-ray image data | Conditional GAN | Majid et al. [260] |
Accuracy enhancement of ML models | Text data | GAN model | Gujar et al. [261] |
Rapid diagnosis | Chest X-ray pictures | GAN & CNN models | Gulakala et al. [262] |
COVID-19 detection | X-ray images | Convolutional GAN | Shah et al. [263] |
COVID-19 detection | CT scan images | Classical & GAN | Asghar et al. [264] |
Detection of COVID diseases | CT images | BiGAN and CycleGAN | Sarv et al. [265] |
Infection segmentation | CT images | Domain adaptation | Chen et al. [266] |
Lesion segmentation | Lung CT scans | Unsupervised GAN | Sherwani et al. [267] |
Clinical data generation | Real clinical data | SASC model | Khorchani et al. [268] |
Disease classification | Primary signs | Mechanistic models | Farhang et al. [269] |
Policies analysis | Patient records | Computational models | Jiri et al. [270] |
Image data generation | Chest X-ray images | DCNN model | Phukan et al. [271] |
COVID-19 diagnosis | CXR images | GAN model | Mostafiz et al. [272] |
Infected parts analysis | X-ray images | GAN model | Ali et al. [273] |
Analysis of COVID-19 on influenza treatment | Clinical data | AI models | Kernberg et al. [274] |
Sentiment analysis | Tweets data | ML models | Rahman et al. [275] |
Automated screening of virus | X-ray images | CycleGAN model | Morís et al. [276] |
Medical diagnosis of virus | Blood tests data | SMOTE model | Chadaga et al. [277] |
COVID spread prediction | Chest CT scan | DCGAN model | Jain et al. [278] |
Treatment of COVID-19 | Chest X-rays | CNN VGG16 model | Prasad et al. [279] |
4. Summary and Comparisons
5. Future Research Challenges and Directions
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keesara, S.; Jonas, A.; Schulman, K. COVID-19 and health care’s digital revolution. N. Engl. J. Med. 2020, 382, e82. [Google Scholar] [CrossRef]
- Koch, T. Welcome to the revolution: COVID-19 and the democratization of spatial-temporal data. Patterns 2021, 2, 100272. [Google Scholar] [CrossRef]
- Strielkowski, W. COVID-19 pandemic and the digital revolution in academia and higher education. Preprints 2020, 1, 1–6. [Google Scholar]
- Anandan, R.; Suseendran, G.; Chatterjee, P.; Jhanjhi, N.Z.; Ghosh, U. How COVID-19 is Accelerating the Digital Revolution; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Gasser, U.; Ienca, M.; Scheibner, J.; Sleigh, J.; Vayena, E. Digital tools against COVID-19: Taxonomy, ethical challenges, and navigation aid. Lancet Digit. Health 2020, 2, e425–e434. [Google Scholar] [CrossRef]
- Subramanian, M.; Shanmuga Vadivel, K.; Hatamleh, W.A.; Alnuaim, A.A.; Abdelhady, M.; VE, S. The role of contemporary digital tools and technologies in COVID-19 crisis: An exploratory analysis. Expert Syst. 2022, 39, e12834. [Google Scholar] [CrossRef]
- Nisar, S.; Zuhaib, M.A.; Ulasyar, A.; Tariq, M. A robust tracking system for COVID-19 like pandemic using advanced hybrid technologies. Computing 2021, 1–15. [Google Scholar] [CrossRef]
- Zheng, N.; Du, S.; Wang, J.; Zhang, H.; Cui, W.; Kang, Z.; Yang, T.; Lou, B.; Chi, Y.; Long, H.; et al. Predicting COVID-19 in China using hybrid AI model. IEEE Trans. Cybern. 2020, 50, 2891–2904. [Google Scholar] [CrossRef]
- Castillo Ossa, L.F.; Chamoso, P.; Arango-Lopez, J.; Pinto-Santos, F.; Isaza, G.A.; Santa-Cruz-Gonzalez, C.; Ceballos-Marquez, A.; Hernandez, G.; Corchado, J.M. A hybrid model for COVID-19 monitoring and prediction. Electronics 2021, 10, 799. [Google Scholar] [CrossRef]
- Soliman, M.; Fatnassi, T.; Elgammal, I.; Figueiredo, R. Exploring the Major Trends and Emerging Themes of Artificial Intelligence in the Scientific Leading Journals amidst the COVID-19 Era. Big Data Cogn. Comput. 2023, 7, 12. [Google Scholar] [CrossRef]
- Alsunaidi, S.J.; Almuhaideb, A.M.; Ibrahim, N.M.; Shaikh, F.S.; Alqudaihi, K.S.; Alhaidari, F.A.; Khan, I.U.; Aslam, N.; Alshahrani, M.S. Applications of big data analytics to control COVID-19 pandemic. Sensors 2021, 21, 2282. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, S.; Lee, F. Shape-based Evaluation of Epidemic Forecasts. arXiv 2022, arXiv:2209.04035. [Google Scholar]
- Santoro, E. Information technology and digital health to support health in the time of COVID-19. Recent. Progress. Med. 2020, 111, 393–397. [Google Scholar]
- Whitelaw, S.; Mamas, M.A.; Topol, E.; Van Spall, H.G. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit. Health 2020, 2, e435–e440. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, R.; Ma, Y.; Islam, I.; Rajper, A.M.A.; Song, W.; Ren, H.; Tse, Z.T.H. Supporting Technologies for COVID-19 Prevention: Systemized Review. JMIRx Med. 2022, 3, e30344. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.Y.; Kim, J.; Koo, C. Information Privacy Behaviors during the COVID-19 Pandemic: Focusing on the Restaurant Context. Inf. Syst. Front. 2022, 1–17. [Google Scholar] [CrossRef]
- Tan, S.B.; Chiu-Shee, C.; Duarte, F. From SARS to COVID-19: Digital infrastructures of surveillance and segregation in exceptional times. Cities 2022, 120, 103486. [Google Scholar] [CrossRef]
- Geng, Y.; Demuyakor, J. Applications of Digital Mobile Technologies in Response to the COVID-19 Pandemic: Some Evidence from Frontline Healthcare Workers in Three Tertiary Hospitals in Ghana. Online J. Commun. Media Technol. 2022, 12, e202226. [Google Scholar]
- Akinnuwesi, B.A.; Uzoka, F.M.E.; Fashoto, S.G.; Mbunge, E.; Odumabo, A.; Amusa, O.O.; Okpeku, M.; Owolabi, O. A modified UTAUT model for the acceptance and use of digital technology for tackling COVID-19. Sustain. Oper. Comput. 2022, 3, 118–135. [Google Scholar] [CrossRef]
- Hasan, I.; Dhawan, P.; Rizvi, S.A.M.; Dhir, S. Data analytics and knowledge management approach for COVID-19 prediction and control. Int. J. Inf. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Majeed, A.; Hwang, S.O. Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry 2022, 14, 16. [Google Scholar] [CrossRef]
- Abernethy, A.; Adams, L.; Barrett, M.; Bechtel, C.; Brennan, P.; Butte, A.; Faulkner, J.; Fontaine, E.; Friedhoff, S.; Halamka, J.; et al. The promise of digital health: Then, now, and the future. In Perspectives: Expert Voices in Health & Health Care; National Academy of Medicine: Washington, DC, USA, 2022. [Google Scholar]
- Majeed, A.; Hwang, S.O. A Privacy-Assured Data Lifecycle for Epidemic-Handling Systems. Computer 2022, 55, 57–69. [Google Scholar] [CrossRef]
- Majeed, A. Effective Handling of COVID-19 Pandemic: Experiences and Lessons from the Perspective of South Korea. COVID 2021, 1, 325–334. [Google Scholar] [CrossRef]
- Chandra, M.; Kumar, K.; Thakur, P.; Chattopadhyaya, S.; Alam, F.; Kumar, S. Digital technologies, healthcare and COVID-19: Insights from developing and emerging nations. Health Technol. 2022, 12, 547–568. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, J.; Wu, J.T.; Cao, Z.; Dajun Zeng, D. Data science approaches to confronting the COVID-19 pandemic: A narrative review. Philos. Trans. R. Soc. A 2022, 380, 20210127. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [Google Scholar] [CrossRef]
- Ayman, Q. IoT-Enabled Automated Analysis and Classification of COVID-19 Disease in Lung CT Images Based on Edge Computing Environment. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2023; pp. 479–486. [Google Scholar]
- Mitchell, K. Internet of things-enabled smart devices, healthcare body sensor networks, and online patient engagement in COVID-19 prevention, screening, and treatment. Am. J. Med. Res. 2021, 8, 30–39. [Google Scholar]
- Laxmi Lydia, E.; Anupama, C.S.S.; Beno, A.; Elhoseny, M.; Alshehri, M.D.; Selim, M.M. Cognitive computing-based COVID-19 detection on Internet of things-enabled edge computing environment. Soft Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Abdulkareem, K.H.; Mohammed, M.A.; Salim, A.; Arif, M.; Geman, O.; Gupta, D.; Khanna, A. Realizing an effective COVID-19 diagnosis system based on machine learning and IOT in smart hospital environment. IEEE Internet Things J. 2021, 8, 15919–15928. [Google Scholar] [CrossRef]
- Castiglione, A.; Umer, M.; Sadiq, S.; Obaidat, M.S.; Vijayakumar, P. The role of internet of things to control the outbreak of COVID-19 pandemic. IEEE Internet Things J. 2021, 8, 16072–16082. [Google Scholar] [CrossRef]
- Friji, H.; Khanfor, A.; Ghazzai, H.; Massoud, Y. An End-to-End Smart IoT-Driven Navigation for Social Distancing Enforcement. IEEE Access 2022, 10, 76824–76841. [Google Scholar] [CrossRef]
- Goar, V.; Sharma, A.; Yadav, N.S.; Chowdhury, S.; Hu, Y.C. IoT-Based Smart Mask Protection against the Waves of COVID-19. J. Ambient. Intell. Humaniz. Comput. 2022, 1–12. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Jimoh, R.G.; Matiluko, O.E.; Gbadamosi, B.; Ajamu, G.J. Artificial Intelligence and an Edge-IoMT-Based System for Combating COVID-19 Pandemic. In Intelligent Interactive Multimedia Systems for e-Healthcare Applications; Springer: Singapore, 2022; pp. 191–214. [Google Scholar]
- Hanumanthappa, J.; Muaad, A.Y.; Bibal Benifa, J.V.; Chola, C.; Hiremath, V.; Pramodha, M. IoT-Based Smart Diagnosis System for HealthCare. In Sustainable Communication Networks and Application; Springer: Singapore, 2022; pp. 461–469. [Google Scholar]
- Barnawi, A.; Chhikara, P.; Tekchandani, R.; Kumar, N.; Alzahrani, B. Artificial intelligence-enabled Internet of Things-based system for COVID-19 screening using aerial thermal imaging. Future Gener. Comput. Syst. 2021, 124, 119–132. [Google Scholar] [CrossRef]
- Herath, H.M.K.K.M.B. Internet of Things (IoT) enable designs for identify and control the COVID-19 pandemic. In Artificial Intelligence for COVID-19; Springer: Cham, Switzerland, 2021; pp. 423–436. [Google Scholar]
- Mukati, N.; Namdev, N.; Dilip, R.; Hemalatha, N.; Dhiman, V.; Sahu, B. Healthcare assistance to COVID-19 patient using internet of things (IoT) enabled technologies. Mater. Today Proc. 2021; in press. [Google Scholar]
- Mohammed, I.B.; Isa, S.M. The role of internet of things (IoT) in the containment and spread of the novel COVID-19 pandemic. In Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis; Springer: Singapore, 2021; pp. 109–119. [Google Scholar]
- Haleem, A.; Vaishya, R.; Javaid, M.; Khan, I.H. Artificial Intelligence (AI) applications in orthopaedics: An innovative technology to embrace. J. Clin. Orthop. Trauma 2020, 11, S80–S81. [Google Scholar] [CrossRef]
- Shaheen, M.Y. Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Prepr. 2021. [Google Scholar] [CrossRef]
- Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 25–60. [Google Scholar]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef]
- Imran, A.; Posokhova, I.; Qureshi, H.N.; Masood, U.; Riaz, M.S.; Ali, K.; John, C.N.; Hussain, M.I.; Nabeel, M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform. Med. Unlocked 2020, 20, 100378. [Google Scholar] [CrossRef]
- Hu, Q.; Gois, F.N.B.; Costa, R.; Zhang, L.; Yin, L.; Magaia, N.; de Albuquerque, V.H.C. Explainable artificial intelligence-based edge fuzzy images for COVID-19 detection and identification. Appl. Soft Comput. 2022, 123, 108966. [Google Scholar] [CrossRef]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.G. Data collection and quality challenges in deep learning: A data-centric ai perspective. VLDB J. 2023, 1–23. [Google Scholar] [CrossRef]
- Hu, H.; Cui, Y.; Liu, Z.; Lian, S. A Data-Centric AI Paradigm Based on Application-Driven Fine-grained Dataset Design. arXiv 2022, arXiv:2209.09449. [Google Scholar]
- Rodríguez, A.; Kamarthi, H.; Agarwal, P.; Ho, J.; Patel, M.; Sapre, S.; Prakash, B.A. Data-centric epidemic forecasting: A survey. arXiv 2022, arXiv:2207.09370. [Google Scholar]
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Kollias, D.; Arsenos, A.; Kollias, S. AI-MIA: COVID-19 detection & severity analysis through medical imaging. arXiv 2022, arXiv:2206.04732. [Google Scholar]
- Bougourzi, F.; Distante, C.; Dornaika, F.; Taleb-Ahmed, A. Ensemble CNN models for Covid-19 Recognition and Severity Perdition From 3D CT-scan. arXiv 2022, arXiv:2206.15431. [Google Scholar]
- Bai, X.; Fang, C.; Zhou, Y.; Bai, S.; Liu, Z.; Xia, L.; Chen, Q.; Xu, Y.; Xia, T.; Gong, S.; et al. Predicting COVID-19 malignant progression with AI techniques. Lancet 2020. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 2020, 181, 1423–1433. [Google Scholar] [CrossRef]
- Zargari Khuzani, A.; Heidari, M.; Shariati, S.A. COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images. Sci. Rep. 2021, 11, 9887. [Google Scholar] [CrossRef]
- Özbilge, E.; Sanlidag, T.; Ozbilge, E.; Baddal, B. Artificial Intelligence-Assisted RT-PCR Detection Model for Rapid and Reliable Diagnosis of COVID-19. Appl. Sci. 2022, 12, 9908. [Google Scholar] [CrossRef]
- Aljedaani, W.; Saad, E.; Rustam, F.; de la Torre Díez, I.; Ashraf, I. Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends. Mathematics 2022, 10, 3199. [Google Scholar] [CrossRef]
- Nillmani; Sharma, N.; Saba, L.; Khanna, N.N.; Kalra, M.K.; Fouda, M.M.; Suri, J.S. Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics 2022, 12, 2132. [Google Scholar] [CrossRef]
- Kumar, K.G.S.; Venkatesan, A.; Selvaraj, D.; Raj, A.N.J. Rapid and Accurate Diagnosis of COVID-19 Cases from Chest X-ray Images through an Optimized Features Extraction Approach. Electronics 2022, 11, 2682. [Google Scholar] [CrossRef]
- Zrieq, R.; Kamel, S.; Boubaker, S.; Algahtani, F.D.; Alzain, M.A.; Alshammari, F.; Aldhmadi, B.K.; Alshammari, F.S.; Araúzo-Bravo, M.J. Predictability of COVID-19 Infections Based on Deep Learning and Historical Data. Appl. Sci. 2022, 12, 8029. [Google Scholar] [CrossRef]
- Arnaud, E.; Elbattah, M.; Ammirati, C.; Dequen, G.; Ghazali, D.A. Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study. Int. J. Environ. Res. Public Health 2022, 19, 9667. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Haleem, A.M.; Mohamed, N.E.-D.M.; Abdelhakam, M.M.; Elmesalawy, M.M. A Machine Learning Approach for Movement Monitoring in Clustered Workplaces to Control COVID-19 Based on Geofencing and Fusion of Wi-Fi and Magnetic Field Metrics. Sensors 2022, 22, 5643. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.V.; Dikici, E.; Candemir, S.; Ball, R.L.; Prevedello, L.M. Mortality Prediction Analysis among COVID-19 Inpatients Using Clinical Variables and Deep Learning Chest Radiography Imaging Features. Tomography 2022, 8, 1791–1803. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhan, X.; Zhou, Z.; Li, Y.; Xie, P.; Zhang, S.; Li, X.; Yu, Y.; Zhou, C.; Zhang, L.; et al. AI-based analysis of CT images for rapid triage of COVID-19 patients. npj Digit. Med. 2021, 4, 75. [Google Scholar] [CrossRef]
- Elhazmi, A.; Al-Omari, A.; Sallam, H.; Mufti, H.N.; Rabie, A.A.; Alshahrani, M.; Mady, A.; Alghamdi, A.; Altalaq, A.; Azzam, M.H.; et al. Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. J. Infect. Public Health 2022, 15, 826–834. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Kim, J.Y. Role of chest imaging in the diagnosis and treatment of COVID-19. J. Korean Med. Assoc./Taehan Uisa Hyophoe Chi 2021, 64, 655–663. [Google Scholar] [CrossRef]
- Maouche, I.; Terrissa, S.L.; Benmohammed, K.; Zerhouni, N.; Boudaira, S. Early Prediction of ICU Admission within COVID-19 Patients Using Machine Learning Techniques. In Innovations in Smart Cities Applications, Proceedings of the International Conference on Smart City Applications, Karabuk, Turkey, 27–29 October 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Pradhan, A.; Prabhu, S.; Chadaga, K.; Sengupta, S.; Nath, G. Supervised learning models for the preliminary detection of COVID-19 in patients using demographic and epidemiological parameters. Information 2022, 13, 330. [Google Scholar] [CrossRef]
- Arora, G.; Joshi, J.; Mandal, R.S.; Shrivastava, N.; Virmani, R.; Sethi, T. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens 2021, 10, 1048. [Google Scholar] [CrossRef] [PubMed]
- Delijewski, M.; Haneczok, J. AI drug discovery screening for COVID-19 reveals zafirlukast as a repurposing candidate. Med. Drug Discov. 2021, 9, 100077. [Google Scholar] [CrossRef] [PubMed]
- Suguna, G.C.; Veerabhadrappa, S.T.; Tejas, A.; Vaishnavi, P.; Gowda, R.; Udupa, P.; Reddy, S.; Sudarshan, E. A Machine learning Classification approach for detection of Covid 19 using CT images. Emit. Int. J. Eng. Technol. 2022, 10, 183–194. [Google Scholar]
- Sahu, A.; Qazi, S.; Raza, K.; Verma, S. COVID-19: Hard road to find integrated computational drug and repurposing pipeline. In Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis; Springer: Singapore, 2021; pp. 295–309. [Google Scholar]
- Surianarayanan, C.; Chelliah, P.R. Leveraging artificial intelligence (AI) capabilities for COVID-19 containment. New Gener. Comput. 2021, 39, 717–741. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, X.; Ai, G.; Liu, D.; Zhu, B. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos Solitons Fractals 2020, 140, 110214. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Paki, R. Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization. Chaos Solitons Fractals 2021, 142, 110511. [Google Scholar] [CrossRef]
- Ayoobi, N.; Sharifrazi, D.; Alizadehsani, R.; Shoeibi, A.; Gorriz, J.M.; Moosaei, H.; Khosravi, A.; Nahavandi, S.; Chofreh, A.G.; Goni, F.A.; et al. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Results Phys. 2021, 27, 104495. [Google Scholar] [CrossRef]
- Zain, Z.M.; Alturki, N.M. COVID-19 pandemic forecasting using CNN-LSTM: A hybrid approach. J. Control. Sci. Eng. 2021, 2021, 8785636. [Google Scholar] [CrossRef]
- Makarovskikh, T.; Abotaleb, M. Hyper-parameter Tuning for Long Short-Term Memory (LSTM) Algorithm to Forecast a Disease Spreading. In Proceedings of the 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 23–27 May 2022. [Google Scholar]
- Li, Z.; Wang, Y.; Wang, Y.; Zheng, Y.; Su, H. COVID-19 Epidemic Trend Prediction Based on CNN-StackBiLSTM. In Proceedings of the 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Chengdu, China, 3–5 August 2022. [Google Scholar]
- Patidar, S.; Jindal, R.; Kumar, N. Streamed COVID-19 Data Analysis Using LSTM—A Deep Learning Technique. In Soft Computing for Problem Solving; Springer: Singapore, 2021; pp. 493–504. [Google Scholar]
- Li, Q.; Pan, Q.; Xie, L. Prediction of spread trend of epidemic based on spatial-temporal sequence. Symmetry 2022, 14, 1064. [Google Scholar] [CrossRef]
- Ahouz, F.; Sayahi, E. Predicting the Recovery Rate of COVID-19 Using a Novel Hybrid Method. In Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Mashhad, Iran, 28–29 October 2021. [Google Scholar]
- Garg, S.; Kumar, S.; Muhuri, P.K. A novel approach for COVID-19 Infection forecasting based on multi-source deep transfer learning. Comput. Biol. Med. 2022, 149, 105915. [Google Scholar] [CrossRef]
- Sinha, A.; Rathi, M. COVID-19 prediction using AI analytics for South Korea. Appl. Intell. 2021, 51, 8579–8597. [Google Scholar] [CrossRef] [PubMed]
- El-Rashidy, N.; Abdelrazik, S.; Abuhmed, T.; Amer, E.; Ali, F.; Hu, J.W.; El-Sappagh, S. Comprehensive survey of using machine learning in the COVID-19 pandemic. Diagnostics 2021, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Islam, M.U.; Sadeq, M.J.; Fung, W.K.; Uddin, J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. Sensors 2023, 23, 527. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Nayak, J.; Swapnarekha, H.; Abraham, A.; Naik, B.; Pelusi, D. Fusion of intelligent learning for COVID-19: A state-of-the-art review and analysis on real medical data. Neurocomputing 2021, 457, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Punia, R.; Kumar, L.; Mujahid, M.; Rohilla, R. Computer vision and radiology for COVID-19 detection. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020. [Google Scholar]
- Khemasuwan, D.; Sorensen, J.S.; Colt, H.G. Artificial intelligence in pulmonary medicine: Computer vision, predictive model and COVID-19. Eur. Respir. Rev. 2020, 29, 200181. [Google Scholar] [CrossRef]
- Gazzah, S.; Bencharef, O. A Survey on how computer vision can response to urgent need to contribute in COVID-19 pandemics. In Proceedings of the 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 9–11 June 2020. [Google Scholar]
- Bryant, B.; Abid, M.R. A Medical Imaging Review for COVID-19 Detection and its Comparison to Pneumonia. In Proceedings of the 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 27–30 October 2021. [Google Scholar]
- Giuliano, R.; Innocenti, E.; Mazzenga, F.; Vegni, A.M.; Vizzarri, A. IMPERSONAL: An IoT-Aided Computer Vision Framework for Social Distancing for Health Safety. IEEE Internet Things J. 2021, 9, 7261–7272. [Google Scholar] [CrossRef]
- Hassan, H.; Ren, Z.; Zhao, H.; Huang, S.; Li, D.; Xiang, S.; Kang, Y.; Chen, S.; Huang, B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput. Biol. Med. 2021, 141, 105123. [Google Scholar] [CrossRef]
- Suganthalakshmi, R.; Hafeeza, A.; Abinaya, P.; Devi, A.G. COVID-19 facemask detection with deep learning and computer vision. Int. J. Eng. Res. Technol. 2020, 7, 3127–3132. [Google Scholar]
- Eyiokur, F.I.; Ekenel, H.K.; Waibel, A. A computer vision system to help prevent the transmission of COVID-19. arXiv 2021, arXiv:2103.08773. [Google Scholar]
- Paul, O.; Rajput, N.S.; Dehury, C. Computer Vision in COVID-19: A Study. In Impact of AI and Data Science in Response to Coronavirus Pandemic; Springer: Singapore, 2021; pp. 285–304. [Google Scholar]
- Ulhaq, A.; Born, J.; Khan, A.; Gomes, D.P.S.; Chakraborty, S.; Paul, M. COVID-19 control by computer vision approaches: A survey. IEEE Access 2020, 8, 179437–179456. [Google Scholar] [CrossRef]
- Marbouh, D.; Abbasi, T.; Maasmi, F.; Omar, I.A.; Debe, M.S.; Salah, K.; Jayaraman, R.; Ellahham, S. Blockchain for COVID-19: Review, opportunities, and a trusted tracking system. Arab. J. Sci. Eng. 2020, 45, 9895–9911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bahl, S.; Bagha, A.K.; Javaid, M.; Shukla, D.K.; Haleem, A. Blockchain technology and its applications to combat COVID-19 pandemic. Res. Biomed. Eng. 2020, 38, 173–180. [Google Scholar] [CrossRef]
- Fusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo, M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A. Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey. IEEE Access 2021, 9, 95730–95753. [Google Scholar] [CrossRef]
- Verma, A.; Bhattacharya, P.; Zuhair, M.; Tanwar, S.; Kumar, N. Vacochain: Blockchain-based 5g-assisted uav vaccine distribution scheme for future pandemics. IEEE J. Biomed. Health Inform. 2021, 26, 1997–2007. [Google Scholar] [CrossRef]
- Antal, C.; Cioara, T.; Antal, M.; Anghel, I. Blockchain platform for COVID-19 vaccine supply management. IEEE Open J. Comput. Soc. 2021, 2, 164–178. [Google Scholar] [CrossRef]
- Ng, W.Y.; Tan, T.E.; Movva, P.V.; Fang, A.H.S.; Yeo, K.K.; Ho, D.; San Foo, F.S.; Xiao, Z.; Sun, K.; Wong, T.Y.; et al. Blockchain applications in health care for COVID-19 and beyond: A systematic review. Lancet Digit. Health 2021, 3, e819–e829. [Google Scholar] [CrossRef] [PubMed]
- Ferone, A.; Della Porta, A. A blockchain–based infection tracing and notification system by non-fungible tokens. Comput. Commun. 2022, 192, 66–74. [Google Scholar] [CrossRef]
- Toubiana, R.; Macdonald, M.; Rajananda, S.; Lokvenec, T.; Kingsley, T.C.; Romero-Brufau, S. Blockchain for Electronic Vaccine Certificates: More Cons Than Pros? Front. Big Data 2022, 5, 833196. [Google Scholar] [CrossRef]
- Tan, L.; Yu, K.; Shi, N.; Yang, C.; Wei, W.; Lu, H. Towards secure and privacy-preserving data sharing for COVID-19 medical records: A blockchain-empowered approach. IEEE Trans. Netw. Sci. Eng. 2021, 9, 271–281. [Google Scholar] [CrossRef]
- Tahir, S.; Tahir, H.; Sajjad, A.; Rajarajan, M.; Khan, F. Privacy-preserving COVID-19 contact tracing using blockchain. J. Commun. Netw. 2021, 23, 360–373. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Feki, I.; Ammar, S.; Kessentini, Y.; Muhammad, K. Federated learning for COVID-19 screening from Chest X-ray images. Appl. Soft Comput. 2021, 106, 107330. [Google Scholar] [CrossRef] [PubMed]
- Miri Rostami, S.; Samet, S.; Kobti, Z. A Study of Blockchain-Based Federated Learning. Fed. Transf. Learn. 2023, 352, 139–165. [Google Scholar]
- Malik, H.; Naeem, A.; Naqvi, R.A.; Loh, W.K. DMFL-Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays. Sensors 2023, 23, 743. [Google Scholar] [CrossRef]
- Li, Q.; Diao, Y.; Chen, Q.; He, B. Federated learning on non-iid data silos: An experimental study. In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022. [Google Scholar]
- Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.S.; et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, X.; Hwang, S.O. Applications and Challenges of Federated Learning Paradigm in the Big Data Era with Special Emphasis on COVID-19. Big Data Cogn. Comput. 2022, 6, 127. [Google Scholar] [CrossRef]
- Crowson, M.G.; Moukheiber, D.; Arévalo, A.R.; Lam, B.D.; Mantena, S.; Rana, A.; Goss, D.; Bates, D.W.; Celi, L.A. A systematic review of federated learning applications for biomedical data. PLoS Digit. Health 2022, 1, e0000033. [Google Scholar] [CrossRef]
- Flores, M.; Dayan, I.; Roth, H.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.; Liu, A.; Costa, A.; Wood, B.; et al. Federated Learning used for predicting outcomes in SARS-CoV-2 patients. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, A.A.; Kumar, J.; Golilarz, N.A.; Zhang, S.; Ting, Y.; Zheng, C.; Wang, W. Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging. IEEE Sens. J. 2021, 21, 16301–16314. [Google Scholar] [CrossRef]
- Yang, D.; Xu, Z.; Li, W.; Myronenko, A.; Roth, H.R.; Harmon, S.; Xu, S.; Turkbey, B.; Turkbey, E.; Wang, X.; et al. Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Med. Image Anal. 2021, 70, 101992. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; So, T.Y.; Jiang, M.; Liu, Q.; Vardhanabhuti, V.; Kaissis, G.; Li, Z.; Si, W.; Lee, H.H.; Yu, K.; et al. Federated deep learning for detecting COVID-19 lung abnormalities in CT: A privacy-preserving multinational validation study. npj Digit. Med. 2021, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Zomaya, A.Y. Federated learning for COVID-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet Things J. 2021, 9, 10257–10271. [Google Scholar] [CrossRef]
- Kumaresan, M.; Kumar, M.S.; Muthukumar, N. Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning. Math. Biosci. Eng. 2022, 19, 9983–10005. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, R. Implementation of the QoS framework using fog computing to predict COVID-19 disease at early stage. World J. Eng. 2021, 19, 80–89. [Google Scholar] [CrossRef]
- Alhudhaif, A.; Polat, K.; Karaman, O. Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. Expert Syst. Appl. 2021, 180, 115141. [Google Scholar] [CrossRef]
- Chen, X.; Shao, Y.; Xue, Z.; Yu, Z. Multi-Modal COVID-19 Discovery with Collaborative Federated Learning. In Proceedings of the 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), Xi’an, China, 7–8 November 2021; pp. 52–56. [Google Scholar]
- Kochgaven, C.; Mishra, P.; Shitole, S. Detecting Presence of COVID-19 with ResNet-18 using PyTorch. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; pp. 1–6. [Google Scholar]
- Malhotra, R.; Patel, H.; Fataniya, B.D. Prediction of COVID-19 Disease with Chest X-rays Using Convolutional Neural Network. In Proceedings of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021; pp. 545–550. [Google Scholar]
- Laouarem, A.; Kara-Mohamed, C.; Bourenane, E.B.; Hamdi-Cherif, A. A deep learning model for CXR-based COVID-19 detection. In Proceedings of the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; pp. 1–5. [Google Scholar]
- Song, Q.; Zheng, Y.J.; Yang, J.; Huang, Y.J.; Sheng, W.G.; Chen, S.Y. Predicting Demands of COVID-19 Prevention and Control Materials via Co-Evolutionary Transfer Learning. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Ji, T.; Wang, X.; Hu, B.; Li, P. Toward Combatting COVID-19: A Risk Assessment System. IEEE Internet Things J. 2021, 8, 15953–15964. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Sasidhar, V.J.; Vignesh, E. Disease Prediction Systems for COVID with Electronic Medical Records. Int. J. Innov. Sci. Res. Technol. 2021, 6, 8–10. [Google Scholar]
- Ho, T.T.; Tran, K.D.; Huang, Y. FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. Sensors 2022, 22, 3728. [Google Scholar] [CrossRef]
- Chen, R.; Li, L.; Ma, Y.; Gong, Y.; Guo, Y.; Ohtsuki, T.; Pan, M. Constructing Mobile Crowdsourced COVID-19 Vulnerability Map with Geo-Indistinguishability. IEEE Internet Things J. 2022, 9, 17403–17416. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S. An internet-of-medical-things-enabled edge computing framework for tackling COVID-19. IEEE Internet Things J. 2021, 8, 15847–15854. [Google Scholar] [CrossRef] [PubMed]
- Durga, R.; Poovammal, E. FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction. Front. Public Health 2022, 10, 892499. [Google Scholar] [CrossRef] [PubMed]
- Aljumah, A. Assessment of machine learning techniques in IoT-based architecture for the monitoring and prediction of COVID-19. Electronics 2021, 10, 1834. [Google Scholar] [CrossRef]
- Mukherjee, R.; Kundu, A.; Mukherjee, I.; Gupta, D.; Tiwari, P.; Khanna, A.; Shorfuzzaman, M. IoT-cloud based healthcare model for COVID-19 detection: An enhanced k-Nearest Neighbour classifier based approach. Computing 2021, 1–21. [Google Scholar] [CrossRef]
- Wang, H.; Tao, G.; Ma, J.; Jia, S.; Chi, L.; Yang, H.; Zhao, Z.; Tao, J. Predicting the Epidemics Trend of COVID-19 Using Epidemiological-Based Generative Adversarial Networks. IEEE J. Sel. Top. Signal Process. 2022, 16, 276–288. [Google Scholar] [CrossRef]
- Mir, M.H.; Jamwal, S.; Mehbodniya, A.; Garg, T.; Iqbal, U.; Samori, I.A. IoT-Enabled Framework for Early Detection and Prediction of COVID-19 Suspects by Leveraging Machine Learning in Cloud. J. Healthc. Eng. 2022, 2022, 7713939. [Google Scholar] [CrossRef]
- Rathee, G.; Garg, S.; Kaddoum, G.; Wu, Y.; Jayakody, D.N.; Alamri, A. ANN assisted-IoT enabled COVID-19 patient monitoring. IEEE Access 2021, 9, 42483–42492. [Google Scholar] [CrossRef]
- Hidayat, S.N.; Julian, T.; Dharmawan, A.B.; Puspita, M.; Chandra, L.; Rohman, A.; Julia, M.; Rianjanu, A.; Nurputra, D.K.; Triyana, K.; et al. Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an electronic nose. Artif. Intell. Med. 2022, 129, 102323. [Google Scholar] [CrossRef]
- Salim, M.M.; Park, J.H. Federated Learning-based secure Electronic Health Record sharing scheme in Medical Informatics. IEEE J. Biomed. Health Inform. 2022. [Google Scholar] [CrossRef]
- AlOmani, G.Y.; Darwesh, A.D.; AlSennei, S.A.; Buabbas, H.A.; AlGhareeb, A.F.; Ahmed, H.O. COVID-19 Symptoms Monitoring Sensor Network for Isolation Rooms at Hospitals. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 741–745. [Google Scholar]
- Park, S.; Kim, G.; Kim, J.; Kim, B.; Ye, J.C. Federated split task-agnostic vision transformer for COVID-19 CXR diagnosis. Adv. Neural Inf. Process. Syst. 2021, 34, 24617–24630. [Google Scholar]
- Singh, M.; Bansal, S. A Proposed Federated Learning Model for Vaccination Tweets. In Proceedings of the International Conference on Computational Intelligence in Pattern Recognition, Howrah, India, 23–24 April 2022; Springer: Singapore, 2022; pp. 383–392. [Google Scholar]
- Yan, R.; Qu, L.; Wei, Q.; Huang, S.C.; Shen, L.; Rubin, D.; Xing, L.; Zhou, Y. Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging. arXiv 2022, arXiv:2205.08576. [Google Scholar] [CrossRef]
- Islam, T.U.; Ghasemi, R.; Mohammed, N. Privacy-Preserving Federated Learning Model for Healthcare Data. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; pp. 0281–0287. [Google Scholar]
- Wang, X.V.; Wang, L. A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. 2021, 60, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Renu, N. Technological advancement in the era of COVID-19. SAGE Open Med. 2021, 9, 20503121211000912. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.; Maakar, S.K.; Sinwar, D.; Jangid, M.; Sangwan, P. Applications of flying ad-hoc network during COVID-19 pandemic. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1099, 012005. [Google Scholar] [CrossRef]
- Bhaskar, S.; Bradley, S.; Sakhamuri, S.; Moguilner, S.; Chattu, V.K.; Pandya, S.; Schroeder, S.; Ray, D.; Banach, M. Designing futuristic telemedicine using artificial intelligence and robotics in the COVID-19 era. Front. Public Health 2020, 8, 556789. [Google Scholar] [CrossRef]
- Akhund, T.M.N.U.; Jyoty, W.B.; Siddik, M.A.B.; Newaz, N.T.; Al Wahid, S.A.; Sarker, M.M. IoT based low-cost robotic agent design for disabled and COVID-19 virus affected people. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020. [Google Scholar]
- Gao, A.; Murphy, R.R.; Chen, W.; Dagnino, G.; Fischer, P.; Gutierrez, M.G.; Kundrat, D.; Nelson, B.J.; Shamsudhin, N.; Su, H.; et al. Progress in robotics for combating infectious diseases. Sci. Robot. 2021, 6, eabf1462. [Google Scholar] [CrossRef]
- Akhund, T.M.; Ullah, N.; Newaz, N.T.; Rakib Hossain, M.; Shamim Kaiser, M. Low-Cost Smartphone-Controlled Remote Sensing IoT Robot. In Information and Communication Technology for Competitive Strategies (ICTCS 2020); Springer: Singapore, 2021; pp. 569–576. [Google Scholar]
- Himel, A.H.; Boby, F.A.; Saba, S.; Akhund, T.M.; Ullah, N.; Ali, K.M. Contribution of Robotics in Medical Applications A Literary Survey. In Intelligent Sustainable Systems; Springer: Singapore, 2022; pp. 247–255. [Google Scholar]
- Sanchez-Iborra, R.; Skarmeta, A.F. Tinyml-enabled frugal smart objects: Challenges and opportunities. IEEE Circuits Syst. Mag. 2020, 20, 4–18. [Google Scholar] [CrossRef]
- Dutta, L.; Bharali, S. Tinyml meets iot: A comprehensive survey. Internet Things 2021, 16, 100461. [Google Scholar] [CrossRef]
- Warden, P.; Situnayake, D. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud-Univ. Comput. Inf. Sci. 2021, 34, 1595–1623. [Google Scholar] [CrossRef]
- Piątkowski, D.; Walkowiak, K. TinyML-Based Concept System Used to Analyze Whether the Face Mask Is Worn Properly in Battery-Operated Conditions. Appl. Sci. 2022, 12, 484. [Google Scholar] [CrossRef]
- Santiago, P.R. Tinyml Monitoring Techniques for A-Vent: An Iot Edge for Tracking Clinical Risk Outcomes and Automatic Detection of Patient-Ventilator Asynchrony. Ph.D. Thesis, Ateneo de Manila University, Quezon City, Philippines, 2021. [Google Scholar]
- Fyntanidou, B.; Zouka, M.; Apostolopoulou, A.; Bamidis, P.D.; Billis, A.; Mitsopoulos, K.; Angelidis, P.; Fourlis, A. IoT-based smart triage of COVID-19 suspicious cases in the Emergency Department. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Purawat, S.; Dasgupta, S.; Song, J.; Davis, S.; Claypool, K.T.; Chandra, S.; Mason, A.; Viswanath, V.; Klein, A.; Kasl, P.; et al. TemPredict: A Big Data Analytical Platform for Scalable Exploration and Monitoring of Personalized Multimodal Data for COVID-19. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021. [Google Scholar]
- Mohan, P.; Paul, A.J.; Chirania, A. A tiny CNN architecture for medical face mask detection for resource-constrained endpoints. In Innovations in Electrical and Electronic Engineering; Springer: Singapore, 2021; pp. 657–670. [Google Scholar]
- Rana, A.; Dhiman, Y.; Anand, R. Cough Detection System using TinyML. In Proceedings of the 2022 International Conference on Computing, Communication and Power Technology (IC3P), Visakhapatnam, India, 7–8 January 2022. [Google Scholar]
- Avdić, D. Ambient Intelligence (AmI) Assisted Passive Ventilation in Mixed-Use Micro Apartment During SARS-CoV-2 Pandemic. J. Pervasive Technol. 2021, 1, 8. [Google Scholar]
- Ooko, S.O.; Mukanyiligira, D.; Munyampundu, J.P.; Nsenga, J. Synthetic Exhaled Breath Data-Based Edge AI Model for the Prediction of Chronic Obstructive Pulmonary Disease. In Proceedings of the 2021 International Conference on Computing and Communications Applications and Technologies (I3CAT), Ipswich, UK, 15 September 2021. [Google Scholar]
- Jaiswal, D.; Gigie, A.; Chakravarty, T.; Ghose, A.; Misra, A. Table of interest: Activity recognition and behaviour analysis using a battery less wearable sensor. In Proceedings of the 4th ACM Workshop on Wearable Systems and Applications, WearSys ’18, Munich, Germany, 10 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 39–44. [Google Scholar]
- Klus, L.; Lohan, E.S.; Granell, C.; Nurmi, J. Lossy compression methods for performance-restricted wearable devices. In Proceedings of the International Conference on Localization and GNSS (ICL-GNSS 2020), CEUR-WS, Tampere, Finland, 2–4 June 2020. [Google Scholar]
- Costa, D.; Costa, M.; Pinto, S. Train Me If You Can: Decentralized Learning on the Deep Edge. Appl. Sci. 2022, 12, 4653. [Google Scholar] [CrossRef]
- Tsoukas, V.; Boumpa, E.; Giannakas, G.; Kakarountas, A. A Review of Machine Learning and TinyML in Healthcare. In Proceedings of the 25th Pan-Hellenic Conference on Informatics, Volos, Greece, 26–28 November 2021. [Google Scholar]
- Shumba, A.T.; Montanaro, T.; Sergi, I.; Fachechi, L.; De Vittorio, M.; Patrono, L. Embedded Machine Learning: Towards a Low-Cost Intelligent IoT edge. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 5–8 July 2022. [Google Scholar]
- Doyu, H.; Morabito, R.; Höller, J. Bringing machine learning to the deepest IoT edge with TinyML as-a-service. IEEE IoT Newsl. 2020, 11, 1–3. [Google Scholar]
- Sanchez-Iborra, R.; Zoubir, A.; Hamdouchi, A.; Idri, A.; Skarmeta, A. Intelligent and Efficient IoT Through the Cooperation of TinyML and Edge Computing. Informatica 2023, 1–22. [Google Scholar] [CrossRef]
- Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and opportunities in edge computing. In Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016. [Google Scholar]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Hafeez, T.; Xu, L.; Mcardle, G. Edge intelligence for data handling and predictive maintenance in IIOT. IEEE Access 2021, 9, 49355–49371. [Google Scholar] [CrossRef]
- Sufian, A.; Ghosh, A.; Sadiq, A.S.; Smarandache, F. A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic. J. Syst. Archit. 2020, 108, 101830. [Google Scholar] [CrossRef]
- Yassine, A.; Hossain, M.S. COVID-19 networking demand: An auction-based mechanism for automated selection of edge computing services. IEEE Trans. Netw. Sci. Eng. 2020, 9, 308–318. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Louis, P.C.; Wheless, L.E.; Huo, Y. Wearmask: Fast in-browser face mask detection with serverless edge computing for COVID-19. arXiv 2021, arXiv:2101.00784. [Google Scholar]
- Kong, X.; Wang, K.; Wang, S.; Wang, X.; Jiang, X.; Guo, Y.; Shen, G.; Chen, X.; Ni, Q. Real-time mask identification for COVID-19: An edge-computing-based deep learning framework. IEEE Internet Things J. 2021, 8, 15929–15938. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.R.; Ismail, W.N.; Chowdhury, A.; Hossain, S.; Huda, S.; Hassan, M.M. A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19. J. Supercomput. 2022, 78, 10250–10274. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.J.T.; Nafea, M.; Nugroho, H. Towards edge devices implementation: Deep learning model with visualization for COVID-19 prediction from chest X-ray. Adv. Comput. Intell. 2022, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, P.; Liyanage, M.; Jurcut, A.D. Novel MEC based approaches for smart hospitals to combat COVID-19 pandemic. IEEE Consum. Electron. Mag. 2020, 10, 80–91. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; Gur, G.; Ylianttila, M.; Liyanage, M. The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges. ICT Express 2021, 7, 244–252. [Google Scholar] [CrossRef]
- Hegde, C.; Jiang, Z.; Suresha, P.B.; Zelko, J.; Seyedi, S.; Smith, M.A.; Wright, D.W.; Kamaleswaran, R.; Reyna, M.A.; Clifford, G.D. Autotriage-an open source edge computing raspberry pi-based clinical screening system. medRxiv 2020. [Google Scholar] [CrossRef]
- Xu, X.; Tian, H.; Zhang, X.; Qi, L.; He, Q.; Dou, W. DisCOV: Distributed COVID-19 detection on X-ray images with edge-cloud collaboration. IEEE Trans. Serv. Comput. 2022, 15, 1206–1219. [Google Scholar] [CrossRef]
- Ksentini, A.; Brik, B. An edge-based social distancing detection service to mitigate covid-19 propagation. IEEE Internet Things Mag. 2020, 3, 35–39. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.S.; Alrajeh, N.A.; Guizani, N. B5G and explainable deep learning assisted healthcare vertical at the edge: COVID-I9 perspective. IEEE Netw. 2020, 34, 98–105. [Google Scholar] [CrossRef]
- Sufian, A.; You, C.; Dong, M. A deep transfer learning-based edge computing method for home health monitoring. In Proceedings of the 2021 55th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 24–26 March 2021. [Google Scholar]
- Kong, X.; Wu, Y.; Wang, H.; Xia, F. Edge Computing for Internet of Everything: A Survey. IEEE Internet Things J. 2022, 9, 23472–23485. [Google Scholar] [CrossRef]
- Silva, M.C.; Bianchi, A.G.C.; Ribeiro, S.P.; Silva, J.S.; Oliveira, R.A.R. Edge Computing Smart Healthcare Cooperative Architecture for COVID-19 Medical Facilities. IEEE Lat. Am. Trans. 2022, 20, 2229–2236. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, A. Cloud–Fog–Edge Computing Framework for Combating COVID-19 Pandemic. In Proceedings of the International Conference on Advanced Computing Applications, Online, 27–28 March 2021; Springer: Singapore, 2022. [Google Scholar]
- Ghosh, S.; Mukherjee, A. STROVE: Spatial data infrastructure enabled cloud–fog–edge computing framework for combating COVID-19 pandemic. Innov. Syst. Softw. Eng. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, S.; Dai, H.N.; Li, D. Infectious Probability Analysis on COVID-19 Spreading with Wireless Edge Networks. IEEE J. Sel. Areas Commun. 2022, 40, 3239–3254. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhou, X.; Wang, R.; Ding, W.; Chu, Y.; Tang, S.; Jia, X.; Xu, X. Intelligent monitoring for infectious diseases with fuzzy systems and edge computing: A survey. Appl. Soft Comput. 2022, 123, 108835. [Google Scholar] [CrossRef]
- Awad, A.; Fouda, M.M.; Khashaba, M.M.; Mohamed, E.R.; Hosny, K.M. Utilization of mobile edge computing on the Internet of Medical Things: A survey. ICT Express, 2022; in press. [Google Scholar]
- Ranaweera, P.; de Alwis, C.; Jurcut, A.D.; Liyanage, M. Realizing contact-less applications with Multi-Access Edge Computing. ICT Express 2022, 8, 575–587. [Google Scholar] [CrossRef]
- Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated learning in edge computing: A systematic survey. Sensors 2022, 22, 450. [Google Scholar] [CrossRef]
- Liu, B.; Luo, Z.; Chen, H.; Li, C. A Survey of State-of-the-Art on Edge Computing: Theoretical Models, Technologies, Directions, and Development Paths. IEEE Access 2022, 10, 54038–54063. [Google Scholar] [CrossRef]
- Jin, X.; Li, L.; Dang, F.; Chen, X.; Liu, Y. A survey on edge computing for wearable technology. Digital Signal Process. 2022, 125, 103146. [Google Scholar] [CrossRef]
- Li, T.; He, X.; Jiang, S.; Liu, J. A survey of privacy-preserving offloading methods in mobile-edge computing. J. Netw. Comput. Appl. 2022, 203, 103395. [Google Scholar] [CrossRef]
- Omolara, A.E.; Alabdulatif, A.; Abiodun, O.I.; Alawida, M.; Alabdulatif, A.; Arshad, H. The internet of things security: A survey encompassing unexplored areas and new insights. Comput. Secur. 2022, 112, 102494. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Mishra, P.; Moustafa, N.; Chauhan, R. A holistic survey on the use of emerging technologies to provision secure healthcare solutions. Comput. Electr. Eng. 2022, 99, 107691. [Google Scholar] [CrossRef]
- Ayoub, J.; Yang, X.J.; Zhou, F. Combat COVID-19 infodemic using explainable natural language processing models. Inf. Process. Manag. 2021, 58, 102569. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Leaman, R.; Allot, A.; Luo, L.; Wei, C.H.; Yan, S.; Lu, Z. Artificial intelligence in action: Addressing the COVID-19 pandemic with natural language processing. Annu. Rev. Biomed. Data Sci. 2021, 4, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, A.; Xi, P.; Tremblay, S.; Spencer, B.; Pall, R.; Wong, A. Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing. Scientometrics 2021, 126, 725–739. [Google Scholar] [CrossRef]
- Oyebode, O.; Ndulue, C.; Mulchandani, D.; Suruliraj, B.; Adib, A.; Orji, F.A.; Milios, E.; Matwin, S.; Orji, R. COVID-19 pandemic: Identifying key issues using social media and natural language processing. J. Healthc. Inform. Res. 2022, 6, 174–207. [Google Scholar] [CrossRef]
- Li, I.; Li, Y.; Li, T.; Alvarez-Napagao, S.; Garcia-Gasulla, D.; Suzumura, T. What are we depressed about when we talk about COVID-19: Mental health analysis on tweets using natural language processing. In Proceedings of the International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, 15–17 December 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Carriere, J.; Shafi, H.; Brehon, K.; Pohar Manhas, K.; Churchill, K.; Ho, C.; Tavakoli, M. Case report: Utilizing AI and NLP to assist with healthcare and rehabilitation during the COVID-19 pandemic. Front. Artif. Intell. 2021, 4, 613637. [Google Scholar] [CrossRef]
- De Caprio, D.; Gartner, J.; Burgess, T.; Garcia, K.; Kothari, S.; Sayed, S.; McCall, C.J. Building a COVID-19 vulnerability index. arXiv 2020, arXiv:2003.07347. [Google Scholar]
- Wang, L.; Jiang, L.; Pan, D.; Wang, Q.; Yin, Z.; Kang, Z.; Tian, H.; Geng, X.; Shao, J.; Pan, W.; et al. Novel approach by natural language processing for COVID-19 knowledge discovery. Biomed. J. 2022, 45, 472–481. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural language processing for smart healthcare. IEEE Rev. Biomed. Eng. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Bruce, X.B.; Liu, Y.; Ng, G.W.Y.; Chia, N.H.; So, E.H.K.; So, S.S.; Cheung, V.K.L. Heallo: Conversational System for Communication Training in Healthcare Professional Education. In Proceedings of the 2022 10th International Conference on Information and Education Technology (ICIET), Matsue, Japan, 9–11 April 2022. [Google Scholar]
- Meystre, S.M.; Heider, P.M.; Kim, Y.; Davis, M.; Obeid, J.; Madory, J.; Alekseyenko, A.V. Natural language processing enabling COVID-19 predictive analytics to support data-driven patient advising and pooled testing. J. Am. Med. Inform. Assoc. 2022, 29, 12–21. [Google Scholar] [CrossRef]
- Verma, S.; Paul, A.; Kariyannavar, S.S.; Katarya, R. Understanding the Applications of Natural Language Processing on COVID-19 Data. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020. [Google Scholar]
- Hall, K.; Chang, V.; Jayne, C. A review on Natural Language Processing Models for COVID-19 research. Healthc. Anal. 2022, 2, 100078. [Google Scholar] [CrossRef]
- Sengupta, S.; Mugde, S.; Sharma, G. An Exploration of Impact of COVID 19 on mental health-Analysis of tweets using Natural Language Processing techniques. medRxiv 2020. [Google Scholar] [CrossRef]
- Ye, J.; Hai, J.; Wang, Z.; Wei, C.; Song, A.J. Leveraging natural language processing and geospatial time series model to analyze COVID-19 vaccination sentiment dynamics from Tweets. medRxiv 2022. [Google Scholar]
- Caskey, J.; McConnell, I.L.; Oguss, M.; Dligach, D.; Kulikoff, R.; Grogan, B.; Gibson, C.; Wimmer, E.; DeSalvo, T.E.; Nyakoe-Nyasani, E.E.; et al. Identifying COVID-19 Outbreaks From Contact-Tracing Interview Forms for Public Health Departments: Development of a Natural Language Processing Pipeline. JMIR Public Health Surveill. 2022, 8, e36119. [Google Scholar] [CrossRef]
- Mohanty, S.; Sharma, R.; Saxena, M.; Saxena, A. Heuristic approach towards COVID-19: Big data analytics and classification with natural language processing. In Data Analytics and Management; Springer: Singapore, 2021; pp. 775–791. [Google Scholar]
- Heider, P.M.; Pipaliya, R.M.; Meystre, S.M. A natural language processing tool offering data extraction for COVID-19 related information (DECOVRI). In MEDINFO 2021: One World, One Health–Global Partnership for Digital Innovation; IOS Press: Amsterdam, The Netherlands, 2022; pp. 1062–1063. [Google Scholar]
- Arbane, M.; Benlamri, R.; Brik, Y.; Alahmar, A.D. Social media-based COVID-19 sentiment classification model using Bi-LSTM. Expert Syst. Appl. 2023, 212, 118710. [Google Scholar] [CrossRef]
- Sufi, F.K. Automatic identification and explanation of root causes on COVID-19 index anomalies. MethodsX 2023, 10, 101960. [Google Scholar] [CrossRef]
- Prianto, C.; Harani, N.H. The COVID-19 Chatbot Application Using A Natural Language Processing Approach. Int. J. Inf. Syst. Technol. 2021, 5, 198–206. [Google Scholar]
- Amer, E.; Hazem, A.; Farouk, O.; Louca, A.; Mohamed, Y.; Ashraf, M. A proposed chatbot framework for COVID-19. In Proceedings of the 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 26–27 May 2021. [Google Scholar]
- Hu, L.; Li, J.; Lin, G.; Peng, S.; Zhang, Z.; Zhang, Y.; Dong, C. Defending against Membership Inference Attacks with High Utility by GAN. IEEE Trans. Dependable Secur. Comput. 2022. [Google Scholar] [CrossRef]
- El Emam, K.; Hoptroff, R. The synthetic data paradigm for using and sharing data. Cut. Exec. Update 2019, 19. [Google Scholar]
- Hernandez, M.; Epelde, G.; Beristain, A.; Alvarez, R.; Molina, C.; Larrea, X.; Alberdi, A.; Timoleon, M.; Bamidis, P.; Konstantinidis, E. Incorporation of Synthetic Data Generation Techniques within a Controlled Data Processing Workflow in the Health and Wellbeing Domain. Electronics 2022, 11, 812. [Google Scholar] [CrossRef]
- Hernandez, M.; Epelde, G.; Alberdi, A.; Cilla, R.; Rankin, D. Synthetic Data Generation for Tabular Health Records: A Systematic Review. Neurocomputing 2022, 493, 28–45. [Google Scholar] [CrossRef]
- Li, Z.; Ma, C.; Shi, X.; Zhang, D.; Li, W.; Wu, L. TSA-GAN: A robust generative adversarial networks for time series augmentation. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021. [Google Scholar]
- Kannan, S. Synthetic time series data generation for edge analytics. F1000Research 2022, 11, 67. [Google Scholar] [CrossRef]
- Mannino, M.; Abouzied, A. Is this real? Generating synthetic data that looks real. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, New Orleans, LA, USA, 20–23 October 2019. [Google Scholar]
- Luo, M.; Wang, K.; Cai, Z.; Liu, A.; Li, Y.; Cheang, C.F. Using imbalanced triangle synthetic data for machine learning anomaly detection. Comput. Mater. Contin. 2019, 58, 15–26. [Google Scholar]
- Joshi, I.; Grimmer, M.; Rathgeb, C.; Busch, C.; Bremond, F.; Dantcheva, A. Synthetic data in human analysis: A survey. arXiv 2022, arXiv:2208.09191. [Google Scholar]
- Hu, T.Y.; Armandpour, M.; Shrivastava, A.; Chang, J.H.R.; Koppula, H.; Tuzel, O. SYNT++: Utilizing Imperfect Synthetic Data to Improve Speech Recognition. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022. [Google Scholar]
- Rankin, D.; Black, M.; Bond, R.; Wallace, J.; Mulvenna, M.; Epelde, G. Reliability of supervised machine learning using synthetic data in health care: Model to preserve privacy for data sharing. JMIR Med. Inform. 2020, 8, e18910. [Google Scholar] [CrossRef]
- Lopez-Rojas, E.A.; Axelsson, S. Money laundering detection using synthetic data. In Annual Workshop of the Swedish Artificial Intelligence Society (SAIS); Linköping University Electronic Press: Linkoping, Sweden, 2012. [Google Scholar]
- Thambawita, V.; Salehi, P.; Sheshkal, S.A.; Hicks, S.A.; Hammer, H.L.; Parasa, S.; Lange, T.D.; Halvorsen, P.; Riegler, M.A. SinGAN-Seg: Synthetic training data generation for medical image segmentation. PLoS ONE 2022, 17, e0267976. [Google Scholar] [CrossRef]
- Dahal, K. Automatic Detection of Shockable Rhythms in AED from Imbalanced ECG Dataset Using EC-WCGAN. Ph.D. Thesis, The University of Memphis, Memphis, TN, USA, 2022. [Google Scholar]
- Zhang, Z.; Yan, C.; Malin, B.A. Membership inference attacks against synthetic health data. J. Biomed. Inform. 2022, 125, 103977. [Google Scholar] [CrossRef]
- Yan, C.; Yan, Y.; Wan, Z.; Zhang, Z.; Omberg, L.; Guinney, J.; Mooney, S.D.; Malin, B.A. A Multifaceted Benchmarking of Synthetic Electronic Health Record Generation Models. arXiv 2022, arXiv:2208.01230. [Google Scholar] [CrossRef]
- Berke, A.; Doorley, R.; Larson, K.; Moro, E. Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, 25–29 April 2022. [Google Scholar]
- Mauro, G.; Luca, M.; Longa, A.; Lepri, B.; Pappalardo, L. Generating Synthetic Mobility Networks with Generative Adversarial Networks. arXiv 2022, arXiv:2202.11028. [Google Scholar]
- Kollar, T.; Laskey, M.; Stone, K.; Thananjeyan, B.; Tjersl, M. Simnet: Enabling robust unknown object manipulation from pure synthetic data via stereo. In Proceedings of the Conference on Robot Learning (PMLR), Auckland, New Zealand, 14–18 December 2022. [Google Scholar]
- Zhai, G.; Narazaki, Y.; Wang, S.; Shajihan, S.A.V.; Spencer, B.F., Jr. Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks. Smart Struct. Syst. 2022, 29, 237–250. [Google Scholar]
- Delussu, R.; Putzu, L.; Fumera, G. Scene-specific crowd counting using synthetic training images. Pattern Recognit. 2022, 124, 108484. [Google Scholar] [CrossRef]
- Hou, Y.; Li, C.; Lu, Y.; Zhu, L.; Li, Y.; Jia, H.; Xie, X. Enhancing and Dissecting Crowd Counting by Synthetic Data. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022. [Google Scholar]
- Song, M.; Sun, C.; Cai, D.; Hong, S.; Li, H. Classifying vaguely labeled data based on evidential fusion. Inf. Sci. 2022, 583, 159–173. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.; Chen, Y.; Du, Y.; Yang, E. Controllable data synthesis method for grammatical error correction. Front. Comput. Sci. 2022, 16, 164318. [Google Scholar] [CrossRef]
- Coyner, A.S.; Chen, J.S.; Chang, K.; Singh, P.; Ostmo, S.; Chan, R.P.; Chiang, M.F.; Kalpathy-Cramer, J.; Campbell, J.P. Imaging and Informatics in Retinopathy of Prematurity Consortium. Synthetic medical images for robust, privacy-preserving training of artificial intelligence: Application to retinopathy of prematurity diagnosis. Ophthalmol. Sci. 2022, 2, 100126. [Google Scholar] [CrossRef]
- Lyman, J.P.; Doucette, A.; Zheng-Lin, B.; Cabanski, C.R.; Maloy, M.A.; Bayless, N.L.; Xu, J.; Smith, W.; Karakunnel, J.J.; Fairchild, J.P.; et al. Feasibility and utility of synthetic control arms derived from real-world data to support clinical development. J. Clin. Oncol. Am. Soc. Clin. Oncol. J. 2022, 40, 528. [Google Scholar] [CrossRef]
- Li, X.; Metsis, V.; Wang, H.; Ngu, A.H.H. TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network. arXiv 2022, arXiv:2202.02691. [Google Scholar]
- Beaumont, J.; Gambarota, G.; Prior, M.; Fripp, J.; Reid, L.B. Avoiding data loss: Synthetic MRIs generated from diffusion imaging can replace corrupted structural acquisitions for freesurfer-seeded tractography. PLoS ONE 2022, 17, e0247343. [Google Scholar] [CrossRef]
- Reid, L.B.; Martinez-Heras, E.; Manjon, J.V.; Jeffree, R.L.; Alexander, H.; Trinder, J.; Solana, E.; Llufriu, S.; Rose, S.; Prior, M.; et al. Fully automated delineation of the optic radiation for surgical planning using clinically feasible sequences. Hum. Brain Mapp. 2021, 42, 5911–5926. [Google Scholar] [CrossRef]
- Kokosi, T.; Harron, K. Synthetic data in medical research. BMJ Med. 2022, 1, e000167. [Google Scholar] [CrossRef]
- Das, H.P.; Tran, R.; Singh, J.; Yue, X.; Tison, G.; Sangiovanni-Vincentelli, A.; Spanos, C.J. Conditional synthetic data generation for robust machine learning applications with limited pandemic data. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36. [Google Scholar]
- Majid, H.; Ali, K.H. Expanding New COVID-19 Data with Conditional Generative Adversarial Networks. Iraqi J. Electr. Electron. Eng. 2022, 18, 103–110. [Google Scholar] [CrossRef]
- Gujar, S.; Shah, T.; Honawale, D.; Bhosale, V.; Khan, F.; Verma, D.; Ranjan, R. GenEthos: A Synthetic Data Generation System with Bias Detection And Mitigation. In Proceedings of the 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), Kochi, India, 23–25 June 2022. [Google Scholar]
- Rutwik, G.; Markert, B.; Stoffel, M. Rapid diagnosis of COVID-19 infections by a progressively growing GAN and CNN optimisation. Comput. Methods Programs Biomed. 2023, 229, 107262. [Google Scholar]
- Shah, P.M.; Ullah, H.; Ullah, R.; Shah, D.; Wang, Y.; Islam, S.U.; Gani, A.; Rodrigues, J.J. DC-GAN-based synthetic X-ray images augmentation for increasing the performance of EfficientNet for COVID-19 detection. Expert Syst. 2022, 39, e12823. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Arif, M.; Ejaz, K.; Vicoveanu, D.; Izdrui, D.; Geman, O. An Improved COVID-19 Detection using GAN-Based Data Augmentation and Novel QuNet-Based Classification. BioMed Res. Int. 2022, 2022, 8925930. [Google Scholar] [CrossRef] [PubMed]
- Sarv Ahrabi, S.; Momenzadeh, A.; Baccarelli, E.; Scarpiniti, M.; Piazzo, L. How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study. J. Supercomput. 2022, 79, 2850–2881. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiang, Y.; Loew, M.; Ko, H. Unsupervised domain adaptation based COVID-19 CT infection segmentation network. Appl. Intell. 2022, 52, 6340–6353. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, M.K.; Marzullo, A.; De Momi, E.; Calimeri, F. Lesion segmentation in lung CT scans using unsupervised adversarial learning. Med. Biol. Eng. Comput. 2022, 60, 3203–3215. [Google Scholar] [CrossRef] [PubMed]
- Khorchani, T.; Gadiya, Y.; Witt, G.; Lanzillotta, D.; Claussen, C.; Zaliani, A. SASC: A simple approach to synthetic cohorts for generating longitudinal observational patient cohorts from COVID-19 clinical data. Patterns 2022, 3, 100453. [Google Scholar] [CrossRef]
- Farhang-Sardroodi, S.; Ghaemi, M.; Craig, M.; Ooi, H.K.; Heffernan, J.M. A machine learning approach to differentiate between COVID-19 and influenza infection using synthetic infection and immune response data. medRxiv 2022. [Google Scholar] [CrossRef]
- Hradec, J.; Craglia, M.; Di Leo, M.; De Nigris, S.; Ostlaender, N.; Nicholson, N. Multipurpose Synthetic Population for Policy Applications. No. JRC128595; Joint Research Centre: Seville, Spain, 2022. [Google Scholar]
- Phukan, S.; Singh, J.; Gogoi, R.; Dhar, S.; Jana, N.D. COVID-19 Chest X-ray Image Generation Using ResNet-DCGAN Model. In Advances in Intelligent Computing and Communication; Springer: Singapore, 2022; pp. 227–234. [Google Scholar]
- Mostafiz, R.; Uddin, M.S.; Uddin, K.M.M.; Rahman, M.M. COVID-19 along with other Chest Infections Diagnosis using Faster R-CNN and Generative Adversarial Network. ACM Trans. Spat. Syst. Algorithms 2022, 8, 24. [Google Scholar]
- Ali, H.; Shah, Z. Combating COVID-19 using Generative Adversarial Networks and Artificial Intelligence for Medical Images: A Scoping Review. arXiv 2022, arXiv:2205.07236. [Google Scholar] [CrossRef]
- Kernberg, A.; Foraker, R.; Carter, E.B.; Kelly, J.C.; Odibo, A.O.; Raghuraman, N. The effect of COVID-19 on Influenza treatment: A comparative analysis using synthetic and real data. Am. J. Obstet. Gynecol. 2022, 226, S155–S156. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.N. Exploring the performance of ensemble machine learning classifiers for sentiment analysis of COVID-19 tweets. In Sentimental Analysis and Deep Learning; Springer: Singapore, 2022; pp. 383–396. [Google Scholar]
- Morís, D.I.; de Moura, J.; Novo, J.; Ortega, M. Generation of Novel Synthetic Portable Chest X-ray Images for Automatic COVID-19 Screening. In AI Applications for Disease Diagnosis and Treatment; IGI Global: Hershey, PA, USA, 2022; pp. 48–281. [Google Scholar]
- Chadaga, K.; Prabhu, S.; Bhat, K.V.; Umakanth, S.; Sampathila, N. Medical diagnosis of COVID-19 using blood tests and machine learning. J. Phys. Conf. Ser. 2022, 2161, 012017. [Google Scholar] [CrossRef]
- Jain, S.; Mittal, S.; Bhat, A. A Lightweight COVID-19 predictive model with Synthetic CT images using Conditional GAN & Knowledge Distillation. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022. [Google Scholar]
- Prasad, K.S.; Pasupathy, S.; Chinnasamy, P.; Kalaiarasi, A. An approach to detect COVID-19 disease from CT scan images using CNN-VGG16 model. In Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022. [Google Scholar]
- Tacconelli, E.; Gorska, A.; Carrara, E.; Davis, R.J.; Bonten, M.; Friedrich, A.W.; Glasner, C.; Goossens, H.; Hasenauer, J.; Abad, J.M.H.; et al. Challenges of data sharing in European COVID-19 projects: A learning opportunity for advancing pandemic preparedness and response. Lancet Reg. Health-Eur. 2022, 21, 100467. [Google Scholar] [CrossRef] [PubMed]
- Evenett, S.; Fiorini, M.; Fritz, J.; Hoekman, B.; Lukaszuk, P.; Rocha, N.; Ruta, M.; Santi, F.; Shingal, A. Trade policy responses to the COVID-19 pandemic crisis: Evidence from a new data set. World Econ. 2022, 45, 342–364. [Google Scholar] [CrossRef]
- Aslani, S.; Jacob, J. Utilisation of deep learning for COVID-19 diagnosis. Clin. Radiol. 2023, 78, 150–157. [Google Scholar] [CrossRef]
- Polyzotis, N.; Zaharia, M. What can Data-Centric AI Learn from Data and ML Engineering? arXiv 2021, arXiv:2112.06439. [Google Scholar]
- Hajij, M.; Zamzmi, G.; Ramamurthy, K.N.; Saenz, A.G. Data-Centric AI Requires Rethinking Data Notion. arXiv 2021, arXiv:2110.02491. [Google Scholar]
- Rodriguez, A.; Kamarthi, H.; Prakash, B.A. Epidemic Forecasting with a Data-Centric Lens. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022. [Google Scholar]
- Sarfraz, Z.; Sarfraz, A.; Iftikar, H.M.; Akhund, R. Is COVID-19 pushing us to the fifth industrial revolution (society 5.0)? Pak. J. Med. Sci. 2021, 37, 591. [Google Scholar] [CrossRef]
- Nair, A.K.; Sahoo, J.; Raj, E.D. Privacy preserving Federated Learning framework for IoMT based big data analysis using edge computing. Comput. Stand. Interfaces 2023, 86, 103720. [Google Scholar] [CrossRef]
- Aich, S.; Sinai, N.K.; Kumar, S.; Ali, M.; Choi, Y.R.; Joo, M.I.; Kim, H.C. Protecting personal healthcare record using blockchain & federated learning technologies. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 13–16 February 2022. [Google Scholar]
- Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.Y. Dynamic-fusion-based federated learning for COVID-19 detection. IEEE Internet Things J. 2021, 8, 15884–15891. [Google Scholar] [CrossRef]
- Jat, D.S.; Singh, C. Artificial intelligence-enabled robotic drones for COVID-19 outbreak. In Intelligent Systems and Methods to Combat COVID-19; Springer: Singapore, 2020; pp. 37–46. [Google Scholar]
- Firouzi, F.; Farahani, B.; Daneshm, M.; Grise, K.; Song, J.; Saracco, R.; Wang, L.L.; Lo, K.; Angelov, P.; Soares, E.; et al. Harnessing the power of smart and connected health to tackle covid-19: Iot, ai, robotics, and blockchain for a better world. IEEE Internet Things J. 2021, 8, 12826–12846. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.; Das, P.K.; Kabat, M.R.; Kumar, R. Prevention of Covid-19 affected patient using multi robot cooperation and Q-learning approach: A solution. Qual. Quant. 2022, 56, 793–821. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T. Behind the COVID Curtain: Analyzing Russia’s COVID-19 Response on Twitter Using Natural Language Processing and Deep Learning. Intersect Stanf. J. Sci. Technol. Soc. 2020, 14, 1–21. [Google Scholar]
- Jaimin, P.; Nehal, P.; Sandip, P. Interactive Chatbot for COVID-19 Using Cloud and Natural Language Processing. In Innovations in Computer Science and Engineering; Springer: Singapore, 2021; pp. 241–249. [Google Scholar]
- Poongodi, M.; Malviya, M.; Hamdi, M.; Rauf, H.T.; Kadry, S.; Thinnukool, O. The recent technologies to curb the second-wave of COVID-19 pandemic. IEEE Access 2021, 9, 97906–97928. [Google Scholar] [CrossRef] [PubMed]
- Kanade, P.; Akhtar, M.; David, F. Remote Monitoring Technology for COVID-19 Patients. Eur. J. Electr. Eng. Comput. Sci. 2021, 5, 44–47. [Google Scholar] [CrossRef]
- Majeed, A. Technical Analysis of Contact Tracing Platform Developed by Google–Apple for Constraining the Spread of COVID-19. ISPRS Int. J. Geo-Inf. 2022, 11, 539. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Chai, W.; Wang, B. Privacy-preserving COVID-19 contact tracing solution based on blockchain. Comput. Stand. Interfaces 2023, 83, 103643. [Google Scholar] [CrossRef]
- Roman-Belmonte, J.M.; la Corte-Rodriguez, D.; Rodriguez-Merchan, E.C. Applications of Blockchain Technology in the COVID-19 Era. In Blockchain in Healthcare; Springer: Cham, Switzerland, 2023; pp. 53–67. [Google Scholar]
- Vahadane, A.; Sharma, S.; Mandal, D.; Dabbeeru, M.; Jakthong, J.; Garcia-Guzman, M.; Majumdar, S.; Lee, C.W. Development of an automated combined positive score prediction pipeline using artificial intelligence on multiplexed immunofluorescence images. Comput. Biol. Med. 2023, 152, 106337. [Google Scholar] [CrossRef]
Technology | Need of Technology | Success of Technology |
---|---|---|
IoT | Response planning and spread mitigation | Lowering the pandemic spread & patient monitoring |
AI | Decision making, situational awareness, and effective use of pandemic data | Visibility to the pandemic situation & interventions planning |
NLP | Remote services to lower spread and mobile doctors | On-demand answers and guidance in COVID-19 crisis |
CV | Robust and accurate diagnosis of the COVID-19 | Decision support system and digital twins |
BC | Data sharing with the different parties for analysis | Privacy preservation of sensitive data |
FL | Training high-quality systems with distributed data for diagnosis | Effective diagnosis, predictions, and spread control |
Robotics | Medical supplies and resource planning, lowering physical contact | Compliance monitoring, data acquisition, alerting |
TinyML | Analytics of data and symptoms data collection | Immediate testing and medical care |
EC | Real-time analytics and diagnosis based on images or symptoms | Medical care and computing the exposure possibility |
SD | Data sharing at a wider scale and data mining | Understanding different aspects of the pandemic |
Application (or Service) | IoT Role | Ref. |
---|---|---|
Prevention, treatment, and screening of COVID-19 | Reliable data collection via smart devices | Mitchell et al. [30] |
Detection of COVID-19 | Capture the patient data | Laxmi et al. [31] |
Diagnosis of COVID-19 patients | Capture X-ray or CT scans data in least time | Abdul et al. [32] |
Identification & monitoring of COVID-19 patients | data collection of virus symptoms | Castiglione et al. [33] |
Social distance enforcement | Location maps generation | Friji et al. [34] |
Finding infected patients | Real-time findings collection | Goar et al. [35] |
Patients monitoring remotely | Good quality data acquision | Awotunde et al. [36] |
Sending relevant information | Retrieve health data | Hanuman et al. [37] |
Scanning of COVID-19 | Assist in raw data collection | Barnawi et al. [38] |
Detect and control pandemic | Image data collection | Herath et al. [39] |
Remote healthcare | Vital parameters collection | Mukati et al. [40] |
Breaking the chain of the virus transmission | Hetrogenious data collection and processing | Mohammed et al. [41] |
Promising Application | Data Used | AI Model Applied | Ref. |
---|---|---|---|
Detection of COVID-19 pneumonia | X-ray images | Convolutional Neural Networks (CNNs) | Chowdhury et al. [51] |
Severity Analysis & detection | CT scans | CNN-RNN network | Kollias et al. [52] |
Virus severity prediction | 3D CT-scan | Densenet-161 architecture | Bougourzi et al. [53] |
Prediction of mild patients | CT sequence | Perceptron+LSTM | Bai et al. [54] |
Accurate & clinical diagnosis | CT scans | CNN network | Zhang et al. [55] |
Distinguishing COVID cases from non-COVID cases | ChestX-ray images | Neural network | Zargari et al. [56] |
Rapid and reliable diagnosis | Nasopharyngeal sample | deep convolutional NN | Özbilge et al. [57] |
Vaccine-related analysis | Tweets data | Hybrid AI models | Aljedaani et al. [58] |
Detection of COVID-19 | Chest X-rays | 8 classification models | Nillmani et al. [59] |
Rapid & correct diagnosis | Chest X-ray images | Deep Neural Network | Kumar et al. [60] |
Prediction of daily infections | Cases data | RNN + GRU + LSTM | Zrieq et al. [61] |
Patients flow management | Mobility data | 3P-U model | Arnaud et al. [62] |
Reducing the persons’ density | Geofence digital signature | SVM classifier | Abd et al. [63] |
Mortality prediction | Patient clinical features | Multi-layer perceptron | Nguyen et al. [64] |
Drug repurposing | Protein sequence | Hybrid AI models | Zhou et al. [65] |
Outcome prediction | Radiomics & clinical features | Deep learning models | Xu et al. [66] |
Predicting mortality | COVID-19 patients data | Decision tree | Elhazmi et al. [67] |
Diagnosis & treatment of virus | Chest imaging | CNN | Kwon et al. [68] |
ICU admission prediction | CT scans | CNN | Maouche et al. [69] |
Detection of COVID-19 | Demographics | XGBoost model | Pradhan et al. [70] |
Vaccine development | Cough sounds | Supervised ML | Arora et al. [71] |
Drug discovery | Chemical fingerprints | Gradient-boosted tree | Delijewski et al. [72] |
Detection of COVID-19 | CT images | SVM and Random Forest, | Suguna et al. [73] |
Computer-aided drug design | Clinical trial data | Supervised learning | Sahu et al. [74] |
Containment of COVID-19 | Symptoms data | ML/DL techniques | Suriana et al. [75] |
Forecasting of COVID-19 | Cases data | LSTM model | Wang et al. [76] |
Confirmed cases prediction | Cases data | LSTM+ CNN | Abbasimehr et al. [77] |
Cases and mortality analysis | Time series data | Bi-Conv-LSTM | Ayoobi et al. [78] |
Pandemic forecasting | Time-series dataset | CNN-LSTM model | Zain et al. [79] |
Forecast daily infection cases | Previous day cases | Stacked LSTM | Makarovskikh et al. [80] |
Prediction of cumulative & daily new cases | time-series data | CNN-StackBiLSTM | Li et al. [81] |
Informed data analytics | Time-series stream data | LSTM | Patidar et al. [82] |
Spread trend prediction | Spatial-Temporal Sequence | STGCN model | Li et al. [83] |
Prediction of recovery rate | Hybrid AI models | COVID-19 dataset 1 | Ahouz et al. [84] |
Forecasting infectious spread | infections data | MSDTL model | Garg et al. [85] |
Analysis of disease spread | COVID-19 cases data | Regression & SVM | Sinha et al. [86] |
Practical FL Application | AI Methods Used | Data Used | Representative Ref. |
---|---|---|---|
Outcome prediction | Pre-trained ResNet-34 | X-ray (CXR), vital signs, demographic, and lab values | Flores et al. [119] |
Detection of virus infection | Capsule Network | CT images | Kumar et al. [120] |
COVID region segmentation | Semi-supervised learning | Chest Computed Tomography | Yang et al. [121] |
Lung abnormalities detection | CNN-based model | Medical images | Dou et al. [122] |
Detection of COVID-19 | GANs models | COVID-19 images | Nguyen et al. [123] |
Epidemic model via mobility | Multi-task learning | Real-time mobility data sets | Kumaresan et al. [124] |
Prediction of COVID-19 at early stage | Multiple ML algorithms | Patient community features | Singh et al. [125] |
Classification of COVID-19 & pneumonia | DenseNet-201 | X-ray images | Alhudhaif et al. [126] |
Discovery of COVID-19 | Alex net | CT images | Chen et al. [127] |
Detecting COVID-19’s presence | ResNet-18 | X-ray and CT scan | Kochgaven et al. [128] |
Prediction of COVID-19 disease | CNN model | Chest X-rays | Malhotra et al. [129] |
Classification of +ve and -ve | Deep CNN | CXR images | Laouarem et al. [130] |
Medical resources’ demand prediction | CETL method | Heterogeneous data | Song et al. [131] |
Risk assessment system | MK-DNN model | Location maps | Wang et al. [132] |
Prediction of virus | CNN models | Electronic Medical Records | Senthilkumar et al. [133] |
Privacy of patient data | 2D CNN model | X-ray images and symptoms | Ho et al. [134] |
Community-level vulnerability estimations map | SIR models | Locations data | Chen et al. [135] |
COVID-related symptoms detection | CNN model | Sensors data | Rahman et al. [136] |
Accurate prediction of COVID-19 cases | Hybrid capsule network | Lung CT images | Durga et al. [137] |
Monitoring of COVID-19 | KNN + CNN + LSTM | Symptom data | Aljumah et al. [138] |
COVID-19 detection | KNN classifier | Demographics data | Mukherjee et al. [139] |
Epidemic trend analysis | T-SIRGAN model | Surveillance data | Wang et al. [140] |
COVID-19 suspects prediction | ML 1 techniques | Sensors and IoT data | Mir et al. [141] |
Infected patients monitoring | ANN model | Symptomatic results | Rathee et al. [142] |
Breathing pattern analysis | Clustering methods | Sensors data | Hidayat et al. [143] |
Medical information sharing | CNN model | EHR data | Salim et al. [144] |
Tracking health status of infected patients | FPGA prototype | Sensory data | AlOmani et al. [145] |
Diagnosis of COVID-19 | Vision transformer | CXR images | Park et al. [146] |
Analysis of vaccine-related tweets in SNs | RNN model | Tweets data | Singh et al. [147] |
Tackling data diversity | Vision transformers | Masked images | Yan et al. [148] |
Privacy protection of healthcare data | NB + RF | Genomic data | Islam et al. [149] |
Promising Application | Data Used | TinyML Concept Used | Ref. |
---|---|---|---|
Face mask checking | Face images data | STM32F411 chip | Piątkowski et al. [162] |
Clinical outcome analysis | Clinical data | Micro-controllers | Santiago et al. [163] |
Patients management | Vital signs | ESP8266EX System on Chip | Fyntanidou et al. [164] |
Pandemic exploration | Physiological data | TPCI system | Purawat et al. [165] |
Face mask detection | Facial images | ARM Cortex-M7 MCU | Mohan et al. [166] |
Cough samples analysis | Cough samples | Arduino 33 BLE | Rana et al. [167] |
Ventilation management | Ambient data | Sense microcontroller | Avdić et al. [168] |
Disease prediction | Synthetic breath data | TinyML model | Ooko et al. [169] |
Daily activities’ recognition tags | RF sensor tags | Window analysis module | Jaiswal et al. [170] |
Heart rate analysis | Wearables data | Altered SAX (ASAX) | Klus et al. [171] |
Privacy preservation | MNIST dataset | Cortex-M and RISC-V | Costa et al. [172] |
Technology | Discussion Form | # of Studies | Analysis Type |
---|---|---|---|
IoT | Table | 15 | Experimental |
AI | Table | 48 | Experimental |
NLP | Text | 22 | Theoretical |
CV | Text | 10 | Theoretical |
BC | Text | 11 | Theoretical |
FL | Table | 47 | Experimental |
Robotics | Text | 08 | Theoretical |
TinyML | Table | 19 | Experimental |
EC | Text | 29 | Theoretical |
SD | Table | 49 | Experimental |
Technology | Use in COVID-19 | Main Contribution(s) | Performance |
---|---|---|---|
IoT | Very high | Quarantine management and monitoring | Good |
AI | Very high | Analytics and predictions | Very good |
NLP | High | Q&A and symptoms analysis | Good |
CV | Very high | Detection and diagnosis | Very Good |
BC | High | Data sharing and privacy control | Good |
FL | Very High | Privacy preservation and model training | Very Good |
Robotics | High | Sanitization and alerting | Good |
TinyML | Medium | Disease monitoring aand severity analysis | Satisfactory |
EC | High | Robust diagnosis and spread control | Very good |
SD | Medium | Data analytics and sharing | Satisfactory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, A.; Zhang, X. On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments. COVID 2023, 3, 90-123. https://doi.org/10.3390/covid3010006
Majeed A, Zhang X. On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments. COVID. 2023; 3(1):90-123. https://doi.org/10.3390/covid3010006
Chicago/Turabian StyleMajeed, Abdul, and Xiaohan Zhang. 2023. "On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments" COVID 3, no. 1: 90-123. https://doi.org/10.3390/covid3010006
APA StyleMajeed, A., & Zhang, X. (2023). On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments. COVID, 3(1), 90-123. https://doi.org/10.3390/covid3010006