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Abstract: In the ongoing COVID-19 pandemic, digital technologies have played a vital role to
minimize the spread of COVID-19, and to control its pitfalls for the general public. Without such
technologies, bringing the pandemic under control would have been tricky and slow. Consequently,
exploration of pandemic status, and devising appropriate mitigation strategies would also be difficult.
In this paper, we present a comprehensive analysis of community-beneficial digital technologies
that were employed to fight the COVID-19 pandemic. Specifically, we demonstrate the practical
applications of ten major digital technologies that have effectively served mankind in different ways
during the pandemic crisis. We have chosen these technologies based on their technical significance
and large-scale adoption in the COVID-19 arena. The selected technologies are the Internet of
Things (IoT), artificial intelligence(AI), natural language processing(NLP), computer vision (CV),
blockchain (BC), federated learning (FL), robotics, tiny machine learning (TinyML), edge computing
(EC), and synthetic data (SD). For each technology, we demonstrate the working mechanism, technical
applications in the context of COVID-19, and major challenges from the perspective of COVID-19. Our
analysis can pave the way to understanding the roles of these digital COVID-19-fighting technologies
that can be used to fight future infectious diseases to prevent global crises. Moreover, we discuss
heterogeneous data that have significantly contributed to addressing multiple aspects of the ongoing
pandemic when fed to the aforementioned technologies. To the best of the authors’ knowledge, this
is a pioneering work on community-beneficial and transformative technologies in the context of
COVID-19 with broader coverage of studies and applications.

Keywords: COVID-19; digital revolution; pandemic; technological advances; COVID-19 fighting
technologies; artificial intelligence; contact tracing; natural language processing; federated learning

1. Introduction

During the coronavirus disease 2019 (COVID-19) pandemic, there was tremendous
growth in digital technologies, especially in the healthcare sector [1]. There are two major
driving forces for this digital revolution, (i) to control the pandemic [2], and (ii) to regulate
business (or education) [3]. COVID-19 has accelerated the digital revolution, and the
companies which are reluctant to adopt new tools/technologies amid this paradigm shift
will likely face dropping sales, or even financial difficulty to sustain their market value [4].
This pandemic has highlighted that exploiting the power of digital tools is an effective way
to contain any infectious diseases [5]. Digital technologies (IoT, AI, DL, ML, blockchain,
augmented and virtual reality, cloud and fog computing, big data, computational intel-
ligence, robots, thermal scanning technologies, and drones, contact tracing mobile apps,
telecommunications, and 5G) have played a dominant role in early detection and diagnosis,
pre-screening, contact tracing, monitoring infected/quarantined/exposed people, trends
analysis, risk estimation, mask checking, forecasting future infection rates, predicting
the possibility of COVID-19 via images, cough samples analysis, and more [6]. Apart

COVID 2023, 3, 90–123. https://doi.org/10.3390/covid3010006 https://www.mdpi.com/journal/covid

https://doi.org/10.3390/covid3010006
https://doi.org/10.3390/covid3010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/covid
https://www.mdpi.com
https://orcid.org/0000-0002-3030-5054
https://orcid.org/0000-0003-1522-4042
https://doi.org/10.3390/covid3010006
https://www.mdpi.com/journal/covid
https://www.mdpi.com/article/10.3390/covid3010006?type=check_update&version=1


COVID 2023, 3 91

from these technologies, many fused technologies such as blockchain and federated learn-
ing, differential privacy and federated learning, big data analytics and AIoT have also
helped in controlling the risks of this pandemic [7–9]. Some studies have been proposed
to constrain/monitor the precautionary measures recommended by the World Health
Organization (WHO) to control the pandemic [10]. Big data technologies have played a
vital role to restrict the spread of this deadly virus by fusing huge data, and by forecasting
the trends [11,12]. In addition to these technologies, a great deal of software/apps were
developed to find the contacts of an infected person to lower the spread rate.

As companies and tech giants seek new technical solutions to curb the COVID crisis,
some interesting technical themes have emerged during this pandemic period. New techni-
cal developments can be classified into certain categories. In Figure 1, we present category
and region-wise use cases about digital developments in COVID-19 era. Based on the
analysis of the Boston Consulting Group (as shown in Figure 1a,b), 25% of digital solutions
focused on containment and detection, 20% addressed problems concerning healthcare
provider enablement, and about 21% focused on grappling with economic resilience.

(a) (b)

Figure 1. New technologies in response to COVID-19: (a) category-wise use cases, (b) stats of
collaborative and interconnective response across the globe (adopted from https://www.weforum.
org/agenda/2020/08/5-technology-advancements-during-covid-19-wearables-ai/, accessed on 4
December 2022).

As shown in Figure 1b, nearly a third of these use cases were global, due to the
interconnective and collaborative nature of COVID-19 response. As the world soberly
reaches the virus’ 2 years and 11 months anniversary, identifying such use cases can be a
gentle reminder of the creativity and resilience the world continues to show to tackle this
global crisis (https://www.weforum.org/agenda/2020/08/5-technology-advancements-
during-covid-19-wearables-ai/, accessed on 7 December 2022).

As cited above in Figure 1, digital tools have made huge progress in certain aspects
to bring the pandemic under control. A recent study has briefly presented the role of IT
in the era of COVID-19 [13]. Another study discussed the technologies used in planning
responses to COVID-19 including pandemic planning, testing, surveillance, quarantine,
contact tracing, and health care [14]. The technologies that have provided support in the
prevention of COVID-19 were discussed in [15]. The status of privacy during the COVID-19
pandemic was analyzed in [16]. A need for digital infrastructure to contain COVID-19-
like pandemics in the future was highlighted in the recent study [17]. The role of mobile
technologies to fight the COVID-19 pandemic was demonstrated in a practical study [18].
The authors compared the use of digital technologies in many countries of the world.
The acceptance of COVID-19 digital tackling technologies (CDTT) in various countries and
the need for revision of health protection regulations targeting the COVID-19 pandemic
were assessed in a study [19]. Digital technologies that can forecast the course of the
pandemic in India using the ARIMA model were proposed [20]. The role of AI in the context
of COVID-19 was comprehensively discussed in a recent study [21]. Unfortunately, most
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of the studies have provided limited coverage and knowledge of available technologies
that played a vital role in this pandemic. Furthermore, comprehensive knowledge related
to various services (e.g., detection, tracing, tracking, surveillance, monitoring of diseases,
therapeutic responses, etc.) offered by the latest digital technologies remained unexplored.
To this end, we present the first work that highlights the sustainable digital technologies and
corresponding services that have played a vital role in the COVID-19 pandemic. Specifically,
we make the following contributions to the body of knowledge targetting COVID-19.

• We explore digital and transformative technologies that have firmly contributed to
constraining the spread of COVID-19, and we identify opportunities to highlight and
thoroughly discuss those underrated technologies along with their unique services.

• We identify the ten latest technologies (i.e., IoT, AI, NLP, computer vision, blockchain,
federated learning, robotics, TinyML, edge computing, and synthetic data) through
rigorous analysis of research papers, developed tools, blogs, and industry leader talks.

• We identify and present the services offered by these digital technologies in a system-
atic way that remained unexplored in the current literature.

• We extract and present the heterogeneous data that have played a vital role in the man-
agement and containment of COVID-19 when used in the above-cited technologies.

• We identify challenges faced by these technologies and pinpoint various promis-
ing research trajectories that can enable rapid development to contain future pan-
demics/epidemics.

• To the best of our knowledge, this is the first work that targets COVID-19-fighting
technologies, unique services provided by them, and heterogeneous data used in
COVID-19-fighting technologies. With this article, we aim to provide comprehensive
coverage of the technical developments of the past 2.5 years in the COVID-19 context
that will provide a ground-breaking foundation for future research.

2. Community Beneficial Digitial Technologies in the Context of COVID-19

Digital technologies have now been implemented and applied to almost every aspect of
health care [22], and personal data in the healthcare sector is regarded as a living thing [23].
Figure 2 groups different digital health tools into corresponding a dozen application arenas,
but the individual applications number in the thousands.

Figure 2. Practical applications of digital technologies in the healthcare sector.
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The authors in [22] highlight the potential of digital innovation in the healthcare
prospects in the following emerging areas: ensuring care continuity, advancing diagnosis
and treatment, partnering with individuals to support self-management, facilitating off-site
patient management through telemedicine, and reducing error and waste in the healthcare
delivery system. Further information concerning these aspects can be learned from a recent
study [22]. In the early years of the pandemic, most countries developed sophisticated
tools and smart apps to control the spread of this deadly pandemic. For example, in South
Korea, two smart apps for quarantine management and symptom reporting were devel-
oped to manage incoming travelers from abroad. Furthermore, a robotics-based system
was developed to check the temperature, masks, sanitizing hands, etc., at the airports.
Furthermore, a privacy-preserved entry logs collection system was also developed to store
the contact information of those individuals who visit coffee shops, restaurants, and univer-
sities/colleges. A comprehensive contact tracing platform that identifies the close contacts
of an infected person leveraging mobile phone, credit card, and CCTV data was also de-
veloped. These commercial technologies have helped contain the virus, and South Korea
was considered a role model for these innovative technologies [24]. A growing number of
smart apps were also developed to prove vaccine status upon entry into restaurants/bars.
Figure 3 presents the details of innovative applications from the perspective of COVID-19.

Figure 3. Emerging technologies and their applications in the era of COVID-19.

3. Top Ten COVID-19-Fighting Digital Technologies: An Insightful Analysis

COVID-19-fighting digital technologies have helped mankind in various ways such
as improved healthcare, ambient assisted living, smart services, and awareness/forecast
of future events [25]. The fuel of these technologies was data concerning an individ-
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ual or group of individuals that can be of multiple types such as spatial–temporal ac-
tivities, demographics, medical data, and physiological readings, to name a few [26].
Although many technologies were used to fight the ongoing pandemic, only a few tech-
nologies have shown promising results in combating the pandemic. In this work, ten
major technologies were chosen for painstaking analysis concerning COVID-19. However,
each technology has multiple subtypes that were also employed to fight the pandemic.
Figure 4 demonstrates the top ten technologies and their subtypes that have significantly
helped society during the pandemic crisis. To the best of our knowledge, the role of these
technologies remained unexplored in the current literature.

Figure 4. Top 10 digital technologies (DTs) and their subtypes that were used in the COVID-19 era to
help mankind.

A concrete discussion about the need for such technologies and how each technology
emerged to be one of the successful technologies to fight COVID-19 is discussed in Table 1.

Table 1. Discussion about the need for 10 technologies and how such technologies emerged to be one
of the successful technologies to fight COVID-19.

Technology Need of Technology Success of Technology

IoT Response planning and spread
mitigation

Lowering the pandemic spread &
patient monitoring

AI
Decision making, situational

awareness, and effective use of
pandemic data

Visibility to the pandemic situation &
interventions planning

NLP Remote services to lower spread and
mobile doctors

On-demand answers and guidance in
COVID-19 crisis

CV Robust and accurate diagnosis of the
COVID-19

Decision support system and digital
twins

BC Data sharing with the different parties
for analysis Privacy preservation of sensitive data

FL Training high-quality systems with
distributed data for diagnosis

Effective diagnosis, predictions,
and spread control

Robotics Medical supplies and resource
planning, lowering physical contact

Compliance monitoring, data
acquisition, alerting

TinyML Analytics of data and symptoms data
collection Immediate testing and medical care

EC Real-time analytics and diagnosis
based on images or symptoms

Medical care and computing the
exposure possibility

SD Data sharing at a wider scale and data
mining

Understanding different aspects of the
pandemic



COVID 2023, 3 95

3.1. Internet of Things (IoT)

Recently, the Internet of Things (IoT) technology has attracted significant attention
from the research community due to the various benefits it brings to society. IoT is con-
sidered a leading technology of the future and will encompass billions of intelligent and
communicating ‘things/devices’ [27]. IoT implementation and use have significant impacts
on lowering healthcare costs, enhancing treatment performance, lessening mistakes, digital
twins, significantly improving treatment results for the patients, and pandemics/epidemics
control. IoT can assist multiple stakeholders (patients, clinicians, manufacturers, devel-
opers, drug and treatment developers, etc.) in the healthcare industry. This technology
has played a vital role in the recent COVID-19 pandemic by lowering the virus spread as
well as intervention planning [28]. In the medical context, IoT is mainly called the Inter-
net of Medical Things (IoMT). Figure 5 presents the system-level overview of IoT/IoMT
technology in realistic COVID-19 scenarios.

Figure 5. System-level overview of IoT/IoMT technology in realistic scenarios.

The IoMT technology has played a vital role in collecting heterogeneous data about
personalized healthcare (symptoms, breathing patterns, etc.) and individuals’ movement
(spatial and temporal stay point) that was used to evaluate different interventions. Further-
more, this technology has contributed to lowering mortality in this pandemic [29]. The syn-
ergy of IoT with other latest technologies has helped restrict the far-reaching consequences
of this pandemic on the general public. Table 2 presents the unique applications/services
of IoT technology in the context of COVID-19.

Table 2. Unique applications/services of IoT technology in the context of COVID-19.

Application (or Service) IoT Role Ref.

Prevention, treatment, and screening
of COVID-19

Reliable data collection via smart
devices Mitchell et al. [30]

Detection of COVID-19 Capture the patient data Laxmi et al. [31]

Diagnosis of COVID-19 patients Capture X-ray or CT scans data in
least time Abdul et al. [32]

Identification & monitoring of
COVID-19 patients data collection of virus symptoms Castiglione et al. [33]

Social distance enforcement Location maps generation Friji et al. [34]

Finding infected patients Real-time findings collection Goar et al. [35]

Patients monitoring remotely Good quality data acquision Awotunde et al. [36]

Sending relevant information Retrieve health data Hanuman et al. [37]

Scanning of COVID-19 Assist in raw data collection Barnawi et al. [38]

Detect and control pandemic Image data collection Herath et al. [39]

Remote healthcare Vital parameters collection Mukati et al. [40]

Breaking the chain of the virus
transmission

Hetrogenious data collection and
processing Mohammed et al. [41]
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3.2. Artificial Intelligence (AI)

AI is at the top of the list of transformative technologies of 2022, and the horizon of its
application is increasing day by day. AI has become the focus of research across the globe,
and its adoption has increased in many commercial sectors [42].

AI has tremendous applications in the healthcare sector such as drug discovery, pan-
demic management, diagnosis, disease prediction, decision-making, health informatics,
and disease surveillance, to name a few. AI has revolutionized the healthcare industry in
many ways, and modern healthcare systems are adopting AI-lead methods and tools in
healthcare [43,44]. In the COVID-19 era, AI has remained in the spotlight, and helped curb
the spread of COVID-19 in many ways [45]. The application of AI, such as identifying the
possibility of infection from cough samples, is handy in constraining this deadly disease [46].
In the coming years, AI will be the leading technology in the healthcare sector with inno-
vative applications that can eliminate/reduce time-consuming data collection/processing
methods. Furthermore, the development of pruning and quantization techniques will likely
increase the performance of AI models two- or three-fold [47]. Furthermore, the new wave
of revolution in AI, such as data-centric AI, is expected to increase the reputation of AI in
many industrial sectors [48–50]. Lastly, the ability of AI to process heterogeneous data is
assisting health professionals in various ways. Figure 6 presents a brief overview of AI
applications with heterogeneous data in the context of COVID-19. Table 3 presents the
latest and promising applications of AI in the era of COVID-19 along with experimental
details. Specifically, we discuss the applications of AI, the datasets used in experiments
with AI, and the AI model employed to achieve the desired results. The detailed analysis
can pave the way to understanding the pertinent role of AI in this pandemic. To the best of
the authors’ knowledge, such analysis has not been reported in previous research.

Figure 6. Overview of AI models application to heterogeneous data in the context of COVID-19.

Table 3. Summary of promising applications of AI in the era of COVID-19.

Promising Application Data Used AI Model Applied Ref.

Detection of COVID-19 pneumonia X-ray images Convolutional Neural Networks
(CNNs) Chowdhury et al. [51]

Severity Analysis & detection CT scans CNN-RNN network Kollias et al. [52]
Virus severity prediction 3D CT-scan Densenet-161 architecture Bougourzi et al. [53]

Prediction of mild patients CT sequence Perceptron+LSTM Bai et al. [54]
Accurate & clinical diagnosis CT scans CNN network Zhang et al. [55]

Distinguishing COVID cases from
non-COVID cases ChestX-ray images Neural network Zargari et al. [56]

Rapid and reliable diagnosis Nasopharyngeal sample deep convolutional NN Özbilge et al. [57]
Vaccine-related analysis Tweets data Hybrid AI models Aljedaani et al. [58]
Detection of COVID-19 Chest X-rays 8 classification models Nillmani et al. [59]

Rapid & correct diagnosis Chest X-ray images Deep Neural Network Kumar et al. [60]
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Table 3. Cont.

Promising Application Data Used AI Model Applied Ref.

Prediction of daily infections Cases data RNN + GRU + LSTM Zrieq et al. [61]
Patients flow management Mobility data 3P-U model Arnaud et al. [62]

Reducing the persons’ density Geofence digital signature SVM classifier Abd et al. [63]
Mortality prediction Patient clinical features Multi-layer perceptron Nguyen et al. [64]
Drug repurposing Protein sequence Hybrid AI models Zhou et al. [65]

Outcome prediction Radiomics & clinical features Deep learning models Xu et al. [66]
Predicting mortality COVID-19 patients data Decision tree Elhazmi et al. [67]

Diagnosis & treatment of virus Chest imaging CNN Kwon et al. [68]
ICU admission prediction CT scans CNN Maouche et al. [69]

Detection of COVID-19 Demographics XGBoost model Pradhan et al. [70]
Vaccine development Cough sounds Supervised ML Arora et al. [71]

Drug discovery Chemical fingerprints Gradient-boosted tree Delijewski et al. [72]
Detection of COVID-19 CT images SVM and Random Forest, Suguna et al. [73]

Computer-aided drug design Clinical trial data Supervised learning Sahu et al. [74]
Containment of COVID-19 Symptoms data ML/DL techniques Suriana et al. [75]
Forecasting of COVID-19 Cases data LSTM model Wang et al. [76]

Confirmed cases prediction Cases data LSTM+ CNN Abbasimehr et al. [77]
Cases and mortality analysis Time series data Bi-Conv-LSTM Ayoobi et al. [78]

Pandemic forecasting Time-series dataset CNN-LSTM model Zain et al. [79]
Forecast daily infection cases Previous day cases Stacked LSTM Makarovskikh et al. [80]

Prediction of cumulative & daily new
cases time-series data CNN-StackBiLSTM Li et al. [81]

Informed data analytics Time-series stream data LSTM Patidar et al. [82]
Spread trend prediction Spatial-Temporal Sequence STGCN model Li et al. [83]

Prediction of recovery rate Hybrid AI models COVID-19 dataset 1 Ahouz et al. [84]
Forecasting infectious spread infections data MSDTL model Garg et al. [85]

Analysis of disease spread COVID-19 cases data Regression & SVM Sinha et al. [86]

1 Johns Hopkins University.

As shown in Table 3, diverse types of data were used in AI models to address multiple
aspects (e.g., diagnosis, dynamics modeling, severity estimation, prediction of trends,
flow modeling, contact tracing, suspects finding, etc.) of COVID-19 pandemic. Figure 7
demonstrates some representative data about the uses of AI for COVID-19 diagnosis.

Figure 7. Overview of representative data types that were frequently used in COVID-19 diagnosis.

As discussed in Table 3, there exist many applications of AI in the context of COVID-19.
Apart from these applications, there are many practical examples such as treatment (drug
discovery/repurposing), estimation (future spread dynamic, infection rate), diagnosis (text
data-based analytics, image data-based analytics, sound data-based analytics), association
analysis, etc. Many studies have described various AI examples in the context of COVID-19
leveraging heterogeneous data [87,88]. The latest review has presented many innovative
applications of AI in terms of prediction, diagnosis, drug discovery, and vaccine develop-
ment [89]. All these examples have contributed to lowering the effects of COVID-19 and
developing appropriate treatments for COVID-19.
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3.3. Computer Vision (CV)

Various CV approaches have been developed so far, dealing with multiple aspects
to combat COVID-19. These CV approaches vary in terms of their applications to the
fundamental benefits. Figure 8 highlights some of the key areas in which CV approaches
have played a vital role in the era of COVID-19. CV has played a vital role in detecting
COVID-19 using image data [90]. In most COVID-19-related applications (e.g., predictive
modeling with ML, medical imaging, disease spread modeling and control, symptoms
clustering and analysis, etc.), CV has been integrated with the AI models to control the
pandemic [91]. Specifically, CV has been widely used in three different aspects of COVID-19:
diagnosis and treatment, control and prevention, and clinical treatment [92]. Due to its
ability to work with the image data, CV has been widely used to identify the infected lung
region, pneumonia and COVID-19 identification, image segmentation, and region of interest
selection [93]. Furthermore, CV-based approaches have been widely used in enforcing
social distancing that was regarded as a well-known non-pharmaceutical interventions [94].
Furthermore, CV approaches have been integrated with other emerging technologies to
control the effects of this pandemic [95,96]. CV approaches have also assisted in controlling
the spread of COVID-19 including face mask detection [97]. A detailed analysis of CV
applications in the context of COVID-19 can be found in a recent study [98]. In conclusion,
CV approaches have been widely used to control and manage this pandemic effectively.

Figure 8. CV applications on image data in the context of COVID-19 (Partially adapted from [99]).

3.4. Blockchain

Just like other technologies, blockchain (BC) technology has also played a vital role in
the pandemic arena, especially resource deployments and planning operations [100]. This
technology can assist in this pandemic crisis by providing effective solutions such as user
privacy protection, outbreak tracking, performance enhancement of the medical supply
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chain, safe day-to-day operations, and donation tracking. BC technology has been widely
used in contact tracing, data sharing, resource planning, and medical supplies distribution.

Sharma et al. [101] discussed the nine practical applications of BC in the era of
COVID-19: (i) information sharing, (ii) contact tracing, (iii) supply chain, (iv) contact-
less delivery, (v) insurance management, (vi) online education, (vii) resource manage-
ment, (viii) response planning, (ix) privacy preservation. Fusco et al. [102] discussed the
SWOT analysis of adopting the BC-based prediction model in the healthcare sector and
SARS-CoV-2 infection. In some cases, BC technology was integrated with the blockchain
to combat the virus effectively [103]. Interestingly, BC technology was extensively used in
developing and distributing COVID-19 vaccines [104,105]. BC technology has assisted in
many ways during the ongoing pandemic [106]. Many contact tracing protocols have been
developed to preserve the privacy of infected individuals’ contacts, as well as the infected
individuals [107]. Digital technologies such as BC can play a vital role in combating future
infectious diseases. There exist a variety of prospects/opportunities in which BC technology
can be integrated with the healthcare sector to serve mankind (i.e., community-beneficial
technology). BC technology can play a vital role in the post-pandemic era as well [108].
Due to its decentralized nature, it can overcome privacy issues in the healthcare sector [109].
Figure 9 presents the key application of BC technology in the context of COVID-19.

Figure 9. Key application of the BC technology in the context of COVID-19.

As shown in Figure 9, BC technology has been widely used in solving many problems
in the ongoing pandemic. In addition, this technology was involved in many aspects com-
pared to other COVID-19-fighting technologies. The adoption of BC-powered technologies
was also higher due to the least privacy concerns [110]. BC technology is expected to
effectively contribute in the post-pandemic era in various ways.

3.5. Federated Learning (FL)

Federated learning (FL) is a state-of-the-art (SOTA technology that can work with
heterogeneous data sources without centralizing the data [111]. FL has revolutionized the
privacy domain with its unique concept (e.g., algorithms → data). In contrast, centralized
learning (CL) brings data close to algorithms. The difference between central learning (CL)
and FL is demonstrated in Equation (1):

Case(CL||FL) =

{
data → algorithms, CL
algorithms → data, FL

(1)

Not centralizing data, and still training large-scale AI models makes the FL a leading
technology of the future. FL has many potential applications in most sectors such as
healthcare, finance, supply chain, and social network analysis. Since its inception in
2017, it has been widely investigated from multiple perspectives. In the COVID-19 era,
it has effectively served mankind by creating synergies with other technologies such as
IoT, BC, CV, and robotics [112–114]. The FL can provide all services such as AI without
acquiring data at some central place. Due to FL, data silos and data winter problems are
effectively solved across the globe [115]. In the COVID-19 era, FL has played a vital role
in management, COVID-19 detection, pandemic control, privacy protection, and policy



COVID 2023, 3 100

planning [116]. Figure 10 presents an overview of the data island problem and FL working
mechanism that can be regarded as the solution to this practical problem.

Figure 10. Data island problem, and FL as a promising solution towards this problem.

As shown in Figure 10a, all hospitals individually train the model with their data.
However, there exist structural and quantity problems with data at each site (i.e.,

hospital), and therefore, the quality of most AI models is low. One promising solution
can be to share the data and train a powerful AI model. However, recent privacy regula-
tions prevent data sharing due to privacy risks. In this case, all hospitals are facing data
quality and low performance of AI models. In contrast, FL (Figure 10b) can solve all these
problems by performing local training and sharing the model parameters with the server
for aggregation purposes, since FL does not orchestrate data and, therefore, it is legally-
compliant technology. Recently, FL has created synergies with many emerging technologies
to enhance technical persuasiveness in the context of COVID-19. Figure 11 demonstrates
the synergies of FL with other emerging technologies. The purpose of these synergies is to
accomplish multiple tasks such as privacy preservation, servicing end users, data sharing,
and response planning for the COVID-19 pandemic. Through a detailed analysis of the
SOTA published in the past 3 years, we summarize applications of FL in Table 4. To the
best of our knowledge, these applications remained unexplored in the recent literature.
There exist many successful examples in which FL has significantly contributed in the
context of COVID-19. FL has contributed to preserving the privacy of patient data while
still permitting the training of AI models. It has helped efficiently and correctly diagnose
COVID-19 patients by leveraging image data. It has also contributed to predicting the
dynamics of infection, and medical supplies needed to combat the challenges of COVID-19.
We refer interested readers to our recent publication that solely describes the example and
applications of FL in the context of COVID-19 [117]. Many examples of FL on biomedical
data concerning the COVID-19 pandemic have also been reported in a recent study [118].
Based on the above analysis, it can be concluded that there exist many successful examples
of FL in the context of COVID-19.

Figure 11. Recent synergies of FL with other emerging technologies in the context of COVID-19.
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Table 4. Recently developed/proposed practical applications of FL in the context of COVID-19.

Practical FL Application AI Methods Used Data Used Representative Ref.

Outcome prediction Pre-trained ResNet-34 X-ray (CXR), vital signs, demographic,
and lab values Flores et al. [119]

Detection of virus infection Capsule Network CT images Kumar et al. [120]
COVID region segmentation Semi-supervised learning Chest Computed Tomography Yang et al. [121]
Lung abnormalities detection CNN-based model Medical images Dou et al. [122]

Detection of COVID-19 GANs models COVID-19 images Nguyen et al. [123]
Epidemic model via mobility Multi-task learning Real-time mobility data sets Kumaresan et al. [124]

Prediction of COVID-19 at early stage Multiple ML algorithms Patient community features Singh et al. [125]
Classification of COVID-19 &

pneumonia DenseNet-201 X-ray images Alhudhaif et al. [126]

Discovery of COVID-19 Alex net CT images Chen et al. [127]
Detecting COVID-19’s presence ResNet-18 X-ray and CT scan Kochgaven et al. [128]
Prediction of COVID-19 disease CNN model Chest X-rays Malhotra et al. [129]

Classification of +ve and -ve Deep CNN CXR images Laouarem et al. [130]
Medical resources’ demand prediction CETL method Heterogeneous data Song et al. [131]

Risk assessment system MK-DNN model Location maps Wang et al. [132]
Prediction of virus CNN models Electronic Medical Records Senthilkumar et al. [133]

Privacy of patient data 2D CNN model X-ray images and symptoms Ho et al. [134]
Community-level vulnerability

estimations map SIR models Locations data Chen et al. [135]

COVID-related symptoms detection CNN model Sensors data Rahman et al. [136]
Accurate prediction of COVID-19

cases Hybrid capsule network Lung CT images Durga et al. [137]

Monitoring of COVID-19 KNN + CNN + LSTM Symptom data Aljumah et al. [138]
COVID-19 detection KNN classifier Demographics data Mukherjee et al. [139]

Epidemic trend analysis T-SIRGAN model Surveillance data Wang et al. [140]
COVID-19 suspects prediction ML 1 techniques Sensors and IoT data Mir et al. [141]
Infected patients monitoring ANN model Symptomatic results Rathee et al. [142]

Breathing pattern analysis Clustering methods Sensors data Hidayat et al. [143]
Medical information sharing CNN model EHR data Salim et al. [144]

Tracking health status of infected
patients FPGA prototype Sensory data AlOmani et al. [145]

Diagnosis of COVID-19 Vision transformer CXR images Park et al. [146]
Analysis of vaccine-related tweets in

SNs RNN model Tweets data Singh et al. [147]

Tackling data diversity Vision transformers Masked images Yan et al. [148]
Privacy protection of healthcare data NB + RF Genomic data Islam et al. [149]

1 SVM, decision tree, naïve Bayes, logistic regression, and neural network.

3.6. Robotics

Robotics has also played a vital role during this ongoing pandemic in terms of medical
supplies, temperature checking, data collection, alerting people to stay away from con-
taminated places, announcements, mask-wearing status analysis, and many more [150].
In South Korea, robots were used at crowded places such as airports for social distance
monitoring, mask checking, and alerting people when their distance from others was
less than 2 m. Such applications have proved the effective use of robot technology in the
ongoing pandemic. In most cases, robots were used to collect data that can be analyzed
with the latest AI technologies. Robots were able to perform multiple tasks involving sam-
ple delivery, patient information, and equipment in COVID-19 hospitals by reducing the
possibility of infection. In the era of COVID-19, online shopping is significantly enhanced
through fast logistics systems where robots/UAVs are being employed as the means to
deliver food (or medical) supplies and other commodities because in-person delivery is not
allowed. Countries such as South Korea, China, UAE, and the United States have launched
contactless delivery systems where the customer’s products ordered online are dropped
off at the selected areas/locations instead of the people receiving them for themselves
using their hands. All these measures were adopted to lower the risk of contacts and
corresponding infection [151,152].

Robotics have been widely integrated into many of the latest AI techniques to enhance
the quality and to make the healthcare systems cost-effective [153]. Similarly, robotics
combined with IoT systems have helped infected and disabled people during the ongoing
pandemic [154]. During this pandemic, robotic technologies were used in different scenar-
ios, including clinical care, disease prevention, and monitoring, laboratory automation,
medical supplies delivery, logistics, alerting, and maintenance of socioeconomic activities
across the globe [155]. Recently, robots were employed to collect relevant data and send
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it to the server for analytics purposes [156]. The robotics-powered medical applications
are advancing day by day, and robots have been used in the medical domain for well over
30 years [157]. These applications prove the significant role of robotics in the COVID-19 era.

3.7. Tiny Machine Learning (TinyML)

Tiny machine learning (TinyML) is the latest development in the world of AI and
deep learning. TinyML brings the capability to run/operate ML models in a ubiquitous
microcontroller unit (MCU) [158]. The MCU is the smallest electronic chip that is present
almost everywhere these days. MCUs are the brains of many devices. From an elevator to
a TV remote controller to a smart speaker, they are present everywhere. Multiple sensors
or wearables that can send telemetry data are connected to an MCU. Actuators, such as
motors and switches, are also connected to the same MCU. It carries embedded code/logic
that can obtain the data from wearables/sensors, and control the actuators. The evolution
of TinyML marks a significant paradigm shift in how end-users take benefits from AI [159].
Vendors from the software and hardware industries are collaborating to efficiently bring
AI models close to the MCUs. The ability and capacity to run sophisticated AL models
embedded within an electronic device (or even inside the human body) opens up many
commercial avenues.

TinyML does not require a cloud, edge, or Internet connection. TinyML runs locally
on the same MCU, which has the logic and control to effectively manage the connected
actuators and sensors. There are two types of evolution in the context of TinyML: (i) AI
in the cloud and (ii) AI at the edge [160]. TinyML is regarded as the big future of ML.
Figure 12 presents the composition of TinyML paradigm. TinyML is the amalgamation of
three main components: software, hardware, and algorithms.

Figure 12. The composition of the TinyML paradigm (adopted from [161]).

Table 5 presents the promising applications of TinyML in the era of COVID-19.

Table 5. Summary of promising applications of TinyML in the era of COVID-19.

Promising Application Data Used TinyML Concept Used Ref.

Face mask checking Face images data STM32F411 chip Piątkowski et al. [162]
Clinical outcome analysis Clinical data Micro-controllers Santiago et al. [163]

Patients management Vital signs ESP8266EX System on Chip Fyntanidou et al. [164]
Pandemic exploration Physiological data TPCI system Purawat et al. [165]
Face mask detection Facial images ARM Cortex-M7 MCU Mohan et al. [166]

Cough samples analysis Cough samples Arduino 33 BLE Rana et al. [167]
Ventilation management Ambient data Sense microcontroller Avdić et al. [168]

Disease prediction Synthetic breath data TinyML model Ooko et al. [169]
Daily activities’ recognition tags RF sensor tags Window analysis module Jaiswal et al. [170]

Heart rate analysis Wearables data Altered SAX (ASAX) Klus et al. [171]
Privacy preservation MNIST dataset Cortex-M and RISC-V Costa et al. [172]
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As shown in Table 5, TinyML has played a vital role in many aspects concerning
COVID-19. Detailed information related to TinyML use in healthcare can be learned from
a recent study [173,174]. The TinyML field is relatively new, but many applications will
be developed in the coming years, especially in the medical field [175]. The synergy of
TinyML with other technologies such as IoT is also increasing day by day [176]. TinyML
demands more effort from other vendors such as chip vendors, compiler companies, service
providers, etc., to make it the deepest edge possible IoT technology.

3.8. Edge Computing

Many cloud-based applications use data centers as central servers to process huge data
produced by edge devices, such as tablets, wearables, smartphones, and industrial units.
This cloud-centric model increases both the computational and communication overheads,
leading to an adverse effect on Quality-of-Service (QoS) and Quality of Experience (QoE).
To resolve these issues, a concept of edge computing (EC) is proposed that dedicates/moves
some of the computational burdens towards the edge of the network to take benefits from
computational capabilities that are currently untapped in edge nodes, such as routers, base
stations, and switches [177]. Figure 13 shows the schematic of EC.

Figure 13. Workflow diagram of the edge computing.

The EC computing paradigm is imperative for performing most calculations/
computations at the edge of the network. The EC paradigm has abilities to solve many
latency challenges of the traditional cloud-centric approaches. EC is one of the emerging
technologies as it is lightweight and can contribute to small-scale data preservation and
processing [178,179]. Due to its capabilities in processing data at a much faster rate than
cloud computing, EC has been widely used in the COVID-19 era for disease mitigation,
detection, management, and mask detection [180–182]. EC has created synergies with AI
approaches to resolve many challenges concerning the ongoing pandemic [183]. Due to its
ability in processing data quickly, it has significantly contributed to controlling the pan-
demic [184]. In this pandemic, EC-based technologies have assisted in detecting COVID-19
from X-ray images [185,186]. The EC technology is beneficial in terms of minimizing data
transmissions to cloud servers, and performs most processing at the edge, thereby improv-
ing user’s privacy aspects [187]. Furthermore, EC can acquire the data from heterogeneous
sources, thereby contributing to the clinical screening of COVID-19 [188].

EC technologies have also been used to reduce communication, energy, and com-
putation overheads while detecting COVID-19 from X-ray images [189]. In addition, EC
techniques contribute to enhancing training efficiency without losing guarantees of model
accuracy. In some cases, EC technology was used in monitoring social distances to curb the
spread of COVID-19 [190]. There exist some explainable AI and EC-based implementations
with promising results in COVID-19 scenarios, which prove the technical significance
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of EC in the COVID-19 era [191]. EC has abilities to work with AI techniques without
orchestrating data to the central server and, therefore, some applications of EC combined
with AI have contributed towards ambient assisted living [192]. The integration of IoE
with EC is expected to further enhance the application scenarios and promising trends
of EC in healthcare [193]. The application of EC in healthcare is increasing day by day
and cooperative architecture that can contribute to disease diagnosis has been developed
recently [194]. Cloud, fog and edge computing-based architectures have been developed to
make appropriate decisions to control the ongoing pandemic [195,196]. EC architectures
have been widely used in analyzing the dynamics of infectious diseases that can assist
in mitigating the spread of COVID-19 [197]. Detailed information about EC applications,
service scenarios, and use cases can be learned from the previous studies [198–201]. EC
technology is going through an immense revolution with time and is a SOTA technology
of the future with many applications [202,203]. The unique application such as privacy
preservation of personal data has enhanced the acceptance of EC-based technologies across
the world [204–206]. From the discussion of promising applications of COVID-19, it can
be seen that EC is a promising technology to fight current/future infectious diseases. The
promising applications of EC in COVID-19 arena are given in Figure 14.

Figure 14. Applications and services of EC technology in the context of COVID-19.

3.9. Natural Language Processing

During the ongoing pandemic, natural language processing (NLP) models have
been increasingly used to detect misinformation, entity recognition, question answering,
and symptoms/knowledge discovery [207,208]. NLP has also assisted in understand-
ing the temporal evolution of COVID-19 through the robust analysis of the published
studies [209]. NLP techniques were used to identify the key issues (i.e., topics and senti-
ment polarity) by employing social media data [210]. Furthermore, NLP techniques were
extensively used to analyze the side effects of the COVID-19 pandemic on the general
public [211]. NLP techniques are designed to significantly reduce the amount of time
a doctor spends on documentation, which can augment the time and effort a doctor to
work with actual patients directly in the ongoing pandemic [212]. Furthermore, NLP
techniques have greatly contributed to identifying the populations at higher risk during
the COVID-19 pandemic [213]. The NLP techniques have vastly contributed to extract-
ing knowledge that is imperative in controlling, treating, and managing the strain of
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COVID-19 [214]. As a tool to understand and analyze human language, NLP has become
an integral part of smart healthcare [215,216]. In this pandemic, NLP-based predictive ana-
lytics and NLP techniques successfully enabled medical data-driven patient guidance and
pooled testing. [217]. The latest application of NLP contributed to knowledge extraction,
topic modeling, and entity recognition using data of various kinds [218]. A comprehensive
analysis of SOTA NLP approaches, and their efficacy in the COVID-19 era is given in a
recent study [219]. Figure 15 presents the applications of NLP in the context of COVID-19
along with data sources. From the analysis presented in Figure 15, it can be observed that
NLP has contributed in multiple aspects concerning COVID-19.

Figure 15. Applications and services of NLP technology in the context of COVID-19 (reformulated
from [212]).

Sengupta et al. [220] discussed the NLP-based approach for sentiment analysis to
determine the impact of the pandemic on mental health using tweets data. Similarly,
Ye et al. [221] analyzed public sentiments, using social media data in the U.S., toward
COVID-19 vaccination. The authors discussed the public concerns and attitudes regarding
COVID-19 vaccination. In some cases. NLP techniques have helped in identifying outbreaks
of COVID-19 in public places [222]. NLP-based techniques have increasingly been used
in the spread of COVID-19 through gene analysis present in complete sequence [223].
Heider et al. [224] developed an NLP-based tool for extracting relevant information from
clinical notes that can be used to control (or plan a response) the COVID-19 pandemic.
The DECOVRI tool is expected to be released as an open-source tool to fight the COVID-19
pandemic. Detailed information about NLP models and relevant data that were used to
fight the pandemic can be learned from recent studies [225,226]. Soon, the role of NLP as a
mobile doctor or voice assistant will be imperative to improve healthcare for the general
public [227,228]. The analysis cited above can assist in understanding the role of NLP
technology in the era of COVID-19. Recently, NLP-powered robots and chatbots have also
played a vital role in the healthcare industry.

3.10. Synthetic Data (SD)

Synthetic data (SD) are becoming a leading privacy enhancing technology (PET) due to
restricted access to real/reference data but still offer similar analytic results to real data [229].
SD can be generated with either mathematical models or machine/deep learning methods
by replicating the structure and distributions of real data [230]. SD is the main pillar in
well-being and health domains for verifying multiple hypotheses as well as generating
new hypotheses concerning biomedical research [231]. SD has many benefits in advancing
science and influencing societies, especially in the era of artificial intelligence (AI) and big
data [232]. We demonstrate the efficacy of SD in real scenarios from six aspects as follows.

1. SD can be shared on a large scale that may not be possible with real data due to
growing privacy concerns and legal enforcement measures.

2. SD can augment the performance of AI models in most real-world scenarios by
supplying large amounts, and a variety of, SD for training ML/DL models [233].
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3. It can be a pertinent solution for the data island problem (e.g., lower performance of
AI models due to higher differences in sizes and distributions of data at each site).

4. It can provide early access to data when real data cannot be accessed due to a small
size or unexpected circumstances (taking COVID-19 as an example).

5. SD can be generated in different formats, such as medical images, electronic health
records, in time series, as biomedical signals or activity data, that can be vital for
research (or policy-making) and analytical tasks [234].

6. It can be a leading PET (like FL) by restricting access to the real data but still permitting
analytics of various kinds (e.g., drawing pictures out of the data).

SD can be generated with the help of AI models (i.e., generative adversarial networks
and their variants). An example of SD generation with conditional GAN is in Figure 16.

Figure 16. Overview of SD generation with generative adversarial networks (GANs).

Recently, SD has become one of the famous technologies to fulfill the demands of high-
quality data that is not easily accessible when it comes to analytics and mining [235–237]. SD
has contributed in solving many research problems such as speech recognition [238], privacy
preservation [239], money laundering detection [240], medical image segmentation [241],
shockable rhythms detection [242], protection against membership inference attacks [243],
innovative healthcare applications [244], privacy and utility enhancements [245], mobility
modelling [246],object detection/manipulation [247], crack identification [248], crowd
counting [249,250], vague data classification [251], grammatical error detection [252], AI
models training for medical applications [253], support in clinical developments [254],
time series analysis [255], data loss prevention [256], and surgical planning [257]. SD
has contributed significantly in the era of COVID-19. Table 6 summarizes the potential
applications of SD in the context of COVID-19.

As shown in Table 6, SD has significantly contributed to addressing many concerns
related to the ongoing pandemic. SD is a mainstream technology in the medical field when
it comes to augmenting many AI models’ performances and making data broadly available.
Further information related to SD in medical research can be obtained from a recent
study [258]. In the coming years, SD will be an integral component of many AI models.
Furthermore, it has been widely used to fulfill data governance/use in most sectors.
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Table 6. Summary of promising applications of SD in the era of COVID-19.

Promising SD Application Data Used AI Model Used Ref.

Data augmentation CT scans data Conditional GAN Das et al. [259]
COVID-19 detection X-ray image data Conditional GAN Majid et al. [260]

Accuracy enhancement of ML models Text data GAN model Gujar et al. [261]
Rapid diagnosis Chest X-ray pictures GAN & CNN models Gulakala et al. [262]

COVID-19 detection X-ray images Convolutional GAN Shah et al. [263]
COVID-19 detection CT scan images Classical & GAN Asghar et al. [264]

Detection of COVID diseases CT images BiGAN and CycleGAN Sarv et al. [265]
Infection segmentation CT images Domain adaptation Chen et al. [266]
Lesion segmentation Lung CT scans Unsupervised GAN Sherwani et al. [267]

Clinical data generation Real clinical data SASC model Khorchani et al. [268]
Disease classification Primary signs Mechanistic models Farhang et al. [269]

Policies analysis Patient records Computational models Jiri et al. [270]
Image data generation Chest X-ray images DCNN model Phukan et al. [271]
COVID-19 diagnosis CXR images GAN model Mostafiz et al. [272]

Infected parts analysis X-ray images GAN model Ali et al. [273]
Analysis of COVID-19 on influenza

treatment Clinical data AI models Kernberg et al. [274]

Sentiment analysis Tweets data ML models Rahman et al. [275]
Automated screening of virus X-ray images CycleGAN model Morís et al. [276]

Medical diagnosis of virus Blood tests data SMOTE model Chadaga et al. [277]
COVID spread prediction Chest CT scan DCGAN model Jain et al. [278]
Treatment of COVID-19 Chest X-rays CNN VGG16 model Prasad et al. [279]

Importance of good quality data in the context of COVID-19: Most of the above
technologies used heterogeneous data stemming from clinical analysis or directly collected
from people. Since data has replaced oil as the most economically desirable resource
in the world, its collection and utilization have become challenging [280]. Some studies
have highlighted the need for new and good-quality datasets to fight the pandemic [281].
The recent AI-based technique requires good data to predict the course of this disease [282].
Figure 17 presents the data sources and digital solutions that were employed to fight the
pandemic. From the analysis, it can be observed that a variety of data was used to bring
the pandemic under control in the absence of vaccines. Similarly, future infectious diseases
can be handled well using diverse datasets and advanced AI (or digital) technologies.

Figure 17. Overview of data sources and digital technologies that were employed to fight the virus.



COVID 2023, 3 108

Recently, the quality and availability of data have become a hot research topic in many
disciplines. To this end, a new discipline named, data-centric AI has emerged [283,284].
Hence, exploring the use of this new concept in the COVID-19 era has become more
emergent than ever [285]. COVID-19 pushing us to the new industrial revolution (fifth
industrial revolution) and, therefore, the role of data-related movements and technological
advancements is imperative in the context of future infectious diseases [286]. The insightful
analysis and discussion cited above are imperative in understanding the role of technology
in the era of COVID-19. In addition, it helps identification of research gaps, that, in return,
can help strengthen the response to this pandemic.

4. Summary and Comparisons

In this paper, we described the technical efficacy and applications of the top ten digital
technologies that have proven successful in the era of COVID-19. Specifically, we selected
digital technologies that have commercial success in many countries across the globe. Our
analysis is handy in terms of getting to know which technologies played a vital role in
the ongoing pandemic. Moreover, we highlight the analysis in a pictorial form which is
convenient for researchers and experts. Appropriate references have also been inserted for
detailed discussions and further readings. To the best of our knowledge, we are the first to
propose such an in-depth analysis of emerging technologies in the context of COVID-19. We
presented the detailed analysis in tabular and textual forms for each identified technology.
For five key technologies, we presented and compared the SOTA studies in a tabular form,
and related literature in five technologies was analyzed in a textual form. In the former
analysis, our main focus was to present the experimental details. In contrast, the later
analysis traditionally discussed the studies, mostly in a theoretical form. Table 7 presents
further information concerning the analysis of SOTA studies in each technology.

Table 7. Details of the analysis presented for each identified technology.

Technology Discussion Form # of Studies Analysis Type

IoT Table 15 Experimental

AI Table 48 Experimental

NLP Text 22 Theoretical

CV Text 10 Theoretical

BC Text 11 Theoretical

FL Table 47 Experimental

Robotics Text 08 Theoretical

TinyML Table 19 Experimental

EC Text 29 Theoretical

SD Table 49 Experimental

There exist hybrid technologies that used more than one technology to fight the pan-
demic. Nair et al. [287] used IoMT and FL technologies together to restrict privacy issues in
big data analytics. Aich et al. [288] employed the BC and FL technology to protect the pri-
vacy of sensitive EHR. Zhang et al. [289] created the fusion of FL models with EC to robustly
detect COVID-19 infection from X-ray or CT scan data. Jat et al. [290] integrated the drones
and EC to control the outbreak in various situations to fight COVID-19. Firouzi et al. [291]
employed four different technologies such as IoT, BC, AI, and robotics in the healthcare
sector to manage the pandemic. Sahu et al. [292] integrated AI and drones to prevent the
infection of COVID-19. Feldman et al. [293] employed NLP and AI to plan a response to
the COVID-19 scenarios. Jaimin et al. [294] employed NLP and EC to develop interactive
chatbots for COVID-19 scenarios. Poongodi et al. [295] highlighted the role of multiple
technologies in the context of COVID-19. Kanade et al. [296] developed a full technology
stack to remotely monitor COVID-19 patients. A comparative analysis of all 10 identified
technologies is given in Table 8. We compare each technology on three grounds (i.e., use in
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the COVID-19 context, main contributions, and performance). It is important to note that
each technology has contributed in multiple aspects concerning COVID-19; however, we
present only the major contributions here. The analysis of all technologies can pave the
way to meticulously understanding the role of them in the era of COVID-19.

Table 8. A comparison analysis for all 10 identified technologies in the context of COVID-19 pandemic.

Technology Use in COVID-19 Main Contribution(s) Performance

IoT Very high Quarantine management
and monitoring Good

AI Very high Analytics and predictions Very good

NLP High Q&A and symptoms
analysis Good

CV Very high Detection and diagnosis Very Good

BC High Data sharing and privacy
control Good

FL Very High Privacy preservation and
model training Very Good

Robotics High Sanitization and alerting Good

TinyML Medium Disease monitoring aand
severity analysis Satisfactory

EC High Robust diagnosis and
spread control Very good

SD Medium Data analytics and sharing Satisfactory

Our study is more comprehensive and systematic than previous surveys that either
focused on COVID-19 detection (i.e., only one scenario) or generic applications of these
technologies in the healthcare sector. Furthermore, most studies have covered one/two
technologies’ roles in the pandemic era. Furthermore, the experimental details (models,
data, and application) are very limited in those surveys. Lastly, most of the previous
reviews highlighted and covered studies from the early days of the pandemic that are not
fully reliable. Our work addresses all these limitations of the previous surveys and presents
extended knowledge extracted from high-quality research papers along with experimental
details. Our work aligns with recent trends toward community beneficial technologies
development and analysis.

5. Future Research Challenges and Directions

It is important to note that COVID-19 has accelerated digital innovation, and many
digital tools have been developed to either handle the pandemic or regulate businesses.
The rapid digital innovation and software development trend will likely stay in the post
COVID-19 era. However, the data modalities and scale are much different compared to
the pre-pandemic arena, and therefore, a lot of challenges exist in terms of data collection,
processing, use, etc. For example, the scale and scope of data have significantly changed
amid the pandemic, and more robust techniques are required to handle it. Furthermore,
highly diverse types (e.g., life logs, location, working environment, etc.) of data are being
collected which can lead to privacy issues of diverse kinds. To provide a clear overview,
we arrange future research challenges and directions into six broad categories (i.e., data,
software, hardware, AI, privacy, and general) as shown in Figure 18.

From the perspective of data, the handling of diverse data types (e.g., table, graphs,
metrics, location traces, mobility graphs, heat maps, etc.), and extracting enclosed knowl-
edge from them is very challenging. Furthermore, processing and storing huge data
stemming from different automated tools (e.g., contact tracing apps, quarantine monitoring
apps, proximity detection software, etc.) is also challenging. Furthermore, a large amount
of data stemming from the pandemic is noisy and, therefore, sophisticated techniques
are required to enhance its quality. However, there is a lack of domain experts who can
contribute to enhancing the data quality. On the other hand, most contact tracing appli-
cations collect and store data that may not be needed at all and, therefore, appropriate
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data collection methodologies are needed. In conclusion, there exist multiple challenges
concerning the quality of data in the COVID-19 arena.

Figure 18. Overview of major challanges and future directions in the context of COVID-19.

From the perspective of software, reducing computing overheads while processing a
substantial amount of data is very challenging. Furthermore, enhancing the robustness of
software while querying a large amount of data is also tricky. Furthermore, developing
software (that is, decision support systems) that can diagnose COVID-19 patients effectively
is also very challenging. Although much medical-related software has been developed,
their efficacy in terms of correctly analyzing all dynamics of COVID-19 was relatively
low compared to other well-known diseases. From the perspective of hardware, some
architectures yield below-par performance due to complex arithmetic operations. There-
fore, upgrading the hardware architectures and developing dedicated hardware that can
fasten the computation is challenging. In the future, dedicated hardware is of paramount
importance to accelerate the computation on large datasets.

From the perspective of AI, lowering the overall complexity of neural network models
is very challenging while building AI models for diagnosis. Furthermore, quantizing AI
models and pruning redundant weights so that AI models can work on edge devices is also
very challenging and require expertise. Moreover, reducing the computing overheads from
AI models is very challenging. In many AI models such as supervised learning, a higher
amount of human involvement is needed for feature engineering, feature selection, model
selection, hyperparameter tuning, etc. Therefore, developing automated tools to limit
human involvement to the extent possible is very challenging. In addition, developing
AI models that are free from biases is one of the biggest challenges while applying AI
to any real-world problems. Additionally, providing explanations along with AI models’
decisions is also very challenging. Lastly, improving AI models’ performance when data is
scarce or poor in quality is also very challenging.

Privacy remained one of the biggest challenges and barriers to the adoption of digital
technologies in the context of COVID-19. In the COVID-19 era, maintaining the balance
between public safety and privacy was very challenging. In many countries, the adoption
of contact tracing apps was very low due to privacy concerns. Apple and Google devoted
efforts to developing a contact tracing platform without collecting any identity-related
information [297]. In addition, many BC-related tools were also developed to combat the
privacy paradox [298,299]. Despite these developments, privacy preservation in digital
tools that were employed to control the pandemic is still very challenging. Developing
privacy pipelines that can guarantee end-to-end privacy is very challenging [300]. Lastly,
deriving useful knowledge with the least data (e.g., without collecting explicit identity-
related data) is also very challenging.
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Lastly, developing contact tracing apps that can assist in robustly finding the contacts
of an infected individual was also very challenging. Due to privacy issues, their adoption
was low, and contact tracing was ineffective in many countries of the world. Furthermore,
getting the correct picture of the pandemic by leveraging heterogeneous data was chal-
lenging. For example, finding the peak pandemic time, likely end of the pandemic time,
and cases, etc. were very challenging to measure. In addition, the use of digital technologies
to find a candidate drug for COVID-19 was also challenging. All these challenges require
robust solutions in the near future.

Based on the painstaking analysis of the published literature, we suggest the following
important topics that require further research/development from the research community:
(i) development of privacy-enhancing technologies, (ii) development of data fusion and
knowledge discovery methods, (iii) development of dedicated software and hardware for
COVID-19 scenarios, (iv) development of strong security mechanism and secure multi-
party computing techniques, (v) development of automated data processing methods,
(vi) development of data-centric AI methods for COVID-19, (vii) development of methods
for solving data imbalance and heterogeneity problems, (viii) development of innovative
technologies for tracing infected people, (ix) development of decentralized apps that do
not leak data, and (x) development of self-diagnosis apps or frameworks. All of these
directions can contribute to developing community-beneficial technologies that, in return,
can serve humans in various ways.

6. Conclusions and Future Work

This paper presented a systematic coverage of the top ten technologies that have
significantly helped the general public in lowering the effects of COVID-19, in particular,
when vaccines were unavailable. We provided extended details (e.g., applications, data
details, model names, pertinent references, etc.) about each technology, and discussed state-
of-the-art studies. Different from the previous work, our analysis targets mainstream
technologies and their benefits/applications solely in the context of COVID-19. Our
painstaking analysis can be beneficial for the computer science community in quickly
grasping the research status of major technologies in the fight against the COVID-19
pandemic. Lastly, our work aligns with the recent trends toward developing/analyzing
digital technologies that can serve mankind effectively. In the future, we intend to explore
the role of all information and communication technologies (ICTs) that helped the general
public during the ongoing pandemic.
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