Comparable Detection of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples of Suspected COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area
2.3. Study Design and Sample Collection
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics of Study Participants
3.2. Biodistribution and Diagnostic Accuracy of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples
3.3. Comparison of Viral Load between Oropharyngeal and Sputum Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khurshid, Z.; Asiri, F.Y.I.; Al Wadaani, H. Human Saliva: Non-Invasive Fluid for Detecting Novel Coronavirus (2019-nCoV). Int. J. Environ. Res. Public Health 2020, 17, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 2 February 2022).
- COVID-19 Updates|Ghana. WHO Coronavirus (COVID-19) Dashboard-Ghana. 2022. Available online: https://covid19.who.int/region/afro/country/gh (accessed on 28 January 2022).
- Long, C.; Xu, H.; Shen, Q.; Zhang, X.; Fan, B.; Wang, C.; Zeng, B.; Li, Z.; Li, X.; Li, H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020, 126, 108961. [Google Scholar] [CrossRef]
- CDC. Interim Guidelines for Collecting and Handling of Clinical Specimens for COVID-19 Testing. 2020. Available online: https://www.cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens.html (accessed on 8 December 2021).
- Pinninti, S.; Trieu, C.; Pati, S.K.; Latting, M.; Cooper, J.; Seleme, M.C.; Boppana, S.; Arora, N.; Britt, W.J.; Boppana, S.B. Comparing Nasopharyngeal and Midturbinate Nasal Swab Testing for the Identification of Severe Acute Respiratory Syndrome Coronavirus 2. Clin. Infect. Dis. 2020, 72, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhao, X.; Ma, X.; Wang, W.; Niu, P.; Xu, W.; Gao, G.F.; Wu, G. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases—Wuhan, China 2019−2020. China CDC Wkly. 2020, 2, 61–62. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. Jama 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Xiang, J.; Yan, M.; Li, H.; Huang, S.; Shen, C. Comparison of throat swabs and sputum specimens for viral nucleic acid detection in 52 cases of novel coronavirus Presenting characteristics. Clin. Chem. Lab. Med. (CCLM) 2020, 58, 1089–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yang, M.; Yuan, J.; Wang, F.; Wang, Z.; Li, J.; Zhang, M.; Xing, L.; Wei, J.; Peng, L.; et al. Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection. Innovation 2020, 1, 100061. [Google Scholar] [CrossRef]
- Mawaddah, A.; Gendeh, H.S.; Lum, S.G.; Baki, M.M. Upper respiratory tract sampling in COVID-19. Malays. J. Pathol. 2020, 42, 23–35. [Google Scholar]
- Rao, S.N.; Manissero, D.; Steele, V.R.; Pareja, J. A Systematic Review of the Clinical Utility of Cycle Threshold Values in the Context of COVID-19. Infect. Dis. Ther. 2020, 9, 573–586. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Hu, J.; Zhou, M.; Yu, M.Q.; Li, K.Y.; Xu, D.; Xiao, Y.; Yang, J.Y.; Lu, Y.J.; et al. Nasopharyngeal Swabs Are More Sensitive Than Oropharyngeal Swabs for COVID-19 Diagnosis and Monitoring the SARS-CoV-2 Load. Front. Med. 2020, 7, 334. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Ghana 2021 population and housing census. Gen. Rep. 2021, 3A–3N, 104–105. [Google Scholar]
- Acheampong, G.; Owusu, M.; Nkrumah, B.; Obeng-Boadi, P.; Opare, D.A.; Sambian, D.J.; Angra, P.; Walker, C. Laboratory capacity in COVID-19 diagnosis and the need to enhance molecular testing in Ghana. Glob. Secur. Health Sci. Policy 2021, 6, 10–17. [Google Scholar] [CrossRef]
- Owusu, M.; Sylverken, A.A.; Ankrah, S.T.; El-Duah, P.; Ayisi-Boateng, N.K.; Yeboah, R.; Gorman, R.; Asamoah, J.; Binger, T.; Acheampong, G.; et al. Epidemiological profile of SARS-CoV-2 among selected regions in Ghana: A cross-sectional retrospective study. PLoS ONE 2020, 15, e0243711. [Google Scholar] [CrossRef]
- Adjei, P.; Afriyie-mensah, J.; Ganu, V.J.; Puplampu, P.; Opoku-Asare, B.; Dzefi-tettey, K.; Tachi, K.; Dey, D.; Akamah, J.; Akpalu, A.; et al. Clinical characteristics of COVID-19 patients admitted at the Korle-Bu Teaching Hospital, Accra, Ghana. Ghana Med. J. 2020, 54, 33–38. [Google Scholar] [CrossRef]
- Alsofayan, Y.M.; Althunayyan, S.M.; Khan, A.A.; Hakawi, A.M. Clinical characteristics of COVID-19 in Saudi Arabia: A national retrospective study. J. Infect. Public Health 2020, 13, 920–925. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Yokota, I.; Hattori, T.; Shane, P.Y.; Konno, S.; Nagasaka, A.; Takeyabu, K.; Fujisawa, S.; Nishida, M.; Teshima, T. Equivalent SARS-CoV-2 viral loads between nasopharyngeal swab and saliva in symptomatic patients. MedRxiv 2020, 11, 4500. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA-J. Am. Med. Assoc. 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Lamptey, J.; Oyelami, F.O.; Owusu, M.; Nkrumah, B.; Idowu, O.P.; Czika, A.; El-duah, P.; Yeboah, R.; Sylverken, A.; Olasunkanmi, I.O.; et al. Genomic and epidemiological characteristics of SARS-CoV-2 in Africa. PLoS Negl. Trop. Dis. 2021, 15, e0009335. [Google Scholar] [CrossRef]
- Ng, W.H.; Tipih, T.; Makoah, N.A.; Vermeulen, J.G.; Goedhals, D.; Sempa, J.B.; Burt, F.J.; Taylor, A.; Mahalingam, S. Comorbidities in SARS-CoV-2 Patients: A Systematic Review and Meta-Analysis. mBio 2021, 12, e03647-20. [Google Scholar] [CrossRef] [PubMed]
- Power, M.; Fell, G.; Wright, M. Principles for high-quality, high-value testing. BMJ Evid. Based Med. 2013, 18, 5–10. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Tsang, O.T.Y.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.Y.; Cai, J.P.; Chan, J.M.C.; Chik, T.S.H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Bosch, B.J.; Smits, S.L.; Haagmans, B.L. Membrane ectopeptidases targeted by human coronaviruses. Curr. Opin. Virol. 2014, 6, 55–60. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; Van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Branche, A.R.; Walsh, E.E.; Formica, M.A.; Falsey, A.R. Detection of respiratory viruses in sputum from adults by use of automated multiplex PCR. J. Clin. Microbiol. 2014, 52, 3590–3596. [Google Scholar] [CrossRef] [Green Version]
- Falsey, A.R.; Formica, M.A.; Walsh, E.E. Simple Method for Combining Sputum and Nasal Samples for Virus Detection by Reverse Transcriptase PCR. J. Clin. Microbiol. 2012, 50, 2835. [Google Scholar] [CrossRef] [Green Version]
- Butler-laporte, G.; Lawandi, A.; Schiller, I.; Yao, M. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2 A Systematic Review and Meta-analysis. JAMA Intern. Med. 2021, 181, 353–360. [Google Scholar] [CrossRef]
- Pasomsub, E.; Watcharananan, S.P.; Boonyawat, K.; Janchompoo, P.; Wongtabtim, G.; Nalumansi, A.; Lutalo, T.; Kayiwa, J.; Watera, C.; Balinandi, S.; et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: A cross-sectional study. Clin. Microbiol. Infect. 2021, 27, 281–285. [Google Scholar] [CrossRef]
- Warsi, I.; Khurshid, Z.; Shazam, H.; Umer, M.F.; Imran, E.; Khan, M.O.; Slowey, P.D.; Goodson, J.M. Saliva Exhibits High Sensitivity and Specificity for the Detection of SARS-CoV-2. Diseases 2021, 9, 38. [Google Scholar] [CrossRef]
- Vaz, N.S.; Souza, D.; Santana, D.; Netto, E.M.; Pedroso, C.; Wang, W.; Deminco, F.; Santos, A.; Brites, C. Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. Braz. J. Infect. Dis. 2020, 24, 422–427. [Google Scholar] [CrossRef]
Variable | No. (%) of Covid Negative (n = 197) | No. (%) Covid Positive (n = 120) | Total No. (n = 317) | p-Value |
---|---|---|---|---|
Gender | 0.495 | |||
Male | 103 (52.3) | 58 (48.3) | 161 (50.8) | |
Female | 94 (47.7) | 62 (51.7) | 156 (49.2) | |
Age Group | 0.058 | |||
11–19 | 17 (8.7) | 5 (4.2) | 22 (7.0) | |
20–29 | 48 (24.5) | 34 (28.3) | 82 (25.9) | |
30–39 | 68 (34.7) | 41 (34.2) | 109 (34.5) | |
40–49 | 30 (15.3) | 13 (10.8) | 43 (13.6) | |
50–59 | 21 (10.7) | 9 (7.5) | 30 (8.5) | |
60–83 | 12 (6.1) | 18 (15.0) | 30 (9.5) | |
Occupation | 0.827 | |||
Formal | 72 (45.0) | 47 (49.0) | 119 (46.5) | |
Informal | 50 (31.3) | 28 (29.2) | 78 (30.5) | |
Unemployed | 38 (23.8) | 21 (21.9) | 59 (23.0) | |
Comorbidity | 0.001 | |||
Present | 6 (3.0) | 13 (10.8) | 19 (6.0) | |
None | 143 (72.6) | 66 (55.0) | 209 (65.9) | |
Unknown | 48 (24.4) | 41 (34.2) | 89 (28.1) | |
Reporting Facility | 0.010 | |||
Kwadaso SDA Hospital | 92 (46.7) | 74 (61.7) | 166 (52.4) | |
Suntreso Gov’t Hospital | 105 (53.3) | 46 (38.3) | 151 (47.6) | |
Clinical Symptoms | 0.003 | |||
Asymptomatic | 75 (38.1) | 26 (21.7) | 101 (31.9) | |
Symptomatic | 112 (56.9) | 91 (75.8) | 203 (64.0) | |
Unknown | 10 (5.1) | 3 (2.5) | 13 (4.1) | |
Specific Symptoms | ||||
Cough | 60 (30.5) | 55 (45.8) | 115 (36.3) | 0.006 |
Sore throat | 31 (15.7) | 20 (16.7) | 51 (16.1) | 0.827 |
Runny nose | 17 (8.6) | 22 (18.3) | 39 (12.3) | 0.011 |
Fever | 27 (13.7) | 37 (30.8) | 64 (20.2) | <0.0001 |
Shortness of breath | 15 (7.6) | 11 (9.2) | 26 (8.2) | 0.625 |
Nausea or vomiting | 5 (2.5) | 10 (8.3) | 15 (4.7) | 0.018 |
Headache | 55 (27.9) | 45 (37.5) | 100 (31.5) | 0.075 |
General weakness | 36 (18.3) | 40 (33.3) | 76 (24.0) | 0.002 |
Pain (chest, muscle, body) | 25 (12.7) | 22 (18.3) | 47 (14.8) | 0.170 |
Loss of smell or taste | 9 (4.6) | 17 (14.2) | 26 (8.2) | 0.003 |
Diarrhea | 1 (0.5) | 9 (7.5) | 10 (3.2) | 0.001 |
OPS | Total | Sensitivity% (95% CI) | Specificity% (95% CI) | PPV% | NPV% | |||
---|---|---|---|---|---|---|---|---|
Pos | Neg | |||||||
Sputum samples | Pos Neg | 71 12 | 49 185 | 120 197 | 85.5 (76.4–91.5) | 79.1 (73.4–83.7) | 59.2 | 93.9 |
Total | 83 | 234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akowuah, E.; Acheampong, G.; Ayisi-Boateng, N.K.; Amaniampong, A.; Agyapong, F.O.; Senyo Kamasah, J.; Agyei, G.; Owusu, D.O.; Nkrumah, B.; Mutocheluh, M.; et al. Comparable Detection of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples of Suspected COVID-19 Patients. COVID 2022, 2, 858-866. https://doi.org/10.3390/covid2070062
Akowuah E, Acheampong G, Ayisi-Boateng NK, Amaniampong A, Agyapong FO, Senyo Kamasah J, Agyei G, Owusu DO, Nkrumah B, Mutocheluh M, et al. Comparable Detection of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples of Suspected COVID-19 Patients. COVID. 2022; 2(7):858-866. https://doi.org/10.3390/covid2070062
Chicago/Turabian StyleAkowuah, Emmanuel, Godfred Acheampong, Nana Kwame Ayisi-Boateng, Andrews Amaniampong, Francis Opoku Agyapong, Japhet Senyo Kamasah, George Agyei, Dorcas Ohui Owusu, Bernard Nkrumah, Mohamed Mutocheluh, and et al. 2022. "Comparable Detection of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples of Suspected COVID-19 Patients" COVID 2, no. 7: 858-866. https://doi.org/10.3390/covid2070062
APA StyleAkowuah, E., Acheampong, G., Ayisi-Boateng, N. K., Amaniampong, A., Agyapong, F. O., Senyo Kamasah, J., Agyei, G., Owusu, D. O., Nkrumah, B., Mutocheluh, M., Sylverken, A. A., & Owusu, M. (2022). Comparable Detection of SARS-CoV-2 in Sputum and Oropharyngeal Swab Samples of Suspected COVID-19 Patients. COVID, 2(7), 858-866. https://doi.org/10.3390/covid2070062