An Overview of SARS-CoV-2 and Technologies for Detection and Ongoing Treatments: A Human Safety Initiative
Abstract
:1. Introduction
2. Overview of SARS-CoV-2 and Its Pathogenic Effect on Humans
3. Challenges and Burden of the COVID-19 Pandemic
- There is an increased possibility of malnutrition and unemployment during lockdown.
- A weakened physical condition increases a person’s susceptibility to disease.
- With the weakening of the socio-economic system, a large number of people may lose their livelihood and will be in danger of irreversible impoverishment.
- Public messages encouraging frequent handwashing can put such people at risk and exacerbate their mental illness.
- The use and subsequent irresponsible disposal of face masks in large numbers leads to a risk of soil and water pollution, which can result in harmful effects on humans and animals.
4. Treatment Strategies and Clinical Development of COVID-19 Vaccine: A Global Solution and Future Perspectives
5. Methods Mainly Employed for COVID-19 Detection in Human
- Rapid antigen test (RAT) method,
- Reverse transcription polymerase chain reaction (RT-PCR) method,
- Computed tomography (CT) imaging method,
- CXRs imaging method.
6. Comparative Study for SARS-CoV-2 and Others Virus to Effect on Human
7. Future Perspective and Management of SARS-CoV-2 Pandemic
- During the pandemic, there is a bombardment of information about what to do and what not to do from different sources. The consequences of this must be considered.
- News media articles and social media posts have a tendency to sensationalize the outbreak and spread misinformation, creating panic. This must be addressed.
- At present, it is important to consider these factors to understand the experiences of people affected by COVID-19 and to make public health policy. Only by doing this will their mental health concerns to be addressed.
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. In Advances In Virus Research; Academic Press: Cambridge, MA, USA, 2011; Volume 81, pp. 85–164. [Google Scholar]
- Adekunle, I.A.; Onanuga, A.; Wahab, O.; Akinola, O.O. Modelling spatial variations of coronavirus disease (COVID-19) in Africa. Sci. Total Environ. 2020, 729, 138998. [Google Scholar] [CrossRef]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef]
- Franch-Pardo, I.; Napoletano, B.M.; Rosete-Verges, F.; Billa, L. Spatial analysis and GIS in the study of COVID-19. A review. Sci. Total Environ. 2020, 739, 140033. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Killerby, M.E.; Biggs, H.M.; Haynes, A.; Dahl, R.M.; Mustaquim, D.; Gerber, S.I.; Watson, J.T. Human coronavirus circulation in the United States 2014–2017. J. Gen. Virol. 2018, 101, 52–56. [Google Scholar] [CrossRef]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.; Groot, R.J.D.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. Biorxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaan, W.; Cavanagh, D.; Horzinek, M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988, 69, 2939–2952. [Google Scholar] [CrossRef]
- Siddell, S.; Wege, H.; Ter Meulen, V. The biology of coronaviruses. J. Gen. Virol. 1983, 64, 761–776. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.; et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 2005, 24, S223–S227. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zheng, B.; He, Y.; Liu, X.; Zhuang, Z.; Cheung, C.; Luo, S.; Li, P.; Zhang, L.; Guan, Y. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.W.; Wong, B.H.; Wong, S.S.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Myint, S.H. Human coronaviruses: A brief review. Rev. Med. Virol. 1994, 4, 35–46. [Google Scholar] [CrossRef]
- Levine, A.J.; Enquist, L.W. History of virology. In Fields Virology, 5th ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Woolhouse, M.E.J.; Gaunt, E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 2007, 33, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Scott, F.; Hudson, Z.; Howey, R. Chase-Topping, M. Human viruses: Discovery and emergence. Philos. T. R. Soc. B. 2012, 367, 2864–2871. [Google Scholar] [CrossRef] [Green Version]
- Holmes, K.V. SARS-associated coronavirus. N. Engl. J. Med. 2003, 348, 1948–1951. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19) Dashboard. 2020. Available online: https://covid19.who.int/?gclid=Cj0KCQjwu8r4BRCzARIsAA21i_AbWOeBR05Yv4XTHg9BJlM6aDz58BjPUsVuNAWlChBiPdBMCbbd9kUaAhVlEALw_wcB (accessed on 15 July 2020).
- WHO. STANDARD Q COVID-19 Ag Test. 2020. Available online: www.sdbiosensor.com (accessed on 28 December 2020).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Med, M.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020, 93, 339–344. [Google Scholar] [CrossRef]
- Zargar, O.; Bashir, R. Mohammad Afzal Zargar and Rabia Hamid, COVID-19 Pandemic: Current Scenario, Challenges and Future Perspectives. Coronaviruses 2020, 1, 1–15. [Google Scholar]
- World Health Organization. COVID-19: Operational guidance for Maintaining Essential Health Services during an Outbreak: Interim Guidance. 2020. Available online: https://WHO/2019-nCoV/essential_health_services/2020.1 (accessed on 25 March 2020).
- Gao, Y.; Li, T.; Luo, L. Phylogenetic study of 2019-nCoV by using alignment-free method. arXiv 2020, arXiv:2003.2020.01324. [Google Scholar]
- Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)—Current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q. 2020, 40, 68–76. [Google Scholar] [CrossRef]
- Gao, Z.C. Efficient management of novel coronavirus pneumonia by efficient prevention and control in scientific manner. Zhonghuajie He He Hu Xi Za Zhi= Zhonghuajiehe He Huxizazhi= Chin. J. Tuberc. Respir. Dis 2020, 43, E001. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular considerations for patients, health care workers and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
- Schroder, I. COVID-19: A Risk Assessment Perspective. ACS Chem. Health Saf. 2020, 27, 160–169. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment coronavirus (COVID-19). In Stat Pearls [Internet]; Stat Pearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Munster, V.J.; Koopmans, M.; Van Doremalen, N.; Van Riel, D.; De Wit, E. A Novel Coronavirus Emerging in China-Key Questions for Impact Assessment. N. Engl. J. Med. 2020, 382, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 2015, 206, 120–133. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, U.; Chabrelie, A.; Weir, M.; Boehnke, K.; McKenzie, E.; Ikner, L.; Wang, M.; Wang, Q.; Young, K.; Haas, C.N.; et al. Acase study evaluating the risk of infection from middle eastern respiratorysyndrome coronavirus (MERS-CoV) in a hospital settingthrough bioaerosols. Risk Anal. 2019, 39, 2608–2624. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Yan, L.; Wang, N.; Yang, S.; Wang, L.; Tang, Y.; Gao, G.; Wang, S.; Ma, C.; Xie, R.; et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 2020, 71, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Hu, C.; Luo, L.; Fang, F.; Chen, Y.; Li, J.; Peng, Z.; Pan, H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J. Clin. Virol. 2020, 127, 104364. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Wang, X.H.; Chen, Y.L.; Zhao, K.L.; Cai, Y.Q.; An, C.L.; Lin, M.G.; Mu, X.D. Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing. Zhonghuajie He He Hu Xi Za Zhi = Zhonghuajiehe He Huxizazhi = Chin. J. Tuberc. Respir. Dis. 2020, 43, 215–218. [Google Scholar]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci. 2020, 6, 315–331. [Google Scholar] [CrossRef]
- Jacobson, D. Indian Society and Ways of Living [Internet] Asia Soc. 2020. Available online: https://asiasociety.org/education/indian-societyandways-living (accessed on 22 May 2020).
- Singh, A.K.; Misra, A. Editorial: Herd Mentality, Herds of Migrants/People, and COVID-19 in India Diabetes MetabSyndr 5 May 2020. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198411/ (accessed on 6 May 2020).
- Thakur, R.K. Food Corporation of India Allocates 120 LMT Foodgrains for Distribution in States amid Lockdown- the New Indian Express. The New Indian Express. Available online: https://www.newindianexpress.com/nation/2020/may/14/food-corporation-of-indiaallocates-120-lmt-foodgrains-for-distribution-in-states-amid-lockdown-2143394.html (accessed on 25 May 2020).
- World Health Organization. Mental health and Psychosocial Considerations during the COVID-19 Outbreak. 2020. Available online: https://WHO/2019-nCoV/MentalHealth/2020.1 (accessed on 18 March 2020).
- Anser, M.K.; Yousaf, Z.; Khan, M.A.; Nassani, A.A.; Alotaibi, S.M.; Abro, M.M.Q.; Vo, X.V.; Zaman, K. Does communicable diseases (including COVID-19) may increase globalpoverty risk? A cloud on the horizon. Environ. Res. 2020, 187, 109668. [Google Scholar] [CrossRef]
- Holmes, K.V. SARS coronavirus: A new challenge for prevention and therapy. J. Clin. Invest. 2003, 111, 1605–1609. [Google Scholar] [CrossRef]
- World Health Organization. Novel Coronavirus (2019-nCoV)-Situation Report-48-8 March 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/2020 (accessed on 8 March 2020).
- Tanne, J.H.; Hayasaki, E.; Zastrow, M.; Pulla, P.; Smith, P.; Rada, A.G. Covid-19: How doctors and healthcare systems are tackling coronavirus worldwide. BMJ 2020, 368, m1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.Q.; Peng, H.J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Sharun, K.; Tiwari, R.; Sircar, S.; Bhat, S.; MalikY, S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019– COVID-19. Preprints 2020. [Google Scholar] [CrossRef]
- Ramadan, N.; Shaib, H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019, 9, 35–42. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; MacGregor, K.; Kanagarajah, S.; Patel, D.; Schlagenhauf, P. Going global-Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis. 2020, 33, 101578. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Bonilla-Aldana, D.K.; Balbin-Ramon, G.J.; Rabaan, A.A.; Sah, R.; Paniz-Mondolfi, A.; Pagliano, P.; Esposito, S. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez. Med. 2020, 28, 3–5. [Google Scholar] [PubMed]
- Azamfirei, R. The 2019 Novel Coronavirus: A Crown Jewel of Pandemics? J. Crit. Care Med. 2020, 6, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Kupferschmidt, K. Strategies shift as coronavirus pandemic looms. Science 2020, 367, 962–963. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. New coronavirus threat galvanizes scientists. Science 2020, 367, 492–493. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Luo, X.P. Facing the pandemic of 2019 novel coronavirus infections: The pediatric perspectives. Zhonghua Er Ke Za Zhi 2020, 58, 81–85. [Google Scholar] [CrossRef]
- Khan, S.; Siddique, R.; MAShereen Ali, A.; Liu, J.; Bai, Q.; Bashir, N.; Xue, M. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: Biology and therapeutic options. J. Clin. Microbiol. 2020, 58, e00187-20. [Google Scholar] [CrossRef] [Green Version]
- Paital, B.; Das, K.; Parida, S.K. Inter nation social lockdown versus medical care against COVID-19, a mild environmental insight with special reference to India. Sci. Total Environ. 2020, 728, 138914. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Smith, J.C. Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ace2 Interface 2020. ChemRxiv; Cambridge Open Engage: Cambridge, UK, 2020. [Google Scholar]
- Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today 2020, 25, 668–688. [Google Scholar] [CrossRef]
- Liu, S.L.; Saif, L. Emerging Viruses without Borders: The Wuhan Coronavirus. Viruses 2020, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Correa, T.A.; Rogero, M.M. Polyphenols regulating micro RNAs and inflammation biomarkers in obesity. Nutrition 2019, 59, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.C.; Williamson, D.A. An outbreak of COVID-19 caused by a new coronavirus: What we know so far. Med. J. Aust. 2020, 212, 393–394. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Qiu, H.B.; Zhan, X.; Wang, Y.S.; Kang, H.Y.J.; Li, X.Y.; Wang, F.; Sun, B.; Tong, Z.H. Pharmacotherapeutics for the New Coronavirus Pneumonia. Zhonghuajie He He Hu Xi Za Zhi = ZhonghuaJiehe He HuxiZazhi = Chin. J. Tuberc. Respir. Dis. 2020, 43, E012. [Google Scholar]
- Jiang, S.; Du, L.; Shi, Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerg. Microbes Infect. 2020, 9, 275–277. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem. 2020, 27, 4536–4541. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dhama, K.; Karthik, K.; Khandia, R.; Chakraborty, S.; Munjal, A.; Latheef, S.K.; Kumar, D.; Ramakrishnan, M.A.; Malik, Y.S.; Singh, R.; et al. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front. Immunol. 2018, 9, 1803. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Verma, A.K.; Rajagunalan, S.; Deb, R.; Karthik, K.; Kapoor, S.; Tiwari, R.; Panwar, P.K.; Chakraborty, S. Swine flu is back again: A review. Pak. J. Biol. Sci. PJBS 2012, 15, 1001–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; He, Y.; Liu, S. SARS vaccine development. Emerg. Infect. Dis. 2005, 11, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.-J.; Jiang, S. The spike protein of SARS-CoV—A target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009, 7, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan. Nature 2020, 577, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Chakraborty, S.; Kapoor, S.; Tiwari, R.; Kumar, A.; Deb, R.; Rajagunalan, S.; Singh, R.; Vora, K.; Natesan, S. One world, one health-Veterinary perspectives. Adv. Anim. Vet. Sci. 2013, 1, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Zaher, N.H.; Mostafa, M.I.; Altaher, A.Y. Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharm. 2020, 70, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jo, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 2020, 35, 145–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balachandar, V.; Kaavya, J.; Mahalaxmi, I.; Arul, N.; Vivekanandhan, G.; Bupesh, G.; Singaravelu, G.; Anila, V.; Dhivya, V.; Harsha, G.; et al. COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020, 725, 138277. [Google Scholar]
- Rathi, S.; Ish, P.; Kalantri, A.; Kalantri, S. Hydroxychloroquine prophylaxis for COVID-19 contacts in India. Lancet Infect. Dis. 2020, 20, 1118–1119. [Google Scholar] [CrossRef]
- Gomathi, M.; Padmapriya, S.; Balachandar, V. Drug studies on Rett syndrome: From bench to bedside. J. Autism. Dev. Disord. 2020, 50, 2740–2764. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, V.; Mahalaxmi, I.; Kaavya, J.; Vivekanandhan, G.; Ajithkumar, S.; Arul, N.; Singaravelu, G.; Kumar, N.S.; Devi, S.M. COVID-19: Emerging protective measures. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3422–3425. [Google Scholar] [PubMed]
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. On behalf of the HLH Across Speciality Collaboration, COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- La Gruta, N.L.; Kedzierska, K.; Stambas, J.; Doherty, P.C. A question of self-preservation: Immunopathology in influenza virus infection. Immunol. Cell Biol. 2007, 85, 85–92. [Google Scholar] [CrossRef]
- Hossain, K.S.; Hossain, M.G.; Moni, A.; Rahman, M.M.; Rahman, U.H.; Alam, M.; Kundu, S.; Rahman, M.M.; Hannan, M.A.; Uddin, M.J. Honey as a potential natural remedy against COVID-19: Pharmacological insights and therapeutic promises. Heliyon 2020, 6, e05798. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 555, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Quan, P.L.; Sauzade, M.; Brouzes, E. DPCR: A technology review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, T.; Yang, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease. Radiology 2019, 2019, 1–23. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Fan, G.; Xu, L.; Zhang, B.; Liu, R. Chest CT Findings of Coronavirus Disease 2019 (COVID-19). J. Coll. Physicians. Surg. Pak. 2020, 30, 53–55. [Google Scholar] [CrossRef]
- Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 Image Data Collection: Prospective Predictions Are the Future. Available online: http://arxiv.org/abs/2006.11988 (accessed on 30 June 2020).
- Jokerst, C.; Chung, J.H.; Ackman, J.B.; Carter, B.; Colletti, P.M.; Crabtree, T.D.; de Groot, P.M.; Iannettoni, M.D.; Maldonado, F.; McComb, B.L.; et al. ACR Appropriateness Criteria ® Acute Respiratory Illness in Immunocompetent Patients. J. Am. Coll. Radiol. 2018, 15, S240–S251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clin. Imaging 2020, 64, 35–42. [Google Scholar] [CrossRef]
- Riccucci, M. Bats as materia medica: An ethnomedical review and implications for conservation. Vespertilio 2013, 16, 249–270. [Google Scholar]
- Hu, B.; Ge, X.; Wang, L.F.; Shi, Z. Bat origin of human coronaviruses. Virol. J. 2015, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Elshabrawy, H.A. SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines 2020, 8, 335. [Google Scholar] [CrossRef]
- Huynh, N.; Baumann, A.; Loeb, M. Reporting quality of the 2014 Ebola outbreak in Africa: A systematic analysis. PLoS ONE. 2020, 14, e0218170. [Google Scholar] [CrossRef]
- Khan, S.; Siddique, R.; Ali, A.; Xue, M.; Nabi, G. Novel coronavirus, poor quarantine, and the risk of pandemic. J. Hosp. Infect. 2020, 104, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Ashour, H.M.; Elkhatib, W.F.; Rahman, M.; Elshabrawy, H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardar, R.; Satish, D.; Birla, S.; Gupta, D. Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. Biorxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hopman, J.; Allegranzi, B.; Mehtar, S. Managing COVID-19 in low- and middle-income countries. JAMA 2020, 323, 1549. [Google Scholar] [CrossRef]
Drug Name | Class | Source | Risk Factor | Routes for Working | Overall Efficacy | Ref. |
---|---|---|---|---|---|---|
Hydroxy-chloroquine | Antimalarials | Bioactive compound | Retinal injure, cardiac arrhythmias; G6PD deficiency patients; Caution in patients with diabetess; Noteworthy drug interactions | Inhibition of viral enzyme or processes of RNA polymerase, viral DNA, virus assembly, new virus particle transport and virus release; In vitro activity against SARS-CoV-2; ACE2 cellular receptor inhibition, acidification at the cell membrane inhibiting of the virus | In vitro and restricted clinical data suggest potential advantage | [64,65] |
Chloroquine | Antimalarials and amebicides | Bioactive ompound; or phytochemical Extracted from the plant Artemisia annua (also known as“Sweet annine”) | Retinal injure, cardiac arrhythmias; G6PD deficiency patients; Caution in patients with diabetes; Noteworthy drug interactions | Inhibition of viral enzyme or processes of RNA polymerase, viral DNA, virus assembly, new virus particle transport and virus release; In vitro activity against SARS-CoV-2; ACE2 cellular receptor inhibition, acidification at the cell membrane inhibiting of the virus | In vitro and restricted clinical data suggest potential advantage | [66] |
Remdesivir | Antiviral | Chemically synthesized | Efficacy will require ongoing randomized, placebo-controlled trials of remdesivir therapy; Remdesivir has broad-spectrum activity against members of several virus families, including filoviruses; | Acts as an inhibitor of RNA-dependent RNA polymerases; Acts as a broad-spectrum antiviral with in vitro activity against CoVs; Once incorporated into the viral RNA at position i, RDV-TP terminates RNA synthesis at position | Investigational and available only through expanded contact and study protocols; numerous clinical trials are underway | [64,65] |
Tocilizumab | Interleukin-6(IL-6) Receptor-Inhibiting Monoclonal Antibody | Humanized (from mouse) | Hepatatoxicity; Neutropenia and thrombocytopenia; Risk of GI perforation and infusion-associated reactions | Inhibits IL-6-mediated signaling by competitively binding to both soluble and membrane-bound IL-6 receptors. IL-6 is a proinflammatory cytokine that is involved in diverse physiological processes; IL-6 is produced by various cell types, including T and B cells, monocytes, lymphocytes and fibroblasts; Immunoglobulin secretion induction, hematopoietic precursor cell proliferation, hepatic acute-phase protein synthesis initiation; Cytokine release condition may be a component of severe sickness in COVID-19 patients | Limited preliminary data as adjunct therapy; Immunomodulating negotiator used in some protocols based on theoretical mechanisms | [67] |
Azithromycin | Macrolide Antibiotics (Antibacterial) | Chemically synthesized (Semi-synthetic) | Risk of cardiac arrhythmias; Noteworthy drug connections | It may have immunomodulatory properties in pulmonary inflammatory disorders; They may downregulate inflammatory responses and decrease the excessive cytokine production related torespiratory viral infections; It may prevent bacterial super infection, and macrolides may have immunomodulatory properties to work as adjunct therapy | Used in some protocols based on theoretical mechanisms and limited preliminary data as adjunct therapy | [64] |
Honey, Food substance | Hymenopterans | Bioactive compound | Still needs to be proved through clinical trial and proper experiments | The COVID-19 infected individual having cytokine syndrome can be tackled with honey antioxidant property and increased IFN-γ level. | Polyphenol-rich environment can efficiently activate local immune suppression and tissue repair mechanisms; | [68] |
COVID-19 convalescent plasma | Antibodies | Plasma collected from persons who have recovered from COVID-19 that may contain antibodies to nCoV-19 | Awaiting as clinical trials are ongoing; Corticosteroid administration issues; Cardiac arrest problem | Clinical trials are being conducted to evaluate the use of COVID-19 convalescent plasma to treat patients with severe or immediately life-threatening COVID-19 infections. COVID-19 convalescent plasma is not intended for prevention of the infection; Corticosteroid therapy is not recommended for viral pneumonia; Acute respiratory distress syndrome | Investigational use is being studied; Not recommended for viral pneumonia; but, use may be measured for patients with acute respiratory distress condition | [65] |
S. No. | Diseases | Symptoms | Onset of Disease | Incubation Period | Recovery | Complications | Transmission of Disease | Treatments | Remarks |
---|---|---|---|---|---|---|---|---|---|
1. | Novel Coronavirus (COVID-19) | Fever, Cough Shortness of breath Fatigue | Sudden | 2–14 days after exposure | 2–8 weeks | Acute pneumonia, Septic shock, Respiratory failure | Human to Human | No vaccines available, only symptoms can be treated | This is a bulk infectious agent, respiratory syndrome virus |
2. | Severe Acute Respiratory Syndrome (SARS) | Fever Dry Cough, Headache Difficulty in breathing, Muscle aches, Loss of appetite Diarrhea | Sudden | 2–7 days after exposure | 5–6 weeks | Heart, Liver and Respiratory failure in adverse condition | Human to Human | Breathing ventilator to deliver oxygen. Pneumonia-treating antibiotics, Antiviral, medicines, Steroids to reduce lung swelling | The complete 29,727-nucleotide sequence of the RNA genome, deadly virus |
3. | Middle East Respiratory syndrome (MERS) | Fever, Chills Diarrhea Nausea Vomiting Congestion Sneezing, Sore throat | Sudden | 5–6 days after exposure | 6–7 weeks | Acute Pneumonia, Kidney failure in adverse condition | Human to Human | Treatment only for symptoms such as Fluids replacement and Oxygen therapy | causes devastating loss to human life, |
4. | Common Flu | Runny or Stuffy nose, Sneezing, Sore throat, Mild, Headache, fever | Gradual | 2–3 days after exposure | 7–10 weeks | Extremely rare or none | Human to Human | Symptoms can be treated by medication | This is a very small infectious agent |
S.No. | Virus Name | Symptom | Year | Countries Affected | Cases | Deaths | Fatality Rate (%) | Vaccine/Treatment |
---|---|---|---|---|---|---|---|---|
1. | H7N9 Bird Flu | Difficult breathing, Fever, Cough, Runny nose | 2013 | 03 | 1568 | 616 | 39.30 | Symptoms can be treated |
2. | MERS | Fever, Cough, Cold, Difficult breathing | 2012 | 28 | 2496 | 858 | 34.40 | Symptoms can be treated |
3. | H1N1 | Fever, Chills, Cough, Sore throat, Body aches, Diarrhea, Vomiting | 2009 | 214 | >762,630,300 | 284,500 | 0.02 | PAnvax |
4. | SARS | Cough, Cold, Fever, Difficult breathing | 2002 | 29 | 8096 | 774 | 9.60 | Symptoms can be treated |
5. | Nipah | Fever, Headache, Myalgia, Pneumonia, Vomiting, etc. | 1998 | 02 | 513 | 398 | 77.60 | ChAdOX1NiVB |
6. | H5N1 Bird Flu | Difficult breathing, Fever, Cough, Runny nose | 1997 | 18 | 861 | 455 | 52.80 | Audenz |
7. | Hendra | Weakness, Fatigue, Stomach pain | 1994 | 01 | 07 | 04 | 57.00 | Equivac HeV |
8. | Ebola | Fever, Muscle and joint pain, Stomach pain | 1976 | 09 | 33,577 | 13,562 | 40.40 | Rvsv-zebdv |
9. | Marberg | Nausea, Vomiting, Chest pain, Sore throat | 1967 | 11 | 466 | 373 | 80.00 | cAds-Marburg |
10. | SARS-CoV-2 | Cough, Cold, Fever, Difficult breathing | 2020 | 222 | 174,054,314 | 3,744,116 | 3.4% | Vaccines available, symptoms can be treated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurrey, R.; Saha, A. An Overview of SARS-CoV-2 and Technologies for Detection and Ongoing Treatments: A Human Safety Initiative. COVID 2022, 2, 731-751. https://doi.org/10.3390/covid2060055
Kurrey R, Saha A. An Overview of SARS-CoV-2 and Technologies for Detection and Ongoing Treatments: A Human Safety Initiative. COVID. 2022; 2(6):731-751. https://doi.org/10.3390/covid2060055
Chicago/Turabian StyleKurrey, Ramsingh, and Anushree Saha. 2022. "An Overview of SARS-CoV-2 and Technologies for Detection and Ongoing Treatments: A Human Safety Initiative" COVID 2, no. 6: 731-751. https://doi.org/10.3390/covid2060055